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ABSTRACT
In this article, we propose new estimators of location. These estimators
select a robust set around the geometric median, enlarge it, and com-
pute the (iterative) weighted mean from it. By doing so, we obtain a
robust estimator in the sense of the breakdown point, which uses more
observations than standard estimators. We apply our approach on the
concepts of boxplot and bagplot. We work in a general normed vector
space and allow multi-valued estimators.

1. Introduction

Robust statistical methods try to weaken quite restrictive assumptions of classical methods.
For instance, inmany statistical models it is assumed that residuals are independent and iden-
tically distributed. Moreover, the assumption of normality of residuals is often added and the
Euclidean norm is usually employed. But for real data these assumptions are often violated
and classical approaches fail. This leads to a necessity to consider robust statistical methods.
As classical examples of robust methods we mention replacing the l2 norm by the l1 norm
or replacing the mean by the median. Such development was also enabled by the progress in
computer technologies as the robust methods are usually more complicated and computa-
tionally demanding than the classical methods.

In this article, we are interested in robust estimators for the parameter of location. One of
the first attempts to deal with such estimators areM-estimators, see Huber (1964) orMaronna
(1976). They are computationally simple but suffer from low breakdown point, see Ham-
pel (1971) or Donoho and Huber (1983). This, loosely speaking, expresses the data fraction,
which can be “arbitrarily modified” without affecting the finiteness of the estimator. Its value
is at most 1

d+1 , see Maronna et al. (2006), where d is the dimension of observations. Later,
multiple estimators got proposed, among others we mention:

� minimumvolume ellipsoid estimators (MVE, Rousseeuw, 1985)whose name stems from
the fact that among all “proper” ellipsoids containing at least half of observations, the one
given by MVE has minimal volume. However, their efficiency is rather poor.

� S-estimators (Davies, 1987) have been suggested to overcome the low efficiency ofMVE.
They combine approaches of MVE and M-estimators.

� τ -estimators (Lopuhaä, 1991) also employ the idea of M-estimators but they do not
require preliminary scale estimator.
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� Stahel–Donoho estimator (Donoho, 1982; Stahel, 1981) is based on the idea that any
outlier in multivariate case should be an outlier in some univariate projection.

The advantage of these estimators is their high breakdownpoint, which is the highestwhich
a shift equivariant estimator can attain. However, their computation usually requires heavy
effort. Therefore,Maronna andZamarb (2002) suggested away of reducing the computational
complexity while sustaining the high breakdown point. As a price to pay, one is no longer able
to estimate the covariance structure.

In this article, we follow the goal of finding easily computable robust estimators with high
breakdownpoint. From a sample, we first select a setA of observations, which are robust in the
sense of breakdown point. Then we utilize these observations to construct further estimators,
for example, by enlarging A and computing the (iterative) weighted mean of observations
from the enlarged set. SetA is based on the geometricmedian (also called the spatial median),
which is a direct generalization of the real median proposed by Haldane (1948). Since the
geometric median has breakdown point of 1

2 , our estimators will be able to keep this property
as well.

Our estimators enjoy the following nice properties:
� Instead of considering theRd space, we work with a general normed vector spaceX . This
opens a natural way to tackle time series by our approach.

� Our estimators have high breakdown point and are simple to compute.
� We partially consider the covariance structure.
� We are able to work with set-valued estimators instead of single-valued estimators.
Note that estimators usually only satisfy several of the above properties, for example, either

they have high breakdown point or they do not take into account the covariance structure at
all.

This article is organized as follows: in the first part of Section 2 we define basic concepts of
breakdown point and geometricmedian. Even though geometricmedianmay be a set and not
a point in general, most authors do not handle this fact. Because of this, we have decided to
work with estimators, which are multifunctions (also known as set-valuedmaps). The second
part of Section 2 contains new results. We propose new estimators, discuss their breakdown
point, and provide a comparison between our algorithms and M-estimators.

Our notation is as follows: by (X, ‖ · ‖) we understand a normed vector space. For
a set A ⊂ X , we define ‖A‖ := supx∈A ‖x‖. Often we will use the bold notation for
x = (x1, . . . , xn) ∈ Xn. By the lower index we understand a component of a vector while by
the upper index, wemean an iteration number. AmultifunctionR : X ⇒ Y is a generalization
of a function, where R(x) does not have to be one point but may be a (nonempty) subset of
Y . We say that R is bounded on bounded sets if ∪x∈AR(x) is a bounded set for all bounded
sets A ⊂ X . Since we consider multi-valued estimators, some of the definitions are slightly
generalized.

2. New estimators based on generalization of trimmedmean

In this section, we first recall the geometric median and on its basis derive other estimators.
The basic idea is to find first the geometric median, then restrict ourselves to a set of neigh-
boring observations and construct an estimator based only on this restricted set. If this set is
chosen in a proper way, the estimator will have a breakdown point of 1

2 . The breakdown point
is nowadays one of the standardmeasures of robustness and expresses theminimal proportion
of the data, which can be corrupted (made arbitrarily distant) before the estimator becomes
unbounded.
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Definition 2.1. Consider a normed vector space X and an estimator Tn : Xn ⇒ X of some
functional T . For x = (x1, . . . , xn) ∈ Xn andm = 1, . . . , n define

Am,n(x) := {x̃ ∈ Xn | x̃ and x have at mostm different coordinates },
m∗n(Tn, x) := maxm∈{1,...,n}

{
m

∣∣∣ supx̃∈Am,n(x), z̃∈Tn(x̃), z∈Tn(x) ‖z̃ − z‖ <∞
}
.

Then we say that Tn has the breakdown point

ε∗n(Tn, x) :=
1
n
m∗n(Tn, x).

Finally, for family of estimators {Tn : Xn ⇒ X}we define the asymptotic breakdown point as

ε∗ := lim
n→∞

inf
x∈X

ε∗n(Tn, x).

We continue with the definition of geometric median.

Definition 2.2. We define the geometric median as a multifunction T̂n : Xn ⇒ X satisfying

T̂n(x1, . . . , xn) = argmin
a∈X

n∑
j=1
‖a− x j‖. (1)

We present now two examples. The first one shows that the choice of the norm can change
the geometric median in a significant way and that the geometric median may indeed be
multi-valued. The second one depicts a simple situation where we are able to compute the
geometric median. Moreover, it will be used later in some proofs.

Example 2.1. Consider X = R
2 and points x1 = (1, 0), x2 = (−1, 0), and x3 = x4 = (0, 1).

Then it is not difficult to verify that for the following norms, we have

(R2, ‖ · ‖1)⇒ T̂4(x1, . . . , x4) = conv{(0, 0), (0, 1)},
(R2, ‖ · ‖2)⇒ T̂4(x1, . . . , x4) = {(0, 1)},

(R2, ‖ · ‖∞)⇒ T̂4(x1, . . . , x4) = {(0, 1)},
where conv stands for the convex hull. We see that for ‖ · ‖2 and ‖ · ‖∞ the geometric median
is determined in a unique way. This does not hold any more for ‖ · ‖1.
Example 2.2. Consider x̄ ∈ X and x = (x1, . . . , xn), where x1 = · · · = xm = x̄ for somem ≥
n
2 . Fix any y ∈ X . Then we have

n∑
i=1
‖x̄− xi‖ =

n∑
i=m+1

‖x̄− xi‖ ≤
n∑

i=m+1
‖x̄− y‖ +

n∑
i=m+1

‖y− xi‖

=
n∑

i=m+1
‖x̄− y‖ +

n∑
i=m+1

‖y− xi‖ +
m∑
i=1
‖y− xi‖ −

m∑
i=1
‖y− x̄‖

=
n∑

i=1
‖y− xi‖ + (n− 2m)‖y− x̄‖ ≤

n∑
i=1
‖y− xi‖

due to them ≥ n
2 . But this means that x̄ ∈ T̂n(x).

Recall that a shift equivariant estimator Tn satisfies Tn(x1 + y, . . . , xn + y) =
Tn(x1, . . . , xn)+ y for all x1, . . . , xn ∈ X and y ∈ X . For single-valued estimators, it has been
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shown in Maronna et al. (2006, formula (3.25)) that a shift equivariant estimator satisfies

ε∗n(Tn, x) ≤
1
n

⌊
n− 1
2

⌋
. (2)

Since the geometric median possesses this property, it is not surprising, that we obtain
formula (2) as well. Moreover, we obtain even equality in this estimate.

Lemma 2.1. For any x = (x1, . . . , xn) ∈ Xn, we have for the geometric median

ε∗n(T̂n, x) =
1
n

⌊
n− 1
2

⌋
,

and thus for the asymptotic breakdown point we have ε∗ = 1
2 .

Proof. The second statement is an immediate consequence of the first one. Note that the first
statement is equivalent to m∗n(T̂n, x) = n0 with n0 :=

⌊ n−1
2

⌋
. From Example 2.2, we see that

m∗n(T̂n, x) < n
2 , which further impliesm∗n(T̂n, x) ≤ n

2 − 1 ≤ n0. To finish the proof, it is suffi-
cient to show thatm∗n(T̂n, x) ≥ n0.

Consider thus any x̃ ∈ An0,n(x) and denote by I the index set of coordinates where x and
x̃ differ and by J its complement. Denote by n1 the cardinality of I and observe that n1 ≤ n0.
Denoting further R := maxi=1,...,n ‖xi‖, we have ‖x̃ j‖ = ‖x j‖ ≤ R for all j ∈ J. Taking any
j ∈ J and y ∈ X , we obtain the following estimate:

n∑
l=1
‖x̃ j − x̃l‖ ≤

∑
l∈I
‖x̃ j − x̃l‖ + 2(n− n1)R ≤

∑
l∈I
‖x̃ j − y‖ +

∑
l∈I
‖y− x̃l‖ + 2(n− n1)R

=
n∑

l=1
‖y− x̃l‖ −

∑
l∈J
‖y− x̃l‖ + n1‖x̃ j − y‖ + 2(n− n1)R

≤
n∑

l=1
‖y− x̃l‖ −

∑
l∈J
‖y− x̃ j‖ +

∑
l∈J
‖x̃ j − x̃l‖ + n1‖x̃ j − y‖ + 2(n− n1)R

≤
n∑

l=1
‖y− x̃l‖ + (2n1 − n)‖y− x̃ j‖ + 4(n− n1)R.

Since 2n1 − n ≤ 2n0 − n < 0, we obtain that there is R̃I > 0 such that for all ‖y‖ ≥ R̃I we
have

n∑
l=1
‖x̃ j − x̃l‖ <

n∑
l=1
‖y− x̃l‖.

But this means that the geometric median lies in a ball with radius R̃I . Since there is only finite
number of possible subsets I, we have finished the proof. �

The next lemma is allows us to compute the breakdown point of an estimator.

Lemma2.2. Considermultifunctions�1 : Xn ⇒ Xm and�2 : Xn × Xm ⇒ X.Assume that the
following assumptions are satisfied:

1. All components of �1 have breakdown point at least p.
2. There exists �3 : Xm ⇒ X which is bounded on bounded sets such that ‖�2(x, y)‖ ≤
‖�3(y)‖ for all x ∈ Xn and y ∈ Xm.
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Then estimator Tn defined as

Tn(x) :=
⋃

y∈�1(x)

�2(x, y)

has breakdown point at least p.

Proof. Due to the first assumption, there exists some R > 0 such that for m := np, all x̃ ∈
Am,n(x) and for all y ∈ �1(x̃) we have ‖y‖ ≤ R. But then we have ‖�2(x̃, y)‖ ≤ ‖�3(y)‖,
which is uniformly bounded due to the second assumption. Thus, the statement has been
proved. �

We come now to new estimators. For a set S ⊂ X and a point x = (x1, . . . , xn) ∈ Xn, we
define

L (S, x) :=
⋃
y∈S

{
xI ∈ X� n−12 


∣∣∣∣ ∃ I ⊂ {1, . . . , n} : max
i∈I
‖xi − y‖ ≤ min

i∈{1,...,n}\I
‖xi − y‖

}
,

where xI denotes the restriction of x to components I. The interpretation of this set goes as
follows: we select some y ∈ S and choose xI to be the

⌊ n−1
2

⌋
observations closest to y. Then

L (S, x) is the union of all such subsets with respect to all choices of y ∈ S. Since every such
xI contains less than n

2 components of x, this set is stable with respect to perturbations of x
whenever less than one half of observations is contaminated.

Wewill useL (S, x) to define further estimators. The next theorem says that if we start with
the geometric median S = T̂n(x) and amultifunction Rwith certain boundedness properties,
we obtain an estimator with the same breakdown point as the geometric median.

Theorem 2.1. Consider any multifunction R : X� n−12 
 ⇒ X, which is bounded on bounded sets
and for which there exists zk such that ‖R(zk, . . . , zk)‖ → ∞. Then for estimator Tn : Xn ⇒ X
defined as

T 1
n (x) :=

⋃
y∈L (T̂n(x),x)

R(y) (3)

and for every x = (x1, . . . , xn) ∈ Xn, we have the following relation

ε∗n(T
1
n , x) = ε∗n(T̂n, x) =

1
n

⌊
n− 1
2

⌋
.

Proof. From Lemma 2.2 with m = ⌊ n−1
2

⌋
, �1(x) = L (T̂n(x), x), and �2(x, y) = R(y) and

Lemma 2.1 we obtain

ε∗n(T
1
n , x) ≥ ε∗n(T̂n, x) =

1
n

⌊
n− 1
2

⌋
.

To show the opposite inequality, realize that the statement is equivalent tom∗n(T 1
n , x) ≤ ⌊ n−1

2

⌋
.

For contradiction assume thatm∗n(T 1
n , x) ≥ ⌊ n−1

2

⌋+ 1 ≥ ⌊ n
2

⌋
. We change the first

⌊ n
2

⌋
coor-

dinates of x to zk and denote the perturbed point by x̃k. Then Example 2.2 tells us that
zk ∈ T̂n(x̃k). Due to the definition of L , we see that (zk, . . . , zk) ∈ L (T̂n(x̃k), x̃k) and the
imposed assumption of R implies a contradiction. �

If both R and L (T̂n(x), x) are single-valued functions, expression (3) reduces to

T 1
n (x) = R(L (T̂n(x), x)).
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Moreover, in such a case L (T̂n(x), x) denotes one half of observations, which are closest to
the geometric median. There are several natural choices for R: for example, mean, weighted
mean, or geometric median.

One of possible drawbacks of estimator (3) is that it utilizes only half of the original data.We
want to make use of as many observations as possible while maintaining the high breakdown
point. To this aim, we first consider a general set S ⊂ Xm for some m ∈ N, for example, we
may consider mean of x as a subset of X or L (T̂n(x), x) as a subset of X� n−12 
. Then we
consider some b : X × Xn→ [0,∞) and enlarge S by defining

Eb(S , x) :=
⋃
y∈S

{
xI| I = {i| xi ∈ ∪mj=1B(y j, b(y j, x))}

}
. (4)

Here, B(y j, b(y j, x)) stands for a ball around y j with radius b(y j, x). The interpretation goes
as follows: from S we select y, make balls around all of its components, and select all com-
ponents of x, which lie in the union of this balls.

Example 2.3. Consider the case of X = R, n = 5, and x = (−3,−2, 0, 2, 4). Then the geo-
metric median equals to T̂n(x) = 0 and since n0 =

⌊ n−1
2

⌋ = 2, we also have

L (T̂n(x), x) = {(−2, 0), (0, 2)} ⊂ R
2.

If we consider b ≡ 1, then

Eb(L (T̂n(x), x), x) = {(−3,−2, 0), (0, 2)}.
Note that both elements of Eb(L (T̂n(x), x), x) are of a different dimension.

We obtain the following variant of Theorem 2.1, for which we omit its identical proof.

Theorem 2.2. Consider b : X × Xn→ [0,∞) bounded on bounded sets in the first variable,
uniformly in the second one, any family of multifunctions Rs : Xs ⇒ X for s = 1, . . . , n, which
are all bounded on bounded sets and for which there exists zk such that ‖Rs(zk, . . . , zk)‖ → ∞.
Then for estimators T 2

n : Xn ⇒ X and T 3
n : Xn ⇒ X defined as

T 2
n (x) :=

⋃
y∈Eb(T̂n(x),x)

Rdim y(y), (5a)

T 3
n (x) :=

⋃
y∈Eb(L (T̂n(x),x),x)

Rdim y(y) (5b)

and for every x = (x1, . . . , xn) ∈ Xn, we have the following relation for breakdown points

ε∗n(T
2
n , x) = ε∗n(T

3
n , x) = ε∗n(T̂n, x) =

1
n

⌊
n− 1
2

⌋
.

Function b should neither have too large values (which corresponds to big enlargement
of the set in question) because outliers may be close to the non-contaminated data, nor too
small values because some information could be missed. We suggest a possible choice in the
Appendix.

To improve the behavior of the estimators, we implement an iterative procedure. We
start with geometric median z0 = T̂n(x) and in every iteration k compute a new estimate
zk. To do so, we employ (5b) with R being the weighted mean, where the (non-normalized)
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weights satisfy

wi(zk−1, yi) =
⎧⎨
⎩
1 if yi ∈ L ({zk−1}, x),

max
y j∈L ({zk−1},x)

(
1− ‖yi−y j‖bk(y j,x)

)
otherwise (6)

for some bk based onL ({zk−1}, x). This choice ofweightsmakes use of the possibly division of
components of y ∈ Eb(L ({zk−1}, x), x) into two parts: thosewho belong toL ({zk−1}, x) and
those whowere added by enlarging this set. For the first part, we choose the (non-normalized)
weight equal to one, the weight for observations from the second part decreases with the
increasing distance to L ({zk−1}, x). We summarize this approach in Algorithm 2.1. Con-
sidering the termination criterion, any standard criterion may be used, for example, if the
(relative) change in zk is small.

Algorithm 2.1 An estimator based on iterative weighting
Input: observations x = (x1, . . . , xn)
1: k← 0, z0← T̂n(x)
2: while not terminate do
3: k← k+ 1
4: determine bk based on L ({zk−1}, x)
5: pick any yk ∈ Ebk (L ({zk−1}, x), x)
6: compute wk according to formula (6) and renormthem such that their sum equals

to 1
7: zk←∑dim y

i=1 wk
i yki

8: end while
9: return estimate x̂← zk

Finally, wewould like to point out that every update step inAlgorithm2.1 keeps the stability
result, whichwe alreadymentioned several times in the previous text. For k = 1,wemaywrite

zk =
⋃

y∈�1(x)

�2(x, y),

where y = y1, �1(x) := Eb(L ({z0}, x), x), and �2(x, y) :=
∑dim y1

i=1 wi(x, y1)y1i . Then �1

has breakdown point 1
n

⌊ n−1
2

⌋
and since ‖�2(x, y)‖ ≤ nmaxyi∈y ‖yi‖ holds true, thanks to

Lemma 2.2 we obtain that z1 has the same breakdown point. By applying the same proce-
dure to subsequent iterations, we obtain the same result for all zk.

In the previous text, we highlighted some benefits of our estimators. Note that naturally
there are also situations where it is better to use standard estimators. Consider, for example,
the one-dimensional double exponential distributionwith density 1

2 exp(−|x− μ|).Then the
(geometric) median coincides with the maximum likelihood estimator of μ, see sec. 6.3 in
Lehmann and Casella (2006), and therefore the median is the most efficient estimator. Thus,
by employing additional observations apart from the median, we only worsen the quality of
an estimator. However, to benefit from such situation, we would have to know the true distri-
bution and know that there is no contamination.

Remark 2.1. There is some connection between our estimators with M-estimators. In
Algorithm 2.2, we summarize the algorithm fromMaronna et al. (2006, sec. 2.7.3).
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Algorithm 2.2M-estimator from
Require: observations x = (x1, . . . , xn), weighting functions W1 andW2

1: k← 0, z0← T̂n(x), dispersion estimate σ0

2: while not terminate do
3: k← k+ 1
4: rki ← xi−zk−1

σk−1
5: wk

1,i←W1(rki ), wk
2,i←W2(rki ) andnorm the weights to sum to one

6: zk←∑n
i=1 wk

1,ixi, σ k← 1
n

∑n
i=1 wk

2,i(xi − zk−1)2

7: end while
8: return estimate x̂← zk

Both approaches (iteratively) compute a weighted mean of observations. While M-
estimators are based on the maximum likelihood estimate, ours are based on geometric intu-
ition and trimmed mean. If X = R and ifW1 in Algorithm 2.2 has finite support, we can say
that our estimators belong to the very wide class ofM-estimators. This changes forRd though.
Under the standard assumption thatW1 is symmetric around zero and non-increasing on rays
emanating from zero, the weight of an observation depends only on the distance from zk−1.
Thus, two observations have the same weight if and only if their distance to zk−1 is identi-
cal. On the other hand, in our approach all points in L ({zk−1}, x) have the same weight and
this set is enlarged farther for distant observations. Thus, even though none of the algorithms
estimates the covariance structure, our algorithm makes at least an attempt to consider it.

Of course, there areM-estimators, which along with the location also properly estimate the
covariance structure. But this raises the computational complexity and reduces the breakdown
point to 1

d+1 . To summarize: we can say that our algorithms try to pick the best properties of
M-estimators, on one hand they have high breakdown point and are simple to compute; on
the other hand, they at least partially consider the covariance structure.

Another advantage of our estimator over M-estimators is a simpler theoretical analysis. To
show that our estimator has the limiting breakdown point 1

2 , it is sufficient to apply Lemma
2.2, which itself directly follows from the definition of the breakdown point. To the best of our
knowledge, such direct application of the definition is not possible forM-estimators, for exam-
ple, one has to take care of properties of weighting function due to the division by dispersion.

3. Numerical results

In this section, we first show numerical performance of our estimators and then show how
they comply with the well-known concepts of boxplot and bagplot.

3.1. Numerical performance

We consider X = R
d with d ∈ {1, 15} and compare our algorithms with known estimators;

for reader’s convenience we summarize the used algorithms in Table 1.
To generate the samples, we first generate zi from N(0, 1), then contaminate them by

some distribution with probability p and finally modify them via a covariance structure. This
modification is performed in the following way: we randomly generate a correlation matrix
C and diagonal matrix �2 with diagonal elements having distribution U[0.5, 10]. Then we
compute covariance matrixV = �C�, its Cholesky decompositionV = S�S, and finally set
yi = Szi + μ, where μ := (0, . . . , d − 1). Together we consider N = 10,000 samples with
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Table . Summary of algorithms. The horizontal line divides them in known and our algorithms.

Mean mean
Med median or geometric median
Trun α-truncated mean with α = 0.2
Winsor α-winsorized mean with α = 0.2
M Huber M-estimator, see Huber ()
M Algorithm . fromMaronna et al. ()
SD Stahel–Donoho estimator, see Stahel () and Donoho ()
GM formula (), where R is the mean
GM formula (a), where R is the mean
GM Algorithm .

Table . Value of loss function () for contaminations ofN(0, 1) by some other distribution with probability
p for X = R.

Distribution p Mean Med Trun Winsor M M GM GM GM

 0.080 . . . . . . . .
N(0, 100) . . . . . 0.084 . . . .
Cauchy . . . . . 0.082 . . . .
U(−10, 10) . . . . . 0.084 . . . .
N(0, 100) . . . . . 0.089 . . . .
Cauchy . . . . . 0.084 . . . .
U(−10, 10) . . . . . 0.090 . . . .
U(−20, 10) . . . . . . . . . 0.153

n = 100 observations. The loss function equals to

1
N

N∑
i=1

d∑
j=1
|x̂i, j − μ j|, (7)

where x̂i, j denotes an estimate for sample i and coordinate j = 1, . . . , d.
We present the results in Table 2 forX = R and in Table 3 forX = R

15. The values show the
loss function (7) for contaminating distribution (first column) with given probability (second
column). Bold numbers are the best values among all estimators and numbers in italic are
those within 5% of the best loss function value. For X = R, the results betweenM-estimators
and our estimators are comparable with M-estimators in a slight lead, which is not surprising
due to Remark 2.1. For X = R

15, the performance of both estimators turn around and now
our estimators perform better than the examinedM-estimators. This is again expected as our
estimators try to take into account the covariance structure as explained in Remark 2.1. For
the second case, our estimators manage to beat the Stahel–Donoho estimators almost in all
cases.

Table . Value of loss function () for contaminations ofN(0, I) by some other distribution with probability
p for X = R

15.

Distribution p Mean Med M SD GM GM GM

 0.151 . . . . . .
N(0, 100) . . . 0.155 . . . .
Cauchy . . . . . . 0.155 .
U(−10, 10) . . . . . . 0.155 .
N(0, 100) . . . . . . 0.159 .
Cauchy . . . . . . 0.160 .
U(−10, 10) . . . . . . 0.159 .
U(−20, 10) . . . . 0.194 . . .
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Figure . Comparison of the classical boxplot (left-hand side of each figure) and our modification (right-
hand side of each figure). In both cases, we contaminate N(0, 1) with a probability p by the distribution
described under the figures.

3.2. Relation to boxplot

Boxplot was proposed for the first time in Tukey (1977). It takes the median, then computes
the interquartile range (IQR), which is later widened. Observations, which are not present
in this widening (known as whiskers) are considered as outliers. We compare boxplot with
our method, where instead of considering IQR, we take y ∈ L (T̂n(x), x). Thus, we do not
need to take 25% observations with lower value than the median and 25% observations with
higher value than the median but we take 50% observations closest to the median. Whiskers
are based on Eb({y}, x).

We depict this comparison in Fig. 1. We contaminate the standard normal distribution by
some other distribution. In each (sub)figure, the left-hand side is the boxplot and the right-
hand side is ourmodification. Since both approaches differ in theway inwhich they treat non-
symmetry, both graphs in the left figure are identical. However, if we assume non-symmetric
distributions (right figure), then ourmodification is able to detect outliers in a better way than
the standard boxplot.

3.3. Relation to bagplot

In this subsection, we consider generalization of boxplot into more dimensions. For two
dimensions, this is known as bagplot and was studied for the first time in Rousseeuw et al.
(1999). For generalization to functional data, see, for example, Sun and Genton (2011).

To construct bagplot, a real number called depth is assigned to every observation, see Zuo
and Serfling (2000). Then the observation with highest value of depth is called the depth
median and the convex hull of approximately 50% observations with the highest depth is
called the bag (this corresponds to IQR for boxplot). Then the bag is enlarged to the so-called
fence (which corresponds to whiskers for boxplot). The observations not in the fence are con-
sidered as outliers.

We now present our modification of the bagplot, illustrated in Fig. 2. Having a sample
x, we compute first its geometric median T̂n(x). For simplicity, we assume that it is defined
uniquely. Thenwe choose an arbitrary y ∈ X� n−12 
 fromL (T̂n(x), x), construct a convex hull
containing all coordinates of y, and call this set the bag. In the last step, we enlarge the bag by
considering

conv
i
{T̂n(x)+ 3(yi − T̂n(x))},
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Figure . Description of the bagplot based on GM.©: observations, �: mean, •: T̂n(x), full and dashed
line: convex envelope ofL and E , respectively, ♦: GM,♠: GM, X: outliers.

see a similar procedure in Rousseeuw et al. (1999). In this figure, we also denote GM1 (as the
mean of all observation in the bag) and GM2 (as the mean of all observation in the fence).

Here, the geometric median corresponds to the depth median, the convex hull to the bag,
and its enlargement to the fence. Note that the construction of the fence is very similar to the
construction of Eb(L (T̂n(x), x), x). Moreover, since the construction of GM2 is based on
objects, which have the limiting breakdown point of 1

2 , estimator GM2 has the same property.
On the other hand, since bagplot is a generalization of boxplot, which has breakdown point of
1
4 , we cannot expect the bagplot to have higher breakdown point than this. Thus, our version
of bagplot deals better with outliers than the original method.

Appendix: Choice of b

In this short section, we derive an estimate for b for algorithms GM2 and GM3 described
in Table 1. Note that due to the construction of the algorithm, it is sufficient to define bi :=
b(xi, x) for all observations inL (T̂n(x), x). Since we want to keep GM2 as simple as possible,
we consider constant b and relax this assumption forGM3.Moreover, we derive different value
for one- and more-dimensional cases. We start with a technical lemma.

Lemma A.1. Let Y be a random variable with a finite second moment, distribution function
G, mean μ, standard deviation σ , and let qμ,σ denote its quantile function. Then for a fixed
α ∈ [0, 1], the following ratio does not depend on the values of μ and σ

KG,α = qμ,σ (1− α/2)− qμ,σ (α/2)
qμ,σ (0.75)− qμ,σ (0.25)

.

Proof. This follows from the fact σq0,1(α)+ μ = qμ,σ (α). �

For the case of one dimension, consider a random sample x from N(μ, σ 2) and denote its
median by T̂n(x). For simplicity assume that L (T̂n(x), x) ⊂ R� n−12 
 is a singleton. Then we
may estimate qμ,σ (0.75)− qμ,σ (0.25) by

maxL (T̂n(x), x)−minL (T̂n(x), x).

Then we define b as

b := KN(0,1),α
maxL (T̂n(x), x)−minL (T̂n(x), x)

2
� qμ,σ (1− α/2)− qμ,σ (α/2)

2
.
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This value thus estimates the distance between chosen quantiles divided by two. If we take all
observations, which distance from median is b, then we get, under assumption of not con-
taminated normality, approximately 1− α of our observations.

For the multidimensional case Rd , we assume that x follows the N(μ, σ 2I) distribution.
We usemaxy∈L (T̂n(x),x) ‖y− T̂n(x)‖ as an approximation of σχ 2

0.5,d , whereχ 2
0.5,d is the quantile

function of χ 2 distribution with d degrees of freedom evaluated at probability 0.5. To include
approximately fraction α ∈ (0, 1) of all observations, we set

b := max
y∈L (T̂n(x),x)

‖y− T̂n(x)‖
χ 2

α,d

χ 2
0.5,d

.

For GM3, we consider directly R
d . Assume again that our sample x has distribution

N(μ, σ 2I), then for xi from the boundary of L (T̂n(x), x) we have

‖xi − T̂n(x)‖
σ

∼
√

χ 2
0.5,d.

Now fixing given probability level α ∈ (0, 1) and weight w ∈ (0, 1), we want to have all xe
with

‖xe − T̂n(x)‖
σ

∼
√

χ 2
α,d

to have weight (6) at least w. But plugging this in the definition of weight results in

bi ≥ ‖xi − xe‖
1− w

≥ ‖xe − T̂n(x)‖
1− w

− ‖xi − T̂n(x)‖
1− w

∼ σ

1− w

(√
χ 2

α,d −
√

χ 2
0.5,d

)

= σ

1− w

‖xi − T̂n(x)‖
‖xi − T̂n(x)‖

(√
χ 2

α,d −
√

χ 2
0.5,d

)
.

Approximating again the distribution and taking minimum value of bi, we set

bi :=
√

χ 2
α,d −

√
χ 2
0.5,d

(1− w)
√

χ 2
0.5,d

‖xi − T̂n(x)‖.

In the numerical experiments, we have chosen α = 0.99.
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