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We show that Pearl’s causal networks can be described using causal compositional models 
(CCMs) in the valuation-based systems (VBS) framework. One major advantage of using 
the VBS framework is that as VBS is a generalization of several uncertainty theories 
(e.g., probability theory, a version of possibility theory where combination is the product 
t-norm, Spohn’s epistemic belief theory, and Dempster–Shafer belief function theory), 
CCMs, initially described in probability theory, are now described in all uncertainty calculi 
that fit in the VBS framework. We describe conditioning and interventions in CCMs. 
Another advantage of using CCMs in the VBS framework is that both conditioning and 
intervention can be easily described in an elegant and unifying algebraic way for the same 
CCM without having to do any graphical manipulations of the causal network. We describe 
how conditioning and intervention can be computed for a simple example with a hidden 
(unobservable) variable. Also, we illustrate the algebraic results using numerical examples 
in some of the specific uncertainty calculi mentioned above.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In many situations, we are faced with the question of what would happen if we made some changes, such as if we 
intervened by an action that changes the status quo. In [15], Pearl shows that such questions can be answered using 
causal probabilistic models, because of their ability to represent and respond to external or spontaneous changes. He also states 
that such questions cannot be answered with the help of non-causal probabilistic models, in which causal relations are 
not taken into consideration. The reason is obvious. Suppose that we have a joint probability distribution for two binary 
variables S and A. We can check whether they are related or not. But even if S = s is strongly positively related to A = a, 
there is no way to determine that one is a cause of the other. We can only see that P (A = a|S = s) > P (A = a), and 
P (S = s|A = a) > P (S = s). However, if we are informed that S = s denotes ‘there is smoke in a room,’ and A = a denotes 
‘smoke alarm is sounding,’ then we have more information about the situation than we had before. We now know that 
S = s is a cause of A = a. In this case, we can compute not only the conditional probabilities as indicated above, but also 
the effects of interventions. Consider, e.g., two interventions: creating smoke in the room (e.g., by lighting a smoke bomb), 
and sounding the alarm (e.g., by pushing the test button on the smoke alarm). Using Pearl’s do-calculus, we denote the 
first intervention by do(S = s), and the second one by do(A = a). Using this notation, for the effect of the first intervention, 
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Fig. 1. Graphical modifications under interventions in the smoke-alarm causal model.

it is clear that P (A = a|do(S = s)) = P (A = a|S = s) > P (A = a), because we know that S = s is a cause of A = a. On the 
other hand, if we have do(A = a), it activates the alarm, but we do not expect to find smoke in the room as a consequence. 
Clearly, P (S = s|do(A = a)) = P (S = s) (see Fig. 1). In summary, when we have an intervention do(X = x), where x is a state 
of variable X , we change the joint distribution such that all causal arcs that point to X disappear along with the conditional 
probability table for X (in the post–intervention model), we create a new probability distribution for X , P (X = x) = 1, and 
the remaining causal arcs and conditional probability tables remain unchanged.

In [8], causal probabilistic models, which are graphical probability models, were described by causal compositional mod-
els, which are algebraic probability models. Compositional models are based on the idea that a multidimensional probability 
model can be assembled, i.e., composed, from a collection of its lower-dimensional marginals. Naturally, it can be done only 
under some assumptions about the conditional independence relations between the variables for which the distribution 
is defined. Compositional models [7] are equivalent to Bayesian networks in the sense that a multidimensional probabil-
ity distribution represented by a Bayesian network can be expressed also as a compositional model with practically the 
same number of parameters (probabilities), and vice-versa. The main difference stems from the fact that the building blocks 
of a Bayesian network are conditional probability distributions, whereas the building blocks of a compositional model are 
marginal distributions. These facts suggest that there are some computational advantages when computing marginals of a 
multidimensional model represented by a compositional model. As we will see in this paper, causal compositional models 
bring further advantages in comparison with causal probabilistic graphical models. The main advantage is that the effect 
of interventions can be described algebraically without having to do any graphical manipulations. One can compute the 
effect of an intervention to the original causal model without any graphical modifications, and the algebraic descriptions of 
conditioning and intervention differs only by a pair of parentheses. The disadvantages of causal compositional models are 
that these are relatively new, and consequently, not as well understood as causal graphical models.

The valuation-based system (VBS) framework was initially introduced in [20], and expanded further in [19,22,14,13,16]. 
VBS is an abstract framework that is able to capture many different systems such as propositional logic, uncertainty calculi, 
systems of equations, optimization problems, data-base systems, etc. VBS consists of objects called variables and valua-
tions, and three operators called combination, marginalization, and removal, that operate on valuations. A valuation encodes 
knowledge about a subset of variables, and the subset of variables is referred to as the domain of the valuation. Combination 
allows us to combine two or more valuations resulting in a valuation that has aggregated knowledge from its constituents. 
In a specific VBS, if we combine all valuations in the system, we get what is called the joint valuation. Marginalization 
allows us to coarsen valuations allowing us to deduce the knowledge contained in a valuation for a variable in its domain. 
The coarsened valuation is called the marginal of the original valuation. Removal allows us to remove knowledge contained 
in a valuation from another valuation, and can be regarded as an inverse of combination. The three operators are required 
to obey some basic axioms, which enable us to compute marginals of the joint valuation for a particular variable of interest 
without having to explicitly compute the joint valuation. This is of interest in many systems as it may be computationally 
intractable to explicitly compute the joint valuation when we have many variables. The process of computing marginals of 
the joint valuation without explicitly computing the joint is called local computation.

The main contribution of this paper is a generalization of Pearl’s probabilistic causal models to non-probabilistic uncer-
tainty calculi. In [11], compositional models were described in the valuation-based system (VBS) framework, so that they are 
defined in all uncertainty calculi that the VBS framework is able to capture. In this paper, we extend compositional models 
described in the VBS framework further, so that we can represent the effects of conditioning and interventions. Thus, in 
doing so, we have extended Pearl’s causal models to all uncertainty calculi that fit in the VBS framework. In particular, 
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besides probability theory, possibility theory (but only when combination is the product t-norm), Spohn’s epistemic belief 
theory (also known as kappa calculus), and Dempster–Shafer’s belief function theory, fit in the VBS framework.

An outline of the remainder of the paper is as follows. Section 2 briefly reviews the VBS framework with examples from 
probability theory. Section 3 describes four different calculi that fit in the VBS framework. Also, it introduces the concept of 
dominance necessary to define composition of valuations, and this concept is described in greater detail in various theories 
that fit in the VBS framework. Section 4 reviews the composition operator and its basic properties in the VBS framework. 
Section 5 describes causal compositional models in the VBS framework, and making inferences in such models. We distin-
guish between conditioning and the effect of interventions. Finally, an algebraic example of hidden variables elimination 
in the VBS framework is presented in Section 6, and we provide some numerical examples in probability, possibility, and 
Spohn’s theories.

2. Valuation-based systems

In this section we briefly review the basic concept of valuation-based systems. We use notation from [22] and [11] that 
have a detailed introduction to VBS, and to compositional models in VBS, respectively. Recall that in Section 3, we illustrate 
valuations and the operators of VBS for various uncertainty calculi that are captured by the VBS framework.

Let Φ denote a set whose elements are called variables. Elements of Φ are denoted by upper-case Roman alphabets, 
e.g., X , Y , and Z . Subsets of Φ are denoted by lower-case Roman alphabets, e.g., r, s, and t . Let Ψ denote a set whose 
elements are called valuations. Elements of Ψ are denoted by lower-case Greek alphabets, e.g., ρ , σ , and τ . Each valuation 
is associated with a subset of variables, and represents some knowledge about the variables in the subset. Thus, we say that 
ρ is a valuation for r, where r ⊆ Φ is the subset associated with ρ .

It is useful to identify a subset of valuations Ψn ⊂ Ψ , whose elements are called normal. Normal valuations are those that 
are coherent in some sense. For example, in D-S belief function theory, normal valuations are basic probability assignment 
potentials (called b-valuations, see Section 3.4) whose values for non-empty subsets add to one.

For D-S belief function theory, it is useful to identify another subset of valuations Ψp ⊂ Ψ , whose elements are called 
proper. Proper valuations are those that are coherent in a sense that is different from normal. Proper valuations are b-
valuations whose values are non-negative. The concept of proper valuation is not needed for probability, possibility, and 
Spohn’s theory, and for these theories we assume that all valuations are proper. In [14], it is shown that for D-S belief 
function theory, the process of computation of marginals of joint belief functions involves intermediate valuations that are 
not proper.

We describe a specific VBS model by a pair (ΦS , ΨS ). This pair must be consistent in the sense that for each X ∈ ΦS

there exists a valuation ρ ∈ ΨS for r such that X ∈ r, and that each valuation ρ ∈ ΨS must be for variables r ⊆ ΦS . For 
example, consider ΦS = {U , X, Y , Z}. Then, in probability theory, ΨS may be specified in several ways. It may be specified, 
e.g., by a four-dimensional probability distribution τ ({U , X, Y , Z}), or, it may be specified by four conditional probability 
distributions, one for each variable in ΦS that constitute a factorization of τ ({U , X, Y , Z}). A specific example is given in 
Section 6.

The VBS framework includes three basic operators — combination, marginalization, and removal — that are used to make 
inferences from the knowledge encoded in a VBS.

Combination. The combination operator ⊕: Ψ × Ψ → Ψn represents aggregation of knowledge. We assume that it satisfies 
the following three axioms:

1. (Domain) If ρ is a valuation for r, and σ is a valuation for s, then ρ ⊕ σ is a normal valuation for r ∪ s.
2. (Commutativity) ρ ⊕ σ = σ ⊕ ρ .
3. (Associativity) ρ ⊕ (σ ⊕ τ ) = (ρ ⊕ σ) ⊕ τ .

The first axiom states that after combination, the resulting valuation is normal. This suggests that the normalization oper-
ation is included in the combination operation. If ρ represents some knowledge about r, and σ represents some knowledge 
about s, then ρ ⊕ σ represents the aggregated knowledge about r ∪ s. The commutativity and associativity axioms reflect 
the fact that the sequence in which knowledge is aggregated makes no difference in the aggregated result. Thus, we can 
write ρ ⊕ σ ⊕ τ without any parenthesis, and there is no ambiguity about the result of the combination regardless of the 
sequence used to combine the valuations.

In probability theory, for example, if ρ denotes a probability distribution of A, and σ denotes a conditional probability 
distribution of B given A, then ρ ⊕ σ constitutes the joint probability distribution of {A, B}. In this case, there is no need 
for normalization, i.e., the normalization constant is 1. For another example, if ρ denotes a joint probability distribution of 
{A, B}, and σ denotes the observation B = b, then ρ ⊕ σ constitutes the conditional distribution of {A, B} given B = b. In 
this case, there is need for normalization and the normalization constant is equal to P (B = b).

Marginalization. The marginalization operator −X: Ψ → Ψ allows us to coarsen knowledge by marginalizing X out of the 
domain of a valuation. We assume that it satisfies the following four axioms:
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1. (Domain) If ρ is a valuation for r, and X ∈ r, then ρ−X is a valuation for r \ {X}.
2. (Normal) ρ−X is normal if and only if ρ is normal.
3. (Order does not matter) If ρ is a valuation for r, X ∈ r, and Y ∈ r, then (ρ−X )−Y = (ρ−Y )−X , which is denoted by ρ−{X,Y } .
4. (Local computation) If ρ and σ are valuations for r and s, respectively, X ∈ r, and X /∈ s, then (ρ ⊕ σ)−X = (ρ−X ) ⊕ σ .

The domain axiom says that if ρ represents some knowledge about r, then ρ−X represents knowledge about r \ {X}
implied by ρ if we disregard X . The normal axiom states that marginalization preserves normality of knowledge. The third 
axiom says that the order in which variables are marginalized from a valuation makes no difference in the final marginal. 
The fourth axiom states that the computation of (ρ ⊕ σ)−X can be done without having to compute ρ ⊕ σ first, it can be 
done by marginalizing X from ρ and then combining σ . The latter is computationally more efficient than the former.

Sometimes it is useful to use the notation ρ↓r\{X,Y } to denote ρ−{X,Y } , when we wish to emphasize the variables that 
remain (instead of the variables that are marginalized out).

In probability theory, for example, if ρ denotes a joint distribution of {A, B}, then ρ−B = ρ↓A constitutes the marginal 
probability distribution of {A}, and ρ−{A,B} = ρ↓∅ is a valuation for ∅, i.e., a function that has only one value, whose value 
is equal to 1.

Commutative semigroups. The set of all normal valuations with the combination operator ⊕ forms a commutative semigroup. 
We let ι∅ denote the (unique) identity valuation of this semigroup. Thus, for any normal valuation ρ , ρ ⊕ ι∅ = ρ .

The set of all normal valuations for s ⊆ Φ with the combination operator ⊕ also forms a commutative semigroup (which 
is different from the semigroup discussed in the previous paragraph). Let ιs denote the (unique) identity for this semigroup. 
Thus, for any normal valuation σ for s, σ ⊕ ιs = σ .

Notice that, in general, ρ ⊕ ρ �= ρ . Thus, it is important to ensure that we do not double count knowledge when it 
matters. This can be ensured, e.g., when defining the composition operator in Section 4, by using the removal operator that 
is defined next.

Removal. The removal operator �: Ψ ×Ψn → Ψn represents removing knowledge in the second valuation from the knowledge 
in the first valuation. We assume that it satisfies the following three axioms:

1. (Domain): Suppose σ is a valuation for s and ρ is a normal valuation for r. Then σ � ρ is a normal valuation for r ∪ s.
2. (Identity): For each normal valuation ρ for r, ρ ⊕ρ �ρ = ρ . Thus, ρ �ρ acts as an identity for ρ , and we denote ρ �ρ

by ιρ . Thus, ρ ⊕ ιρ = ρ .
3. (Combination and removal): Suppose π and θ are valuations, and suppose ρ is a normal valuation. Then, (π ⊕ θ) � ρ =

π ⊕ (θ � ρ), and therefore we write π ⊕ θ � ρ without parenthesis to mean either (π ⊕ θ) � ρ or π ⊕ (θ � ρ).

We call σ �ρ the valuation resulting from removing ρ from σ . The domain axiom says that after removing ρ from σ , the 
result must be a valuation for r ∪ s as we cannot lose any of the domains of the two valuations. Therefore, σ ⊕ρ�ρ = σ ⊕ιρ , 
i.e., it is essentially σ that is extended from s to r ∪ s. The identity axiom defines the removal operator as an inverse of the 
combination operator. In Section 3, we will describe explicitly the identity valuation ιρ for various uncertainty calculi that 
fit in the VBS framework.

In probability theory, for example, if σ denotes a joint probability distribution for {A, B}, and ρ = σ−B denotes the 
marginal probability distribution for A, then σ �ρ constitutes the conditional probability distribution of B given A assuming 
that the values of ρ are all positive.

For a detailed discussion and motivation for introducing these operators see [22], where a number of properties of 
combination, marginalization, and removal operators are stated and proved. For example, for valuations σ and θ for s and t , 
respectively, a normal valuation ρ for r, and X ∈ s \ r, it holds that

1. (σ ⊕ θ) � ρ = (σ � ρ) ⊕ θ ; and
2. (σ � ρ)−X = σ−X � ρ .

Again, we can write σ ⊕ θ �ρ without any parenthesis, and there is no ambiguity about the result regardless of whether ρ
is removed from σ or from θ or from σ ⊕ θ .

In [14,13,16], the removal operator is defined using the algebraic theory of inverses in semigroups. This alternative way 
of defining the removal operator is mathematically more elegant than the way it is done here, but it involves a more 
sophisticated abstract algebraic theory (such as the theory of separative semigroups with inverses [2]) than the one we are 
using (the theory of regular semigroups [3]).

Conditional valuations. The removal operator allows us to define conditional valuations. Suppose τ is a normal valuation 
for t , and suppose r and s are disjoint subsets of t . Borrowing terminology from probability theory, τ↓r∪s � τ↓r is called the 
conditional for s given r with respect to τ , and we denote it by τ (s|r).1 Also, if r = ∅, let τ (s) denote τ (s|∅).

1 We caution the reader that τ (s|r) should be viewed as (the name of) a valuation, rather than the value of valuation τ for s|r. The latter makes no 
sense, of course. When we have to refer to values of τ (s|r), we will use the usual τ (s|r)(·) notation.
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Suppose τ is a normal valuation for t , and suppose r, s, and u are disjoint subsets of t . Then, the following statements 
(proved in [22]) hold.

1. τ (s|r) is a normal valuation for r ∪ s.
2. τ (r) = τ↓r .
3. τ (r) ⊕ τ (s|r) = τ (r ∪ s).
4. τ (s|r) ⊕ τ (u|r ∪ s) = τ (s ∪ u|r).
5. Suppose s′ ⊂ s. Then τ (s|r)↓r∪s′ = τ (s′|r).
6. (τ (s|r) ⊕ τ (u|r ∪ s))−s = τ (u|r).
7. τ (s|r)−s = ιτ (r) .

3. Examples of valuation-based systems

In this section, we will describe how probability theory, possibility theory with the product t-norm, Spohn’s theory of 
epistemic beliefs, and Dempster–Shafer theory of belief functions fit in the framework of VBS.

One of the important concepts of this paper is a composition of two valuations that will be introduced in Section 4. 
However, one can compose only a pair of non-conflicting valuations. Therefore, another goal of this section is to describe, 
and illustrate by examples from the specific theories, which pairs of valuations are non-conflicting.

As defined in the identity property of removal, ρ ⊕ ιρ = ρ . In general, if ρ ′ is a normal valuation for r that is distinct 
from ρ , then ρ ′ ⊕ ιρ may not equal ρ ′ . However, as a rule, there exists a class of normal valuations for r such that if ρ ′ is 
in this class, then ρ ′ ⊕ ιρ = ρ ′ . We will say that the valuations from this class are dominated by ρ . Thus, if ρ dominates ρ ′ , 
written as ρ � ρ ′ , then ρ ′ ⊕ ιρ = ρ ′ .

States of variables. We use the symbol 
X for the set of possible values of a variable X , and we call 
X the state space 
of X . We assume that elements of 
X are mutually exclusive and exhaustive. We assume that all variables have finite state 
spaces.

Given a non-empty set s of variables, let 
s denote the Cartesian product of 
X for X ∈ s; 
s =×X∈s 
X . We call 
s

the state space of s. We call the elements of 
s states of s. We use lower-case, bold-faced letters such as a, b, etc., to 
denote states. It is convenient to extend this terminology to the case where the set of variables s is empty. We adopt the 
convention that the state space for the empty set ∅ consists of a single state, and we use the symbol � to denote that state; 

∅ = {�}.

Projection of states. Projection simply means dropping extra coordinates; for example, if (w, x, y, z) is a state of {W , X, Y , Z}, 
then the projection of (w, x, y, z) to {W , Y } is simply (w, y), which is a state of {W , Y }. If r and s are sets of variables, 
r ⊆ s, and x is a state of s, then x↓r denotes the projection of x to r. If r = ∅, then of course, x↓r = �. If x is a state of r, y is 
a state of s, and r ∩ s = ∅, then there is a unique state z of r ∪ s such that z↓r = x, and z↓s = y. Let (x, y) or (y, x) denote 
this z. As per this notation, (x, �) = (�, x) = x.

3.1. Probability theory

In the probabilistic framework, a valuation ρ for r is a mapping ρ : 
r → [0, 1], where 
r denotes the set of all states 
of variables in r. Let a, b, etc., denote elements of 
r . Normal valuations are probability distributions, i.e. if ρ is a normal 
probability valuation for r, then∑

b∈
r

ρ(b) = 1.

Marginalization. Marginalization in probability theory is summation. Suppose ρ is a probability valuation for r, and suppose 
X ∈ r. Then, ρ−X is a probability valuation for r \ {X} such that for each a ∈ 
r\{X} ,

ρ−X (a) =
∑

b∈
X

ρ(a,b). (1)

Combination. Combination in probability theory is pointwise multiplication followed by normalization. Suppose ρ and σ are 
probability valuations for r and s, respectively. Then, ρ ⊕ σ is a normal probability valuation for r ∪ s such that for each 
a ∈ 
r∪s ,

(ρ ⊕ σ)(a) = ρ(a↓r)σ (a↓s)∑
ρ(b↓r)σ (b↓s)

. (2)

b∈
r∪s
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Thus, the combination ρ ⊕ σ is well defined only if the normalization constant in the denominator in Eq. (2) is positive. If 
the normalization constant is zero, then the valuations ρ and σ are said to be in total conflict, and cannot be combined.

Removal. The removal operator is pointwise division followed by normalization. Suppose ρ is a probability valuation for r, 
and σ is a normal probability valuation for s. Then, ρ � σ is a normal probability valuation for r ∪ s such that for each 
a ∈ 
r∪s ,

(ρ � σ)(a) =
{

ρ(a↓r)/σ (a↓s)∑
b∈
r∪s :σ (b↓s)>0(ρ(b↓r)/σ (b↓s))

if σ(a↓s) > 0,

0 otherwise.
(3)

Thus, ρ � σ is well-defined only if the normalization constant in the denominator is positive. If the normalization constant 
is zero, σ cannot be removed from ρ .

Domination. Suppose ρ is a normal probability valuation for r. From Eq. (3), the identity valuation ιρ = ρ � ρ is a normal 
probability valuation for r such that for each a ∈ 
r ,

ιρ(a) =
{ 1

|{b∈
r :ρ(b)>0}| if ρ(a) > 0,

0 otherwise.

Therefore, if ρ and ρ ′ are normal probability valuations for r, then ρ ′ ⊕ ιρ = ρ ′ if and only if

ρ ′(a) > 0 ⇒ ρ(a) > 0. (4)

Thus, ρ � ρ ′ if and only if (4) holds.

Identity valuations. The identity valuation ιr for probability theory is the uniform probability distribution for r.

3.2. Possibility theory

Possibility theory [26,5] fits in the framework of VBS only when combination is based on the product t-norm. Similarly 
to probability theory, a possibility valuation ρ for r is a mapping ρ : 
r → [0, 1]. ρ is normal if

max
b∈
r

ρ(b) = 1.

Marginalization. Marginalization in possibility theory is maximization. Suppose ρ is a possibility valuation for r, and suppose 
X ∈ r. Then, ρ−X is a possibility valuation for r \ {X} such that for each a ∈ 
r\{X} ,

ρ−X (a) = max
b∈
X

ρ(a,b). (5)

Combination. Combination in possibility theory is pointwise multiplication followed by normalization. Suppose ρ and σ are 
possibility valuations for r and s, respectively. The combination ρ ⊕ σ is a normal possibility valuation for r ∪ s such that 
for each a ∈ 
r∪s ,

(ρ ⊕ σ)(a) = ρ(a↓r)σ (a↓s)

maxb∈
r∪s ρ(b↓r)σ (b↓s)
. (6)

Thus, the combination is well defined only if the normalization constant in the denominator in Eq. (6) is positive. If the 
normalization constant is zero, then the valuations ρ and σ are said to be in total conflict, and cannot be combined.

Removal. Removal in possibility theory is division followed by normalization. Suppose ρ is a possibility valuation for r, and 
suppose σ is a normal possibility valuation for s. Then, ρ � σ is a normal possibility valuation for r ∪ s such that for each 
a ∈ 
r∪s ,

(ρ � σ)(a) =
{

ρ(a↓r)/σ (a↓s)

maxb∈
r∪s :σ (b↓s)>0 ρ(b↓r)/σ (b↓s)
if σ(a↓s) > 0,

0 otherwise.
(7)

Thus, ρ �σ is well-defined only if the normalization constant in the denominator of Eq. (7) is positive. If the normalization 
constant is zero, then σ cannot be removed from ρ .
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Domination. Suppose ρ is a normal possibility valuation for r. From Eq. (7), the identity valuation ιρ = ρ � ρ is a normal 
possibility valuation for r such that for each a ∈ 
r ,

ιρ(a) =
{

1 if ρ(a) > 0,

0 otherwise.

Therefore, if ρ and ρ ′ are normal possibility valuations for r, then ρ ′ ⊕ ιρ = ρ ′ if and only if

ρ ′(a) > 0 ⇒ ρ(a) > 0. (8)

Thus, ρ � ρ ′ if and only if (8) holds, which is similar to that in probability theory.

Identity valuations. The identity valuation ιr for possibility theory is the normal possibility valuation for r whose values are 
identically one for all b ∈ 
r .

3.3. Spohn’s epistemic belief theory

In Spohn’s epistemic belief theory [23,24,21], a Spohnian valuation ρ for r is a mapping ρ : 
r → Z
+ , where Z+ denotes 

the set of non-negative integers, {0, 1, 2, . . .}. ρ(a) represents the degree of disbelief in state a. ρ is normal if

min
b∈
r

ρ(b) = 0.

Marginalization. Marginalization in Spohn’s theory is minimization. Suppose ρ is a Spohnian valuation for r, and suppose 
X ∈ r. Then, ρ−X is a Spohnian valuation for r \ {X} such that for each a ∈ 
r\{X} ,

ρ−X (a) = min
b∈
X

ρ(a,b). (9)

Combination. Combination in Spohn’s theory is pointwise addition followed by normalization. Suppose ρ and σ are Spohnian 
valuations for r and s, respectively. The combination ρ ⊕ σ is a normal Spohnian valuation for r ∪ s such that for each 
a ∈ 
r∪s ,

(ρ ⊕ σ)(a) = ρ(a↓r) + σ(a↓s) − min
b∈
r∪s

(ρ(b↓r) + σ(b↓s)) (10)

The third term on the right hand side of Eq. (10) is a normalization constant that ensures that ρ ⊕ σ is normal. Unlike 
probability and possibility theories, we can always combine Spohnian valuations, i.e., no two Spohnian valuations can be in 
total conflict.

Removal. Removal in Spohn’s theory is subtraction followed by normalization. Suppose ρ is a Spohnian valuation for r, and 
suppose σ is a normal Spohnian valuation for s. Then, ρ � σ is a normal Spohnian valuation for r ∪ s such that for each 
a ∈ 
r∪s ,

(ρ � σ)(a) = ρ(a↓r) − σ(a↓s) − min
b∈
r∪s

(ρ(b↓r) − σ(b↓s)). (11)

The third term on the right hand side of Eq. (11) is a normalization constant that ensures that ρ � σ is normal. Unlike 
probability and possibility theories, we can always remove a normal Spohnian valuation from any Spohnian valuation.

Domination. Suppose ρ is a normal Spohnian valuation for r. From Eq. (11), the identity valuation ιρ = ρ � ρ is a normal 
Spohnian valuation for r such that for each a ∈ 
r , ιρ(a) = 0. The identity valuation ιr is the same as ιρ . Therefore, for any 
two normal Spohnian valuations ρ and ρ ′ for r, ρ ′ ⊕ ιρ = ρ ′ . Thus, ρ � ρ ′ holds for any two Spohnian normal valuations.

Identity valuations. The identity valuation ιr for Spohn’s theory is the normal Spohnian valuation for r whose values are 
identically zero for all b ∈ 
r .
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3.4. Dempster–Shafer belief function theory

In Dempster–Shafer (D-S) belief function theory [4,18], we can represent knowledge using either basic probability assign-
ment valuations (b-valuations) or commonality valuations (c-valuations). A b-valuation μ for r is a function μ : 2
r → R, 
where 2
r denotes the set of all non-empty subsets of 
r ,2 and R denotes the set of real numbers. Let a, b, etc., denote 
elements of 2
r . A b-valuation μ for r is normal if∑

b∈2
r

μ(b) = 1,

and it is proper if for each a ∈ 2
r

μ(a) ≥ 0.

Proper normal b-valuations are basic probability assignments (bpa) in D-S theory. If μ is a bpa for r, and μ(a) > 0, then a
is said to be a focal element of μ. If μ has only one focal element a (so that μ(a) = 1), then μ is said to be deterministic.

A c-valuation θ for r is a function θ : 2
r →R
+ . A c-valuation θ for r is normal if∑

b∈2
r

(−1)|b|+1θ(b) = 1,

and it is proper if for each a ∈ 2
r ,∑
b⊇a

(−1)|b\a|θ(b) ≥ 0.

Proper normal c-valuations correspond to commonality functions in D-S theory.
There is a one-to-one relationship between b-valuations and c-valuations. Suppose μ is a b-valuation for r. Then, the 

c-valuation θμ for r corresponding to b-valuation μ is as follows. For each a ∈ 2
r ,

θμ(a) =
∑
b⊇a

μ(b). (12)

Suppose θ is a c-valuation for r. Then the b-valuation μθ for r corresponding to θ is as follows. For each a ∈ 2
r ,

μθ(a) =
∑
b⊇a

(−1)|b\a|θ(b). (13)

If μ is a normal b-valuation for r, then the c-valuation θμ corresponding to μ is also normal, and vice-versa. If μ is a 
proper b-valuation for r, then the c-valuation θμ corresponding to μ is also proper, and vice-versa. It follows from Eq. (12), 
that if θ is a commonality function for r, then 0 ≤ θ(a) ≤ 1 for all a ∈ 2
r , and θ(a) ≥ θ(b) whenever a ⊆ b.

For an example, consider the deterministic bpa μ for r such that μ(a) = 1 where a ∈ 2
r . Then the c-valuation θμ for r
that corresponds to μ is such that for all b ∈ 2
r ,

θμ(b) =
{

1 if b ⊆ a,

0 otherwise.

Marginalization. Marginalization in D-S theory is addition of values of b-valuations. First, we generalize projection of states 
to subsets of states. Suppose a ∈ 2
r . Then a↓r\{X} = {b↓r\{X} : b ∈ a}. Notice that a↓r\{X} ∈ 2
r\{X} .

Suppose μ is a b-valuation for r, and suppose X ∈ r. Then, μ−X is a b-valuation for r \ {X} such that for each a ∈ 2
r\{X} ,

μ−X (a) =
∑

b∈2
r :b↓r\{X}=a

μ(b). (14)

Combination. Combination in D-S theory is Dempster’s rule of combination, which can be described using either b-valuations 
or using c-valuations. In terms of b-valuations, Dempster’s rule is the product–intersection rule where the product of 
the b-valuation values is assigned to the intersection of the subsets, followed by normalization. In terms of c-valuations, 
Dempster’s rule of combination is pointwise multiplication of c-valuations followed by normalization. The two rules are 
mathematically equivalent [18]. Here, we will formally describe Dempster’s rule of combination in terms of c-valuations. 

2 Normally, 2
r denotes the set of all subsets of 
r , but here we exclude ∅.
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We do this because consequently, we can easily define the removal operator, which can be considered an inverse of the 
combination operator, in terms of c-valuations.

Suppose θ1 and θ2 are c-valuations for r1 and r2, respectively. Then θ1 ⊕ θ2 is a normal c-valuation for r1 ∪ r2 such that 
for each a ∈ 2
r1∪r2 ,

(θ1 ⊕ θ2)(a) = θ1(a↓r1) θ2(a↓r2)∑
b∈2
r1∪r2

(−1)|b|+1θ1(b↓r1) θ2(b↓r2)
. (15)

Thus, combination is well defined only if the normalization constant in the denominator of Eq. (15) is positive. If the 
normalization constant is zero, then θ1 and θ2 are said to be in total conflict, and cannot be combined.

Removal. Removal in D-S theory is pointwise division of c-valuations followed by normalization. There is no easy definition 
of removal directly in terms of b-valuations. Suppose θ1 is a proper c-valuation for r1, and suppose θ2 is a proper normal 
c-valuation for r2. Then, θ1 � θ2 is a normal c-valuation for r1 ∪ r2 such that for each a ∈ 2
r1∪r2 ,

(θ1 � θ2)(a) =
⎧⎨
⎩

θ1(a↓r1 )/θ2(a↓r2 )∑
b∈2


r1∪r2 :θ2(b↓r2 )>0
(−1)|b|+1θ1(b↓r1 )/θ2(b↓r2 )

if θ2(a↓r2) > 0,

0 otherwise.

(16)

Like in probability and possibility theories, we get situations when we cannot remove one c-valuation from another. These 
are situations when the normalization factor in the denominator in Eq. (16) equals zero. Unlike probability and possibility 
theories, it should be noted that θ1 �θ2 may not be a proper c-valuation. This may be true even if θ1 and θ2 are commonality 
functions, and θ2 is a marginal of θ1 (so that r2 ⊂ r1). This is one reason why we need the concept of proper valuations in 
the D-S theory.

Domination. Suppose θ is a commonality function for r. Then, it follows from Eq. (16) that ιθ = θ � θ is a commonality 
function for r such that for each a ∈ 2
r ,

ιθ (a) =
{

1 if θ(a) > 0,

0 otherwise.
(17)

Therefore, if θ and θ ′ are commonality functions for r, then θ ′ ⊕ ιθ = θ ′ if and only if

θ ′(a) > 0 ⇒ θ(a) > 0. (18)

Thus, θ � θ ′ if and only if Eq. (18) holds, which is similar to that in probability and possibility theories.
Domination can also be described for bpa’s. Let μθ denote the bpa that corresponds to commonality function θ , and let 

aμθ denote the union of all focal elements of μθ . If μιθ denotes the bpa that corresponds to ιθ , then it follows from Eqs. (12)
and (13) that μιθ is the deterministic bpa such that μιθ (aμθ ) = 1. And, if μ and μ′ are bpa’s for r, then μ′ ⊕ μιθ = μ′ if 
and only if

μ′(a) > 0 ⇒ μ(a) > 0. (19)

Thus, μ � μ′ if and only if Eq. (19) holds, which is also similar to that in probability and possibility theories.

Identity valuations. The identity valuation for r can be represented either by the deterministic bpa such that μιr (
r) = 1, or 
equivalently by the vacuous commonality function such that θιr (a) = 1 for all a ∈ 2
r .

4. Composition operator

The composition operator aggregates knowledge encoded in two normal valuations while adjusting for the double count-
ing of knowledge when it does matter. Suppose ρ and σ are normal valuations for r and s, respectively, and suppose that 
σ ↓r∩s � ρ↓r∩s . The composition of ρ and σ , written as ρ � σ , is defined as follows:

ρ � σ = ρ ⊕ σ � σ ↓r∩s. (20)

It follows from the third axiom for removal in Section 2 that the right-hand side of Eq. (20) can be written as either 
(ρ ⊕ σ) � σ ↓r∩s or as ρ ⊕ (σ � σ ↓r∩s). For simplicity, we omit parenthesis.

The main idea behind compositional models is to construct a joint valuation from a set of marginals (normal valuations). 
For example, we may have a variety of data sources that provides marginals for {U }, {U , X}, {X, Y }, and {U , Y , Z} subsets of 
variables. Let ρ1, ρ2, ρ3, and ρ4 be normal valuations for {U }, {U , X}, {X, Y }, and {U , Y , Z}, respectively. We are interested 
in constructing a joint distribution for {U , X, Y , Z} from ρ1, ρ2, ρ3, and ρ4. One solution to this would be to compose these 
valuations in some sequence to construct joint valuation τ :
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τ = (((ρ1 � ρ2) � ρ3) � ρ4 (21)

In Eq. (21), we will assume that we have the dominance conditions to allow the three composition operations. For more 
information about the foundations of compositional model theory, see [6,7].

The following theorem summarizes the most important properties of the composition operator.

Theorem 1. Suppose ρ , σ and τ are normal valuations for r, s, and t, respectively, and suppose that σ ↓r∩s � ρ↓r∩s , τ↓(r∪s)∩t �
(ρ � σ)↓(r∪s)∩t and τ↓r∩t � ρ↓r∩t . Then the following statements hold:

1. (Domain): ρ � σ is a normal valuation for r ∪ s.
2. (Composition preserves first marginal): (ρ � σ)↓r = ρ .
3. (Reduction:) If s ⊆ r then, ρ � σ = ρ .
4. (Non-commutativity): In general, ρ � σ �= σ � ρ .
5. (Commutativity under consistency): ρ and σ have a common marginal for r ∩ s, i.e., ρ↓r∩s = σ ↓r∩s , if and only if ρ � σ =

σ � ρ .
6. (Non-associativity): In general, (ρ � σ) � τ �= ρ � (σ � τ ).
7. (Associativity under special condition I): If r ⊃ (s ∩ t) then, (ρ � σ) � τ = ρ � (σ � τ ).
8. (Associativity under special condition II): If s ⊃ (r ∩ t) then, (ρ � σ) � τ = ρ � (σ � τ ).
9. (Stepwise combination): If (r ∩ s) ⊆ t ⊆ s then, (ρ ⊕ σ ↓t) � σ = ρ ⊕ σ .

10. (Stepwise composition): If (r ∩ s) ⊆ t ⊆ s then, (ρ � σ ↓t) � σ = ρ � σ .
11. (Exchangeability): If r ⊃ (s ∩ t) then, (ρ � σ) � τ = (ρ � τ ) � σ .
12. (Simple marginalization): If (r ∩ s) ⊆ t ⊆ r ∪ s then, (ρ � σ)↓t = ρ↓r∩t � σ ↓s∩t .
13. (Irrelevant combination): If t ⊆ r \ s then, ρ � (σ ⊕ τ ) = ρ � σ .

Proof. All properties are proved in [11] with the exception of Properties 3, 7, 9, and 13.
Property 3 is a direct consequence of Property 2. To prove Property 7, it is sufficient to use the definition of the compo-

sition operator (Eq. 20), simple marginalization (Property 12), the commutativity and associativity of combination, and the 
fact that under the specified condition r ∩ s ∩ t = s ∩ t and (r ∪ s) ∩ t = r ∩ t:

ρ � (σ � τ ) = ρ ⊕ (σ � τ ) � (σ � τ )↓r∩(s∪t)

= ρ ⊕ (σ ⊕ τ � τ↓s∩t) � (σ � τ )↓r∩(s∪t)

= ρ ⊕ σ ⊕ τ � τ↓s∩t � (σ ↓r∩s � τ↓r∩t) ⊕ σ ↓r∩s � σ ↓r∩s ⊕ τ↓r∩t � τ↓r∩t

= ρ ⊕ σ ⊕ τ � (σ ↓r∩s � τ↓r∩t) ⊕ (σ ↓r∩s � τ↓r∩t) � σ ↓r∩s � τ↓r∩t

= (ρ � σ) ⊕ τ � τ↓(r∪s)∩t

= (ρ � σ) � τ .

The proof of Property 9 is based just on the definition of the operator of composition and commutativity and associativity 
of combination:

(ρ ⊕ σ ↓t) � σ = ρ ⊕ σ ↓t ⊕ σ � σ ↓t = ρ ⊕ σ .

To prove Property 13 we use the definition of the composition operator (Eq. 20), simple marginalization (Property 12), 
and the commutativity and associativity of combination:

ρ � (σ ⊕ τ ) = ρ ⊕ (σ ⊕ τ ) � (σ ⊕ τ )↓r∩(s∪t)

= ρ ⊕ (σ ⊕ τ ) � (σ ↓r∩s ⊕ τ )

= ρ ⊕ σ ↓r∩s � σ ↓r∩s ⊕ σ ⊕ τ � (σ ↓r∩s ⊕ τ )

= ρ ⊕ σ � σ ↓r∩s ⊕ (σ ↓r∩s ⊕ τ ) � (σ ↓r∩s ⊕ τ )

= ρ � σ . �
In designing computational procedures for probabilistic compositional models in [1], we compensated the lack of asso-

ciativity of the composition operator by the so-called anticipating composition operator. Its name is suggestive from the fact 
that it introduces an additional conditional independence relation into the result of composition — it anticipates the inde-
pendence relation that is necessary for associativity, and therefore it must take into account the set of variables, for which 
the preceding distribution is defined. In this paper we introduce the anticipating operator of composition for VBS in the 
following way. Suppose ρ and σ are normal valuations for r and s, respectively, and suppose t is a subset of variables. Then,

ρ ©�tσ = (ρ ⊕ σ ↓(t\r)∩s) � σ . (22)
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Fig. 2. A Markovian causal model.

Fig. 3. A causal model for smoking (S), yellow teeth (Y ), and lung cancer (C ).

Notice that this composition operator is parameterized by subset t . If (t \ r) ∩ s = ∅, then ρ ©�tσ = ρ � σ . The importance 
of this operator stems from the following assertion.

Theorem 2. Suppose τ , ρ , and σ are normal valuations for t, r, and s, respectively, and suppose that σ ↓r∩s � ρ↓r∩s and ρ↓r∩t �
τ↓r∩t . Then

(τ � ρ) � σ = τ � (ρ ©�tσ). (23)

Proof. The proof uses irrelevant combination (Property 13 of Theorem 1), and associativity under special condition II (Prop-
erty 8 of Theorem 1):

(τ � ρ) � σ = (τ � (ρ ⊕ σ ↓(t\r)∩s)) � σ

= τ � ((ρ ⊕ σ ↓(t\r)∩s) � σ)

= τ � (ρ ©�tσ). �
Notice that the marginal σ ↓(t\r)∩s appearing in Eq. (22) may be substituted by any valuation (on the same domain) that 

dominates σ ↓(t\r)∩s (e.g., by ισ ↓(t\r)∩s , or by ι(t\r)∩s). It is clear that if we do so, the proof of Theorem 2 remains valid.
How does the composition operator introduced above for VBS compare with the composition operators introduced in 

specific theories in [6,25,12]? For probability theory, both approaches are equivalent, they lead to the same formulae. In 
possibility theory, if we restrict only to the case where combination is the product t-norm, then both approaches also 
coincide. The situation is different for Dempster–Shafer belief function theory. The operator of composition introduced in 
[12] and the current approach differ substantially from each other. For a detailed description of these differences, we refer 
the reader to [9].

5. Causal compositional models

Suppose �S = {X1, X2, . . . , Xn}. For each variable Xi , let C (Xi) denote the subset of the variables that are causes of Xi . 
We assume that Xi /∈ C (Xi). {C (Xi)}n

i=1 constitutes a causal model. Using Pearl’s terminology [15], we say that a causal 
model is Markovian if there exists an ordering of variables (without loss of generality we assume that it is the ordering 
X1, X2, . . . , Xn) such that C (X1) = ∅, and for i = 2, 3, . . . , n, C (Xi) ⊆ {X1, . . . , Xi−1}. Markovian causal models are causal 
models without feedback relations. An example of a Markovian causal model represented as a directed acyclic graph such 
that we have a directed arc from X j to Xi when X j ∈ C (Xi) is shown in Fig. 2.

Let ri denote C (Xi) ∪{Xi}. From here onwards, the symbol τ exclusively denotes causal models, i.e. if we have valuations 
ρi for ri for i = 1, . . . , n a causal compositional model (CCM) τ is defined as follows:

τ = (. . . ((ρ1 � ρ2) � ρ3) � . . . � ρn−1) � ρn = ρ1 � ρ2 � . . . � ρn. (24)
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To increase legibility of the formulae, we omit parentheses and assume that the composition operation is done successively 
from left to right as shown in Eq. (24).

Notice that all the properties of the composition operator, which are in Theorem 1, including Property 11, describe 
modifications that preserve the Markov property of the model, i.e., if any of these rules are applied to Markovian causal 
model, the resulting model is again Markovian. For example, if ρ1 �ρ2 �ρ3 is a Markovian CCM, then r1 ⊇ r2 ∩ r3 guarantees 
that ρ1 � ρ3 � ρ2 is also Markovian (it follows from the fact that under this assumption r3 ∩ (r1 ∪ r2) = r3 ∩ r1).

In causal models, there is a difference between conditioning and intervention. Suppose S = 1 denotes a person who 
smokes, Y = 1 denotes (nicotine-stained) yellow teeth, and C = 1 denotes presence of lung cancer. We assume C (S) = ∅, 
C (Y ) = {S}, and C (C) = {S} (see Fig. 3). Conditioning on Y = 0 means including evidence that teeth are not stained (which 
lowers the chances that the person has cancer). On the other hand, the intervention denoted by do(Y = 0) means a changed 
universe where the person gets his teeth whitened (e.g., from his dentist), but the chances of cancer remains unchanged.

Conditioning in CCMs. Suppose we have a CCM τ for Φ as in Eq. (24), and suppose we observe X = a for some a ∈ 
X , 
X ∈ Φ . To simplify the exposition, in the rest of this section, let t denote r1 ∪ . . . ∪ rn and s denote t \ {X} for some X ∈ t .

We model the observation X = a as a normal valuation νX=a for {X}, which has the property that if ρ is a normal 
valuation for {X}, then νX=a ⊕ ρ = νX=a (assuming that the combination exists), and νX=a � ρ = νX=a (assuming that the 
removal exists). For example, in the D-S theory, we can represent the observation X = a by a deterministic bpa μX=a such 
that μX=a({a}) = 1.

Suppose we wish to compute τ (s|X = a), the posterior valuation for s after observing X = a. In the VBS framework, we 
can compute τ (s|X = a) as follows:

τ (s|X = a) = (τ ⊕ νX=a)
−X (25)

We can achieve the same result using the composition operator as follows:

τ (s|X = a) = (νX=a � τ )−X = (νX=a � (ρ1 � ρ2 � . . . � ρn))
−X . (26)

To see why, notice that νX=a � τ = νX=a ⊕ τ � τ
↓{X} = τ ⊕ νX=a � τ ({X}) = τ ⊕ νX=a .

Intervention in CCMs. As described in Section 1, we fully accept the philosophy of Pearl’s causal networks [15], i.e., to compute 
the effects of intervention, we refer to Pearl’s approach in which the effect of intervention τ (s|do(X = a)) is computed as a 
conditioning, but in a different causal model. The new model differs from the original causal model {C (Xi)}n

i=1 only in one 
point: in the new model C (X) is replaced by ∅, which corresponds to deletion of edges heading to variable X . So the new 
CCM is defined3

τ ′ = τ↓{X} � ρ1 � ρ2 � . . . � ρn. (27)

This is true, because CCM τ defined by Eq. (24) corresponds to the causal network with an acyclic directed graph 
G = (�, E), where (X j → Xi) ∈ E iff X j ∈ C (Xi). Obviously, CCM τ ′ defined by Eq. (27) corresponds to the causal network 
with an acyclic directed graph Ḡ = (�, Ē), in which there is no edge heading to X and all the remaining edges from E
are preserved; i.e., Ē = {(X j → Xi) ∈ E : Xi �= X}. Therefore, following Definition 3.2.1 in [15] (or Eq. (3.11) from the same 
source), we can see that the result of intervention performed in the causal model τ can be computed as a conditioning in 
the model τ ′ . Thus,

τ (s|do(X = a)) = (
νX=a � τ ′)−X =

(
νX=a �

(
τ↓{X} � ρ1 � ρ2 � . . . � ρn

))−X
. (28)

As {X} ∩ rn ⊆ ({X} ∪ r1 ∪ . . . ∪ rn−1), we apply Property 8 of Theorem 1 to the right hand expression in (28) getting

νX=a �
(
τ↓{X} � ρ1 � ρ2 � . . . � ρn

)
= νX=a �

(
τ↓{X} � ρ1 � ρ2 � . . . � ρn−1

)
� ρn.

Repeating this operation n − 1 times we have

νX=a �
(
τ↓{X} � ρ1 � ρ2 � . . . � ρn

)
= νX=a � τ↓{X} � ρ1 � ρ2 � . . . � ρn−1 � ρn = νX=a � ρ1 � ρ2 � . . . � ρn−1 � ρn

(the latter equality holds due to Property 3 of Theorem 1), which yields that

τ (t|do(X = a)) = (νX=a � ρ1 � ρ2 � . . . � ρn)
−X . (29)

Notice the importance of the pair of brackets by which the Eqs. (26) and (29) differ from each other. This difference stems 
from the fact that the composition operator is not associative.

3 Notice that, due to Property 3 of Theorem 1, we need not exclude the respective ρk (i.e. the ρk for which X = Xk) from the sequence.
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Readers familiar with the Pearl’s causal networks [15] have certainly noticed an advantage of CCM. In CCM, we can 
compute both conditioning and intervention from one causal compositional model (as in Eqs. (26) and (29)). In Pearl’s 
causal networks, we have to consider two different networks. Conditioning is computed from the complete causal network. 
For the computation of intervention, we have to consider a reduced causal network where all the arrows heading to the 
intervention variable are deleted.

6. Elimination of hidden variables

In this section, as an illustration, we derive formulae for computation of conditioning and intervention in a simple causal 
compositional model with four variables U , X, Y , Z , the first of which is assumed to be hidden (unobservable). Suppose 
that C (U ) = ∅, C (X) = {U }, C (Y ) = {X}, C (Z) = {U , Y }, so that the causal model is Markovian (as depicted in Fig. 2). Also, 
suppose that the situation is described by a causal compositional model as follows:

τ ({U , X, Y , Z}) = ρ1({U }) � ρ2({U , X}) � ρ3({X, Y }) � ρ4({U , Y , Z}). (30)

In the CCM in Eq. (30), ρ1({U }) denotes a normal valuation for {U }, etc., and τ ({U , X, Y , Z}) denotes the joint normal val-
uation for {U , X, Y , Z}. We will use the conditional valuation notation so that, e.g., τ ({X, Y , Z}) denotes τ ({U , X, Y , Z})−U , 
etc.

As U is a hidden variable, we cannot estimate ρ1(U ), ρ2({U , X}), and ρ4({U , Y , Z}) that include U in their domains. We 
will make the following assumptions. First, we can estimate any marginal of τ that includes non-hidden variables. Thus, as 
X , Y , and Z are non-hidden variables, we can estimate, e.g., the marginal τ ({X, Y , Z}), which we will denote by τ̂ ({X, Y , Z}). 
Second, without loss of generality, we can assume that ρ1({U }), . . . , ρ4({U , Y , Z}) are marginals4 of τ ({U , X, Y , Z}). There-
fore, we can estimate marginals of these valuations for non-hidden variables, and that these estimated marginals will agree 
with the corresponding marginals of τ̂ ({U , X, Y , Z}). For example, ρ2({X}) can be estimated as τ̂ ({X}), and ρ3({X, Y }) can 
be estimated as τ̂ ({X, Y }).

Computation of the conditional τ (Z |X = x) is simple:

τ (Z |X = x) =
(
νX=x � τ ({U , X, Y , Z})

)↓{Z}

(12)=
(
νX=x � τ ({U , X, Y , Z})−U

)↓{Z}

(12)=
(
νX=x � τ ({X, Y , Z})−Y

)↓{Z}

=
(
νX=x � τ ({X, Z})

)↓{Z}
.

Thus, we can estimate τ (Z |X = x) by 
(
νX=x � τ̂ ({X, Z}))↓{Z}

, which includes only observable variables. Notice that during 
these computations we used Property 12 of Theorem 1 twice. This is why the symbol (12) appears above the respective 
equality signs. This type of explanation will also be used in the subsequent computations.

To compute τ (Z |do(X = x)), we use the properties of the composition and the anticipating operators defined in the 
preceding section. To simplify the exposition, we do just one elementary modification at each step, and thus the following 
computations may appear more cumbersome than they really are.

τ (Z |do(X = x)) =
(
νX=x � ρ1({U }) � ρ2({U , X}) � ρ3({X, Y }) � ρ4({U , Y , Z})

)↓{Z}

(3)=
(
νX=x � ρ1({U }) � ρ3({X, Y }) � ρ4({U , Y , Z})

)↓{Z}

(11)=
(
νX=x � ρ3({X, Y }) � ρ1({U }) � ρ4({U , Y , Z})

)↓{Z}

Eq. (23)=
(
νX=x � ρ3({X, Y }) �

(
ρ1({U }) ©�{X,Y } ρ4({U , Y , Z})

))↓{Z}

(12)=
(
νX=x � ρ3({X, Y }) �

(
ρ1({U }) ©�{X,Y } ρ4({U , Y , Z})

)−U
)↓{Z}

.

To compute 
(
ρ1({U }) ©�{X,Y } ρ4({U , Y , Z})

)−U
we take advantage of the idea of extension used by Pearl in [15]. It is 

one way of taking into account the mutual dependence of variables X , Y , and Z . It plays the same role as the inheritance 
of parents in Shachter’s arc reversal rule [17]. Notice that the first of the following equalities holds because ({X, Y } \ {U }) ∩
{U , Y , Z} = ({Y } \ {U }) ∩ {U , Y , Z}(= {Y }). In the second equality, we also use the fact that ρ1 is the marginal of ρ2.

4 The equations for recomputing valuations ρi so that they are marginals of τ are given in Theorem 10.9 in [7].
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Table 1
An estimate of a probability distribution for {X, Y , Z}.

X 0 0 0 0 1 1 1 1
Y 0 0 1 1 0 0 1 1
Z 0 1 0 1 0 1 0 1

τ̂ ({X, Y , Z}) 1
16

1
4

1
8

1
8

1
16

1
16

1
16

1
4

Table 2
Computation of τ̂ (Z |do(X = 0)) for the probability distribution in Table 1.

X 0 0 0 0 1 1 1 1
Y 0 0 1 1 0 0 1 1
Z 0 1 0 1 0 1 0 1

τ̂ ({X, Y , Z}) 1
16

1
4

1
8

1
8

1
16

1
16

1
16

1
4

τ̂ ({X}) 9
16

7
16

τ̂ ({Y }) 7
16

9
16

τ̂ ({X, Y }) 5
16

1
4

1
8

5
16

τ̂ ({X}) ©�{Y }τ̂ ({X, Y , Z}) = σ({X, Y , Z}) 63
1280

63
320

81
512

81
512

49
512

49
512

63
1280

63
320

νX=0 � τ̂ ({X, Y }) 5
9

4
9 0 0

σ({Y , Z}) 371
2560

749
2560

531
2560

909
2560

σ({Y }) 7
16

9
16

(νX=0 � τ̂ ({X, Y })) � σ({Y , Z}) 53
288

107
288

59
360

101
360 0 0 0 0

τ̂ (Z |do(X = 0)) 167
480

313
480

(
ρ1({U }) ©�{X,Y } ρ4({U , Y , Z})

)−U =
(
ρ1({U }) ©�{Y } ρ4({U , Y , Z})

)−U

(12)=
((

ρ2({U , X}) ©�{Y } ρ4({U , Y , Z})
)−X

)−U

Eq. (22)=
(
(ρ4({Y }) ⊕ ρ2({U , X})) � ρ4({U , Y , Z})

)↓{Y ,Z}

(9)=
(
(ρ4({Y }) ⊕ ρ2({X})) � ρ2({U , X}) � ρ4({U , Y , Z})

)↓{Y ,Z}

(3)=
(
(ρ4({Y }) ⊕ ρ2({X})) � ρ2({U , X}) � ρ3({X, Y }) � ρ4({U , Y , Z})

)↓{Y ,Z}

(7)=
(
(ρ4({Y }) ⊕ ρ2({X})) � (ρ2({U , X}) � ρ3({X, Y })) � ρ4({U , Y , Z})

)↓{Y ,Z}

(8)=
(
(ρ4({Y }) ⊕ ρ2({X})) � (ρ2({U , X}) � ρ3({X, Y }) � ρ4({U , Y , Z}))

)↓{Y ,Z}

Eq. (30)=
(
(ρ4({Y }) ⊕ ρ2({X})) � τ ({U , X, Y , Z})

)↓{Y ,Z}

(12)=
(
(ρ4({Y }) ⊕ ρ2({X})) � τ ({X, Y , Z})

)↓{Y ,Z}
.

In what follows, we will take advantage of the fact that ρ1({U }), . . . , ρ4({U , Y , Z}) are marginals of τ ({U , X, Y , Z}). There-
fore,

τ̂ (Z |do(X = x)) =
(
νX=x � ρ̂3({X, Y }) � (

(ρ̂4({Y }) ⊕ ρ̂2({X})) � τ̂ ({X, Y , Z}))↓{Y ,Z})↓{Z}

=
(
νX=x � τ̂ ({X, Y }) �

(
(τ̂ ({Y }) ⊕ τ̂ ({X})) � τ̂ ({X, Y , Z})

)↓{Y ,Z})↓{Z}

=
(
νX=x � τ̂ ({X, Y }) �

(
τ̂ ({X}) ©�{Y }τ̂ ({X, Y , Z})

)−X
)↓{Z}

.

6.1. A probabilistic example

Suppose that for the CCM in Eq. (30), we get estimates of a three-dimensional probability distribution τ̂ ({X, Y , Z}) as 
given in Table 1.
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Table 3
An estimate of a possibility distribution for {X, Y , Z}.

X 0 0 0 0 1 1 1 1
Y 0 0 1 1 0 0 1 1
Z 0 1 0 1 0 1 0 1

τ̂ ({X, Y , Z}) 1
4 1 1

2
1
2

1
4

1
4

1
4 1

In the probabilistic framework, νX=a is a normal valuation for {X} representing the one-dimensional degenerate proba-
bility distribution for variable X as follows:

νX=a(x) =
{

1 if x = a,

0 otherwise.
(31)

To evaluate expression for τ̂ (Z |do(X = 0)) we have to first compute τ̂ ({X}) ©�{Y }τ̂ ({X, Y , Z}), which is denoted by 
σ({X, Y , Z}):

σ({X, Y , Z}) = τ̂ ({X}) ©�{Y }τ̂ ({X, Y , Z}) = (τ̂ ({X}) ⊕ τ̂ ({Y })) � τ̂ ({X, Y , Z})
= τ̂ ({X}) ⊕ τ̂ ({Y }) ⊕ τ̂ ({X, Y , Z}) � τ̂ ({X, Y }),

the computation of which is represented in the upper part of Table 2. Thus, e.g.,

σ({X, Y , Z})(0,0,0) =
9

16 · 7
16 · 1

16
5

16

= 63

1280
.

The rest of the computation of τ̂ (Z |do(X = 0)) is simple:

τ̂ (Z |do(X = 0)) = (
νX=0 � τ̂ ({X, Y }) � σ({Y , Z}))↓{Z}

= (
νX=0 � τ̂ ({X, Y }) ⊕ σ({Y , Z}) � σ({Y }))↓{Z}

,

which is shown in the lower part of Table 2. Thus, e.g.,

(νX=0 � τ̂ ({X, Y }) � σ({Y , Z}))(0,0,0) =
5
9 · 371

2560
7

16

= 53

288
,

etc., and

τ̂ (Z |do(X = 0))(0) = 53

288
+ 59

360
+ 0 + 0 = 167

480
.

Notice that τ̂ (Z |do(X = 0)) is different from τ̂ (Z |X = 0):

τ̂ (Z |X = 0)(0) =
3

16
9

16

= 1

3
.

6.2. A possibilistic example

Consider again the same CCM given in Eq. (30) with the estimates of a three-dimensional possibility distribution 
τ̂ ({X, Y , Z}) as given in Table 3.

In the possibilistic framework, νX=a is a normal valuation for {X} representing the one-dimensional degenerate possibil-
ity distribution for variable X as follows (notice that it is exactly the same as in the probabilistic case):

νX=a(x) =
{

1 if x = a,

0 otherwise.
(32)

The computation of τ̂ (Z |X = 0) is shown in Table 4.
Computation of τ̂ (Z |do(X = 0)) is similar to the probabilistic case. First, we compute τ̂ ({X}) ©�{Y }τ̂ ({X, Y , Z}) (again, 

denoted by σ({X, Y , Z})):

σ({X, Y , Z}) = τ̂ ({X}) ©�{Y }τ̂ ({X, Y , Z}) = (τ̂ ({X}) ⊕ τ̂ ({Y }) � τ̂ ({X, Y , Z})
= τ̂ ({X}) ⊕ τ̂ ({Y }) ⊕ τ̂ ({X, Y , Z}) � τ̂ ({X, Y }).

The details of the computation are shown in the upper part of Table 5. Thus, e.g.,
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Table 4
Computation of τ̂ (Z |X = 0) for the possibility distribution in Table 3.

X 0 0 0 0 1 1 1 1
Y 0 0 1 1 0 0 1 1
Z 0 1 0 1 0 1 0 1

τ̂ ({X, Y , Z}) 1
4 1 1

2
1
2

1
4

1
4

1
4 1

τ̂ ({X, Z}) 1
2 1 1

4 1

νX=0 ⊕ τ̂ ({X, Z}) 1
2 1 0 0

τ̂ (Z |X = 0) 1
2 1

Table 5
Computation of τ̂ (Z |do(X = 0)) for the possibility distribution in Table 3.

X 0 0 0 0 1 1 1 1
Y 0 0 1 1 0 0 1 1
Z 0 1 0 1 0 1 0 1

τ̂ ({X, Y , Z}) 1
4 1 1

2
1
2

1
4

1
4

1
4 1

τ̂ ({X}) 1 1

τ̂ ({Y }) 1 1

τ̂ ({X, Y }) 1 1
2

1
4 1

τ̂ ({X}) ©�{Y }τ̂ ({X, Y , Z}) = σ({X, Y , Z}) 1
4 1 1 1 1 1 1

4 1

νX=0 � τ̂ ({X, Y }) 1 1
2 0 0

σ({Y , Z}) 1 1 1 1

σ({Y }) 1 1

(νX=0 � τ̂ ({X, Y })) � σ({Y , Z}) 1 1 1
2

1
2 0 0 0 0

τ̂ (Z |do(X = 0)) 1 1

σ({X, Y , Z})(0,0,0) = 1 · 1 · 1
4

1
= 1

4
.

The rest of the computation of τ̂ (Z |do(X = 0)) is simple:

τ̂ (Z |do(X = 0)) = (
νX=0 � τ̂ ({X, Y }) � σ({Y , Z}))↓{Z}

= (
νX=0 � τ̂ ({X, Y }) ⊕ σ({Y , Z}) � σ({Y }))↓{Z}

,

which is shown in the lower part of Table 5. Thus, e.g.,

(νX=0 � τ̂ ({X, Y }) � σ({Y , Z}))(0,0,0) = 1 · 1

1
= 1,

(νX=0 � τ̂ ({X, Y }) � σ({Y , Z}))(0,1,0) =
1
2 · 1

1
= 1

2
,

etc., and

τ̂ (Z |do(X = 0))(0) = max{1,
1

2
,0,0} = 1,

τ̂ (Z |do(X = 0))(1) = max{1,
1

2
,0,0} = 1.

Notice that τ̂ (Z |do(X = 0)) is different from τ̂ (Z |X = 0).

6.3. A Spohnian example

Suppose that for the CCM in Eq. (30), we get estimates of a three-dimensional Spohnian disbelief function τ̂ ({X, Y , Z})
as given in Table 6.

In Spohn’s theory of epistemic beliefs, νX=a is a normal valuation for {X} representing the one-dimensional Spohn’s 
disbelief function for variable X as follows:

νX=a(x) =
{

0 if x = a,

k otherwise,
(33)

where k is a large integer, say an order of magnitude larger than any value in τ̂ ({X, Y , Z}). For our example in Table 6, we 
can assume k = 10 or higher.
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Table 6
An estimate of a Spohnian disbelief function for {X, Y , Z}.

X 0 0 0 0 1 1 1 1
Y 0 0 1 1 0 0 1 1
Z 0 1 0 1 0 1 0 1

τ̂ ({X, Y , Z}) 2 0 1 1 2 2 2 0

Table 7
Computation of τ̂ (Z |X = 0) for the Spohnian disbelief function in Table 6.

X 0 0 0 0 1 1 1 1
Y 0 0 1 1 0 0 1 1
Z 0 1 0 1 0 1 0 1

τ̂ ({X, Y , Z}) 2 0 1 1 2 2 2 0

τ̂ ({X, Z}) 1 0 2 0

νX=0 ⊕ τ̂ ({X, Z}) 1 0 12 10

τ̂ (Z |X = 0) 1 0

Table 8
Computation of τ̂ (Z |do(X = 0)) for the Spohnian disbelief function in Table 6.

X 0 0 0 0 1 1 1 1
Y 0 0 1 1 0 0 1 1
Z 0 1 0 1 0 1 0 1

τ̂ ({X, Y , Z}) 2 0 1 1 2 2 2 0

τ̂ ({X}) 0 0

τ̂ ({Y }) 0 0

τ̂ ({X, Y }) 0 1 2 0

τ̂ ({X}) ©�{Y }τ̂ ({X, Y , Z}) = σ({X, Y , Z}) 2 0 0 0 0 0 2 0

νX=0 � τ̂ ({X, Y }) 0 1 12 10

σ({Y , Z}) 0 0 0 0

σ({Y }) 0 0

(νX=0 � τ̂ ({X, Y })) � σ({Y , Z}) 0 0 1 1 12 12 10 10

τ̂ (Z |do(X = 0)) 0 0

The computation of τ̂ (Z |X = 0) is shown in Table 7.
To evaluate τ̂ (Z |do(X = 0)), first we compute τ̂ ({X}) ©�{Y }τ̂ ({X, Y , Z}). This is shown in the upper part of Table 8. Thus, 

e.g.,

σ({X, Y , Z})(0,0,0) = 0 + 0 + 2 − 0 = 2.

The rest of the computation of τ̂ (Z |do(X = 0)) is shown in the lower part of Table 8. Thus, e.g.,

(νX=0 � τ̂ ({X, Y }))(0,0) = 0 + 0 − 0 = 0,

etc., and

(νX=0 � τ̂ ({X, Y }) � σ({Y , Z}))(0,0,0) = 0 + 0 − 0 = 0,

etc., and

τ̂ (Z |do(X = 0))(0) = min{0,1,12,10} = 0,

τ̂ (Z |do(X = 0))(1) = min{0,1,12,10} = 0.

Notice that τ̂ (Z |do(X = 0)) is different from τ̂ (Z |X = 0).

7. Conclusions

We have described causal compositional models, originally introduced in [8] in the probabilistic framework, in the VBS 
framework. We have shown that both conditioning and interventions can easily be described using the composition operator. 
The composition operation requires a dominance relation for the valuations being composed, which is a new concept in the 
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VBS framework. We have described the dominance relation in probability, possibility, Spohn’s disbelief function, and D-S 
belief function theories.

In Section 6, a simple example with a hidden variable illustrates the use of causal compositional models for computing 
the effects of conditioning and intervention. We have provided numerical examples with details of the computation of the 
effects of conditioning and intervention for probability theory, possibility theory, and Spohn’s theory of epistemic beliefs.

We have not provided a numerical example for the case of D-S belief function theory as showing the details of com-
putation of conditioning and intervention for this case would require too much space. Even if we chose a bpa with a few 
focal elements, doing removal would require the use of c-valuations, which may be non-zero for many (or all) of the 255 
elements of 2
{X,Y ,Z} . We do not know how to represent removal directly in terms of b-valuations.

Acknowledgements

This work has been supported in part by funds from grant Czech Science Foundation 15-00215S to the first author, and 
from the Ronald G. Harper Distinguished Professorship at the University of Kansas to the second author. This paper is an 
extended version of [10].

References

[1] V. Bína, R. Jiroušek, Marginalization in multidimensional compositional models, Kybernetika 42 (4) (2006) 405–422.
[2] A.H. Clifford, G.B. Preston, The Algebraic Theory of Semigroups, American Mathematical Association, Providence, RI, 1967.
[3] R. Croisot, Demi-groupes inversifs et demi-groupes reunions de demi-groupes simples, Ann. Sci. Éc. Norm. Super. 70 (4) (1953) 361–379.
[4] A.P. Dempster, Upper and lower probabilities induced by a multivalued mapping, Ann. Math. Stat. 38 (2) (April 1967) 325–339.
[5] D. Dubois, H. Prade, Possibility Theory: An Approach to Computerized Processing of Uncertainty, Plenum Press, New York, 1988.
[6] R. Jiroušek, Composition of probability measures on finite spaces, in: D. Geiger, P.P. Shenoy (Eds.), Uncertainty in Artificial Intelligence: Proceedings of 

the 13th Conference, UAI-97, Morgan Kaufmann, San Francisco, CA, 1997, pp. 274–281.
[7] R. Jiroušek, Foundations of compositional model theory, Int. J. Gen. Syst. 40 (6) (2011) 623–678.
[8] R. Jiroušek, On causal compositional models: simple examples, in: A. Laurent, O. Strauss, B. Bouchon-Meunier, R.R. Yager (Eds.), IPMU 2014, Part I, in: 

CCIS, vol. 442, Springer, Heidelberg, 2014, pp. 517–526.
[9] R. Jiroušek, On two composition operators in Dempster–Shafer theory, in: T. Augustin, S. Doria, E. Miranda, E. Quaeghebeur (Eds.), Proceedings of the 

9th International Symposium on Imprecise Probability: Theories and Applications, Aracne editrice, Rome, Italy, 2015, pp. 157–165.
[10] R. Jiroušek, P.P. Shenoy, Causal compositional models in valuation-based systems, in: F. Cuzzolin (Ed.), Belief Functions: Theory and Applications, in: 

Lect. Notes Comput. Sci., vol. 8764, Springer International Publishing, Switzerland, 2014, pp. 256–264.
[11] R. Jiroušek, P.P. Shenoy, Compositional models in valuation-based systems, Int. J. Approx. Reason. 55 (1) (2014) 277–293.
[12] R. Jiroušek, J. Vejnarová, M. Daniel, Compositional models of belief functions, in: G. de Cooman, J. Vejnarová, M. Zaffalon (Eds.), Proceedings of the 5th 

Symposium on Imprecise Probabilities and Their Applications, ISIPTA-07, Charles University Press, Prague, Czech Republic, 2007, pp. 243–252.
[13] J. Kohlas, Information Algebras: Generic Structures for Inference, Discrete Math. Theor. Comput. Sci., Springer-Verlag, London, UK, 2003.
[14] S.L. Lauritzen, F.V. Jensen, Local computation with valuations from a commutative semigroup, Ann. Math. Artif. Intell. 21 (1) (1997) 51–69.
[15] J. Pearl, Causality: Models, Reasoning, and Inference, Cambridge University Press, Cambridge, UK, 2009.
[16] M. Pouly, J. Kohlas, Generic Inference: A Unifying Theory for Automated Reasoning, Wiley, Hoboken, NJ, 2011.
[17] R.D. Shachter, Evaluating influence diagrams, Oper. Res. 34 (6) (1986) 871–882.
[18] G. Shafer, A Mathematical Theory of Evidence, Princeton University Press, Princeton, 1976.
[19] G. Shafer, An axiomatic study of computation in hypertrees, Working Paper 232, School of Business, University of Kansas, Lawrence, KS, 1991.
[20] P.P. Shenoy, A valuation-based language for expert systems, Int. J. Approx. Reason. 3 (2) (September 1989) 383–411.
[21] P.P. Shenoy, On Spohn’s rule for revision of beliefs, Int. J. Approx. Reason. 5 (2) (1991) 149–181.
[22] P.P. Shenoy, Conditional independence in valuation-based systems, Int. J. Approx. Reason. 10 (3) (1994) 203–234.
[23] W. Spohn, Ordinal conditional functions: a dynamic theory of epistemic states, in: W.L. Harper, B. Skyrms (Eds.), Causation in Decision, Belief Change, 

and Statistics, vol. 2, D. Reidel, Netherlands, 1988, pp. 105–134.
[24] W. Spohn, A general non-probabilistic theory of inductive reasoning, in: R.D. Shachter, T.S. Levitt, J.F. Lemmer, L.N. Kanal (Eds.), Uncertainty Artif. Intell., 

vol. 4, North-Holland, Amsterdam, 1990, pp. 149–158.
[25] J. Vejnarová, Composition of possibility measures on finite spaces: preliminary results, in: B. Bouchon-Meunier, R.R. Yager (Eds.), Proceedings of the 

7th International Conference on Information Processing and Management of Uncertainty in Knowledge-based Systems, IPMU-98, 1998, pp. 25–30.
[26] L.A. Zadeh, A theory of approximate reasoning, in: J. Hayes, D. Mikulich (Eds.), Mach. Intell., vol. 9, Elsevier, Amsterdam, 1979, pp. 149–194.

http://refhub.elsevier.com/S0888-613X(15)00148-6/bib62696E61323030366D617267696E616C697A6174696F6Es1
http://refhub.elsevier.com/S0888-613X(15)00148-6/bib436C6966666F726450726573746F6E31393637s1
http://refhub.elsevier.com/S0888-613X(15)00148-6/bib43726F69736F7431393533s1
http://refhub.elsevier.com/S0888-613X(15)00148-6/bib44656D707374657231393637s1
http://refhub.elsevier.com/S0888-613X(15)00148-6/bib4475626F6973507261646531393838s1
http://refhub.elsevier.com/S0888-613X(15)00148-6/bib4A69726F7573656B31393937s1
http://refhub.elsevier.com/S0888-613X(15)00148-6/bib4A69726F7573656B31393937s1
http://refhub.elsevier.com/S0888-613X(15)00148-6/bib4A69726F7573656B32303131s1
http://refhub.elsevier.com/S0888-613X(15)00148-6/bib4A69726F7573656B49504D5532303134s1
http://refhub.elsevier.com/S0888-613X(15)00148-6/bib4A69726F7573656B49504D5532303134s1
http://refhub.elsevier.com/S0888-613X(15)00148-6/bib4A69726F7573656B49534950544132303135s1
http://refhub.elsevier.com/S0888-613X(15)00148-6/bib4A69726F7573656B49534950544132303135s1
http://refhub.elsevier.com/S0888-613X(15)00148-6/bib4A69726F7573656B5368656E6F7942656C6965663134s1
http://refhub.elsevier.com/S0888-613X(15)00148-6/bib4A69726F7573656B5368656E6F7942656C6965663134s1
http://refhub.elsevier.com/S0888-613X(15)00148-6/bib4A69726F7573656B5368656E6F7932303134494A4152s1
http://refhub.elsevier.com/S0888-613X(15)00148-6/bib4A69726F7573656B6574616C32303037s1
http://refhub.elsevier.com/S0888-613X(15)00148-6/bib4A69726F7573656B6574616C32303037s1
http://refhub.elsevier.com/S0888-613X(15)00148-6/bib4B6F686C617332303033s1
http://refhub.elsevier.com/S0888-613X(15)00148-6/bib4C61757269747A656E4A656E73656E31393937s1
http://refhub.elsevier.com/S0888-613X(15)00148-6/bib706561726C3230303963617573616C697479s1
http://refhub.elsevier.com/S0888-613X(15)00148-6/bib506F756C794B6F686C617332303131s1
http://refhub.elsevier.com/S0888-613X(15)00148-6/bib736861636874657231393836s1
http://refhub.elsevier.com/S0888-613X(15)00148-6/bib53686166657231393736s1
http://refhub.elsevier.com/S0888-613X(15)00148-6/bib53686166657231393931s1
http://refhub.elsevier.com/S0888-613X(15)00148-6/bib5368656E6F7931393839s1
http://refhub.elsevier.com/S0888-613X(15)00148-6/bib5368656E6F7931393931s1
http://refhub.elsevier.com/S0888-613X(15)00148-6/bib5368656E6F7931393934s1
http://refhub.elsevier.com/S0888-613X(15)00148-6/bib53706F686E31393838s1
http://refhub.elsevier.com/S0888-613X(15)00148-6/bib53706F686E31393838s1
http://refhub.elsevier.com/S0888-613X(15)00148-6/bib53706F686E31393930s1
http://refhub.elsevier.com/S0888-613X(15)00148-6/bib53706F686E31393930s1
http://refhub.elsevier.com/S0888-613X(15)00148-6/bib56656A6E61726F766131393938s1
http://refhub.elsevier.com/S0888-613X(15)00148-6/bib56656A6E61726F766131393938s1
http://refhub.elsevier.com/S0888-613X(15)00148-6/bib5A6164656831393739s1

	Causal compositional models in valuation-based systems with examples in speciﬁc theories
	1 Introduction
	2 Valuation-based systems
	3 Examples of valuation-based systems
	3.1 Probability theory
	3.2 Possibility theory
	3.3 Spohn's epistemic belief theory
	3.4 Dempster-Shafer belief function theory

	4 Composition operator
	5 Causal compositional models
	6 Elimination of hidden variables
	6.1 A probabilistic example
	6.2 A possibilistic example
	6.3 A Spohnian example

	7 Conclusions
	Acknowledgements
	References


