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We propose a new definition of entropy of basic probability assignments (BPAs) in the 
Dempster–Shafer (DS) theory of belief functions, which is interpreted as a measure of total 
uncertainty in the BPA. Our definition is different from those proposed by Höhle, Smets, 
Yager, Nguyen, Dubois–Prade, Lamata–Moral, Klir–Ramer, Klir–Parviz, Pal et al., Maeda–
Ichihashi, Harmanec–Klir, Abellán–Moral, Jousselme et al., Pouly et al., and Deng. We state 
a list of six desired properties of entropy for DS belief functions theory, four of which are 
motivated by Shannon’s definition of entropy of probability functions, and the remaining 
two are requirements that adapt this measure to the philosophy of the DS theory. Three 
of our six desired properties are different from the five properties proposed by Klir 
and Wierman. We demonstrate that our definition satisfies all six properties in our list, 
whereas none of the existing definitions do. Our new definition has two components. The 
first component is Shannon’s entropy of an equivalent probability mass function obtained 
using the plausibility transform, which constitutes the conflict measure of entropy. The 
second component is Dubois–Prade’s definition of entropy of basic probability assignments 
in the DS theory, which constitutes the non-specificity measure of entropy. Our new 
definition is the sum of these two components. Our definition does not satisfy the 
subadditivity property. Whether there exists a definition that satisfies our six properties 
plus subadditivity remains an open question.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The main goal of this paper is to propose a new definition of entropy of a basic probability assignment (BPA) in the 
Dempster–Shafer (DS) theory of belief functions [9,42]. Since 1982, when Höhle [20] gave a first definition of entropy of a 
BPA in the DS theory, there have been numerous definitions of entropies of a BPA. So an obvious question is: Why do we 
need another definition of entropy of a BPA? In the remainder of this section, we attempt to answer this question.

We follow an axiomatic approach to defining entropy of a BPA. First, we state a list of six desirable properties, and then 
we provide a definition that satisfies the six properties. The axiomatic approach to defining entropy of a BPA is not new. 
Klir and Wierman [26] state five properties that they claim are essential in defining entropy of a BPA. However, as we 
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will argue, Klir–Wierman’s properties are unsatisfactory to us. Our set of six properties is designed to address some of the 
shortcomings of Klir–Wierman’s properties. Abellán and Moral [4] also propose additional properties. Some of these are also 
discussed in this paper.

First, there are several theories of belief functions in the literature. In this paper, we are concerned only with the 
Dempster–Shafer theory, which has as its centerpiece, Dempster’s combination rule as the rule for aggregating evidence. 
For example, in the imprecise probability community, belief functions are regarded as encoding a set of probability mass 
functions (PMFs), whose lower envelope constitutes a belief function. Such a set of PMFs is called a credal set. However, as we 
will argue in Section 4, credal set semantics of belief functions are incompatible with Dempster’s combination rule [43–45,
16]. Our goal is to define entropy of a BPA in the DS theory. Therefore, the first property we propose, called “consistency 
with DS theory semantics,” is that a definition of entropy of a BPA in the DS theory should be based on interpretations of 
the BPA that are compatible with the basic tenets of DS theory, namely, Dempster’s combination rule.

One method for defining entropy of a BPA m is to first transform the BPA to a corresponding PMF Pm , and then use 
Shannon’s entropy of Pm as the entropy of m (see, e.g., [31,17,4,22,38]). However, there are many ways to make such a 
transformation. Voorbraak [55], and Cobb and Shenoy [6], argue that any transform of BPA m in the DS theory should be 
consistent with Dempster’s combination rule in the sense that Pm1⊕m2 = Pm1 ⊗ Pm2 , where ⊕ denotes Dempster’s combina-
tion rule, and ⊗ denotes Bayesian combination rule, i.e., pointwise multiplication followed by normalization. They propose 
a plausibility transform that satisfies this consistency requirement, and it can be shown that the plausibility transform is 
the only transform that satisfies such a consistency requirement. Our consistency with DS theory semantics property entails 
that if such a transform is used to define entropy of a BPA, then the transform must be the plausibility transform. This is to 
ensure that any definition of entropy of a BPA is relevant for the DS theory of belief functions.

Klir–Wierman’s set of five properties, and our proposed set of six properties, include an additivity property that states 
that if mX and mY are distinct BPAs for distinct variables X and Y , then entropy of mX ⊕ mY should be the sum of the 
entropies of mX and mY . Unfortunately, this additivity property is extremely weak, and is satisfied by almost all defini-
tions that have been proposed in the literature. Our consistency with DS semantics property helps to bolster the additivity 
property.

Second, the DS theory is considered more expressive than probability theory in representing ignorance. In probability 
theory, both vacuous knowledge of variable X with state space �X , and knowledge that all states in �X are equally likely 
are represented by the equally-likely PMF of X . In DS theory, we can represent vacuous knowledge of X by the vacuous BPA 
for X , and we can represent the knowledge that all states are equally likely by the equally-likely Bayesian BPA for X . Ellsberg 
[14] demonstrates that when offered a choice, many prefer to bet on the outcome of an urn with 50 red and 50 blue balls 
rather than on one with 100 total balls but for which the number of blue or red balls is unknown. This phenomenon is 
called Ellsberg paradox, as Savage’s subjective expected utility theory [41] is unable to account for this human behavior. 
Two of Klir–Wierman’s properties (called “set consistency” and “range”) entail that the entropy of the vacuous BPA for X is 
equal to the entropy of the equally-likely Bayesian BPA for X . In our opinion, this is unacceptable. Clearly, there is greater 
uncertainty in a vacuous BPA than in an equally-likely Bayesian BPA, a fact demonstrated by Ellsberg paradox. Therefore, 
instead of these two properties, we formulate a “maximum entropy” property that states that entropy of a BPA m for X is 
less than or equal to the entropy of the vacuous BPA for X , with equality if and only if m is the vacuous BPA for X . Abellán 
and Moral [4] were the earliest to propose such a maximum entropy property.

An outline of the remainder of the paper is as follows. In Section 2, we briefly review Shannon’s definition of entropy 
for PMFs of discrete random variables, and its properties. In Section 3, we review the basic definitions in the DS belief 
functions theory. In Section 4, we propose six properties that an entropy function for BPA should satisfy. We compare our 
properties with those proposed by Klir and Wierman [26], and also with a set monotonicity property proposed by Abellán 
and Masegosa [3]. In Section 5, we discuss the various definitions that have been proposed in the literature, and how they 
compare vis-a-vis our list of six properties. In Section 6, we propose a new definition of entropy for DS theory, and show 
that it satisfies all six properties proposed in Section 4. In Section 7, we discuss some additional properties of our definition. 
Finally, in Section 8, we summarize our findings, and conclude with some open questions.

2. Shannon’s entropy of PMFs of discrete random variables

In this section we briefly review Shannon’s definition of entropy of PMFs of discrete random variables, and its properties. 
Most of the material in this section is taken from [47,30].

Information content. Suppose X is a discrete random variable, with state space �X , and PMF P X . Consider a state x ∈ �X

such that P X (x) > 0. What is the information content of this state? Shannon [47] defines the information content of state 
x ∈ �X as follows:

I(x) = log2

(
1

P X (x)

)
. (1)

Information content has units of bits. Intuitively, the information content of a state is inversely proportional to its prob-
ability. Observing a state with probability one has no information content (0 bits). Notice that I(x) ≥ 0, and I(x) = 0 if and 
only if P X (x) = 1.
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Although we have used logarithm to the base 2, we could use any base (e.g., e, or 10), but this will change the units. 
Henceforth, we will simply write log for log2.

Shannon’s entropy. Suppose X is a random variable with PMF P X . The entropy of P X is the expected information content 
of the possible states of X :

Hs(P X ) =
∑

x∈�X

P X (x)I(x) =
∑

x∈�X

P X (x) log

(
1

P X (x)

)
. (2)

Like information content, entropy is measured in units of bits. One can interpret entropy Hs(P X ) as a measure of uncer-
tainty in the PMF P X (x). If P X (x) = 0, we follow the convention that P X (x) log(1/P X (x)) = 0 as limθ→0+ θ log(1/θ) = 0.

Suppose Y is another random variable, and suppose that the joint PMF of X and Y is P X,Y with P X and P Y as the 
marginal PMFs of X and Y , respectively. If we observe Y = a such that P Y (a) > 0, then the posterior PMF of X is P X |a
(where P X |a(x) = P X,Y (x, a)/P Y (a)), and the respective posterior entropy is Hs(P X |a).

From our viewpoint, the following properties of Shannon’s entropy function for PMFs are the most important ones:

1. Hs(P X ) ≥ 0, with equality if and only if there exists x ∈ �X such that P X (x) = 1.
2. Hs(P X ) ≤ log(|�X |), with equality if and only if P X (x) = 1

|�X | for all x ∈ �X . |�X | denotes the cardinality (i.e., number 
of elements) of set �X .

3. The entropy of P X does not depend on the labels attached to the states of X , only on their probabilities. This is 
in contrast with, e.g., variance of X , which is defined only for real-valued random variables. Thus, for a real-valued 
discrete random variable X , and Y = 10 X , it is obvious that Hs(P Y ) = Hs(P X ), whereas V (P Y ) = 100 V (P X ).

4. Shannon [47] derives the expression for entropy of X axiomatically using four axioms as follows.
(a) Axiom 0 (Existence): H(X) exists.
(b) Axiom 1 (Continuity): H(X) should be a continuous function of P X (x) for x ∈ �X .
(c) Axiom 2 (Monotonicity): If we have an equally likely PMF, then H(X) should be a monotonically increasing function 

of |�X |.
(d) Axiom 3 (Compound distributions): If a PMF is factored into two PMFs, then its entropy should be the sum of 

entropies of its factors, e.g., if P X,Y (x, y) = P X (x) P Y |x(y), then H(P X,Y ) = H(P X ) + ∑
x∈�X

P X (x) H(P Y |x).
Shannon [47] proves that the only function Hs that satisfies Axioms 0–3 is of the form

Hs(P X ) = K
∑

x∈�X

P X (x) log

(
1

P X (x)

)
,

where K is a constant depending on the choice of units of measurement.

Suppose X and Y are discrete random variables with joint PMF P X,Y . Analogous to the one-dimensional case, the joint 
entropy of P X,Y is:

Hs(P X,Y ) =
∑

x∈�X

∑
y∈�Y

P X,Y (x, y) log

(
1

P X,Y (x, y)

)
. (3)

Let P Y |X : �{X,Y } → [0, 1] be a function such that P Y |X (x, y) = P Y |x(y) for all (x, y) ∈ �{X,Y } . Though P Y |X is called a 
conditional PMF, it is not a PMF. It is a collection of conditional PMFs, one for each x ∈ �X . If we combine P X and P Y |X

using pointwise multiplication followed by normalization, an operation that we denote by ⊗, then we obtain P X,Y , i.e., 
P X,Y = P X ⊗ P Y |X , i.e., P X,Y (x, y) = P X (x) P Y |X (x, y) = P X (x) P Y |x(y) for all (x, y) ∈ �{X,Y } . As P X and P Y |x are PMFs, there 
is no need for normalization (or the normalization constant is 1).

Shannon defined the entropy of P Y |X as follows:

Hs(P Y |X ) =
∑

x∈�X

P X (x) Hs(P Y |x). (4)

We call Hs(P Y |X ) the conditional entropy of Y given X .
It follows from Axiom 3 that

Hs(P X,Y ) = Hs(P X ⊗ P Y |X ) = Hs(P X ) + Hs(P Y |X ). (5)

We call Hs(P X ) the marginal entropy of X , and Eq. (5) is the compound distribution axiom underlying Shannon’s entropy 
expressed in terms of marginal and conditional entropies. Eq. (5) is also called the chain rule of entropy.

If X and Y are independent with respect to P X,Y , i.e., P Y |x(y) = P Y (y) for all (x, y) ∈ �{X,Y } such that P X (x) > 0, then 
it follows from Eq. (4) that Hs(P Y |X ) = Hs(P Y ). Thus, if X and Y are independent with respect to P X,Y , then Hs(P X,Y ) =
Hs(P X ) + Hs(P Y ).
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Suppose P X and P Y are the marginal PMFs obtained from the joint PMF P X,Y . Then, it can be shown that

Hs(P X,Y ) ≤ Hs(P X ) + Hs(P Y ), (6)

with equality if and only if X and Y are independent with respect to P X,Y . The inequality in Eq. (6) is called subadditivity
in the literature (see, e.g., [13]).

3. Basic definitions of the DS belief functions theory

In this section we review the basic definitions in the DS belief functions theory. Like the various uncertainty theories, 
DS belief functions theory includes functional representations of uncertain knowledge, and operations for making inferences 
from such knowledge.

Basic probability assignment. Suppose X is a random variable with state space �X . Let 2�X denote the set of all non-empty
subsets of �X . A basic probability assignment (BPA) m for X is a function m : 2�X → [0, 1] such that∑

a∈2�X

m(a) = 1. (7)

The subsets a ∈ 2�X (recall that we exclude the empty set from 2�X ) such that m(a) > 0 are called focal elements of m. 
An example of a BPA for X is the vacuous BPA for X , denoted by ιX , such that ιX (�X ) = 1. We say m is deterministic (or 
categorical) if m has a single focal element (with probability 1). Thus, the vacuous BPA for X is deterministic with focal 
element �X . If all focal elements of m are singleton subsets of �X , then we say m is Bayesian. In this case, m is equivalent 
to the PMF P for X such that P (x) = m({x}) for each x ∈ �X . Let mu denote the Bayesian BPA with uniform probabilities, 
i.e., mu({x}) = 1

|�X | for all x ∈ �X . If �X is a focal element of m, then we say m is non-dogmatic, and dogmatic otherwise. 
Thus, a Bayesian BPA is dogmatic.

Plausibility function. The plausibility function Plm corresponding to BPA m is defined as follows:

Plm(a) =
∑

b∈2�X : b∩a
=∅
m(b) (8)

for all a ∈ 2�X . For an example, suppose �X = {x, ̄x}. Then, the values of the plausibility function PlιX corresponding to BPA 
ιX , are identically one for all three subsets in 2�X .

Belief function. The belief function Belm corresponding to BPA m is defined as follows:

Belm(a) =
∑

b∈2�X : b⊆a

m(b) (9)

for all a ∈ 2�X . For the example above with �X = {x, ̄x}, the belief function BelιX corresponding to BPA ιX is given by 
BelιX ({x}) = 0, BelιX ({x̄}) = 0, and BelιX (�X ) = 1.

Commonality function. The commonality function Q m corresponding to BPA m is defined as follows:

Q m(a) =
∑

b∈2�X : b⊇a

m(b) (10)

for all a ∈ 2�X . For the example above with �X = {x, ̄x}, the commonality function Q ιX corresponding to BPA ιX is given 
by Q ιX ({x}) = 1, Q ιX ({x̄}) = 1, and Q ιX (�X ) = 1. If m is non-dogmatic, then Q m(a) > 0 for all a ∈ 2�X . Notice also that 
for singleton subsets a ∈ 2�X , Q m(a) = Plm(a). This is because for singleton subsets a, the set of all subsets that have 
non-empty intersection with a coincides with the set of all supersets of a. Finally, Q m is a normalized function in the sense 
that: ∑

a∈2�X

(−1)|a| Q m(a) =
∑

b∈2�X

m(b) = 1. (11)

All four representations—BPA, belief, plausibility, and commonality—are bearers of exactly the same information. Given 
any one, we can transform it to another [42].

Next, we describe the two main operations for making inferences.

Dempster’s combination rule. In the DS theory, we can combine two BPAs m1 and m2 representing distinct pieces of 
evidence by Dempster’s rule [9] and obtain the BPA m1 ⊕ m2, which represents the combined evidence. In this paper, it is 
sufficient to define Dempster’s rule for BPAs for a single variable, and for BPAs for distinct variables.
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Suppose m1 and m2 are two BPAs for X . Then,

(m1 ⊕ m2)(a) = K −1
∑

b1, b2∈2�X : b1∩b2=a

m1(b1)m2(b2), (12)

for all a ∈ 2�X , where K is a normalization constant given by

K = 1 −
∑

b1, b2∈2�X : b1∩b2=∅
m1(b1)m2(b2). (13)

The definition of Dempster’s rule assumes that the normalization constant K is non-zero. If K = 0, then the two BPAs m1
and m2 are said to be in total conflict and cannot be combined. If K = 1, we say m1 and m2 are non-conflicting.

Dempster’s rule can also be described in terms of commonality functions [42]. Suppose Q m1 and Q m2 are commonality 
functions corresponding to BPAs m1 and m2, respectively. The commonality function Q m1⊕m2 corresponding to BPA m1 ⊕m2
is as follows:

Q m1⊕m2(a) = K −1 Q m1(a) Q m2(a), (14)

for all a ∈ 2�X , where the normalization constant K is as follows:

K =
∑

a∈2�X

(−1)|a|+1 Q m1(a) Q m2(a). (15)

It is shown in [42] that the normalization constant K in Eq. (15) is exactly the same as in Eq. (13). So we see that in terms 
of commonality functions, Dempster’s rule is pointwise multiplication of commonality functions followed by normalization.

Suppose that mX and mY are two BPAs for X and Y , respectively. In this case, mX ⊕ mY is a BPA for {X, Y } such that 
each of its focal element is a Cartesian product of a focal element of mX and a focal element of mY . Formally,

(mX ⊕ mY )(a × b) = mX (a)mY (b), (16)

for all a × b ∈ 2�{X,Y } . Notice that in this case there is no need for normalization as there is no mass on the empty set, i.e., 
mX and mY are always non-conflicting.

Marginalization. Marginalization in DS theory is addition of values of BPAs. To define marginalization formally, we first 
need to define projection of states, and then projection of subset of states.

Projection of states simply means dropping extra coordinates; for example, if (x, y) is a state of {X, Y }, then the projec-
tion of (x, y) to X , denoted by (x, y)↓X , is simply x, which is a state of X .

Projection of subsets of states is achieved by projecting every state in the subset. Suppose b ∈ 2�{X,Y } . Then b↓X = {x ∈
�X : (x, y) ∈ b for some y ∈ �Y }. Notice that b↓X ∈ 2�X .

Suppose m is a BPA for {X, Y }. Then, the marginal of m for X , denoted by m↓X , is a BPA for X such that for each a ∈ 2�X ,

m↓X (a) =
∑

b∈2�{X,Y } : b↓X =a

m(b). (17)

In Eq. (16), if we compute the marginals of the joint belief function mX ⊕ mY for X and Y , then we obtain the original 
BPAs mX and mY , respectively. Klir and Wierman [26] use the terminology: marginals m↓X and m↓Y are noninteractive if 
m = m↓X ⊕ m↓Y .

This completes our brief review of the DS belief function theory. For further details, we refer the reader to [42].

4. Required properties of entropy of BPAs in the DS theory

In this section, we propose six basic properties that an entropy function for BPAs in the DS theory should satisfy, and 
compare them with those proposed by Klir and Wierman [26] for the same purposes. As a prelude to our first property, 
called consistency with DS theory semantics, we give some examples of interpretations of a BPA m that are inconsistent with 
DS theory semantics.

Credal set semantics of a BPA. For each BPA m for X , there exists a set Pm of PMFs for X that is defined as follows [16]. 
Let P denote the set of all PMFs for X . Then,

Pm = {P ∈ P :
∑
x∈a

P (x) ≥ Belm(a) =
∑
b⊆a

m(b) for all a ∈ 2�X }. (18)

Thus, a BPA m can be interpreted as an encoding of a set of PMFs as described in Eq. (18). If m = ιX , then PιX includes 
the set of all PMFs for X . If m is a Bayesian BPA for X , then Pm includes a single PMF P X corresponding to the Bayesian 
BPA m.



54 R. Jiroušek, P.P. Shenoy / International Journal of Approximate Reasoning 92 (2018) 49–65
Pm is referred to as a credal set corresponding to m (see, e.g., [56]). Notice that Pm is yet another equivalent rep-
resentation of m, like Belm , Plm , and Q m . Given Pm , we can recover the other representations. As already mentioned in 
Section 1, this interpretation of a BPA function is incompatible with Dempster’s combination rule [43–45,16], which is also 
illustrated in the following example.

Example 1. Consider a BPA m1 for X with state space �X = {x1, x2, x3} as follows: m1({x1}) = 0.5, m1(�X ) = 0.5. With the 
credal set semantics of a BPA function, m1 corresponds to a set of PMFs Pm1 = {P ∈ P : P (x1) ≥ 0.5}, where P denotes the 
set of all PMFs for X . Now suppose we get a distinct piece of evidence m2 for X such that m2({x2}) = 0.5, m2(�X ) = 0.5. 
m2 corresponds to Pm2 = {P ∈ P : P (x2) ≥ 0.5}. The only PMF that is in both Pm1 and Pm2 is P ∈ P such that P (x1) =
P (x2) = 0.5, and P (x3) = 0. Notice that if we use Dempster’s rule to combine m1 and m2, we have: (m1 ⊕ m2)({x1}) = 1

3 , 
(m1 ⊕ m2)({x2}) = 1

3 , and (m1 ⊕ m2)(�X ) = 1
3 . The set of PMFs Pm1⊕m2 = {P ∈ P : P (x1) ≥ 1

3 , P (x2) ≥ 1
3 } is not the same 

as Pm1 ∩ Pm2 . Thus, credal set semantics of belief functions are incompatible with Dempster’s combination rule.

Fagin and Halpern [15] propose another rule for updating beliefs, which is referred to as the Fagin–Halpern combination 
rule. If we start with a set of PMFs characterized by BPA m for X , and we observe some event b ⊂ �X , then one possible 
updating rule is to condition each PMF in the set Pm on event b, and then find a BPA m′ that corresponds to the lower 
envelope of the revised set of PMFs. The Fagin–Halpern rule [15] does precisely this, and is different from Dempster’s rule 
of conditioning, which is a special case of Dempster’s combination rule.

Transforming a BPA to a PMF. Given a BPA m for X in the DS theory, there are many ways to transform m to a corresponding 
PMF Pm for X [8,7,46]. The main transforms used in the literature are the pignistic transform [12,49], the maximum entropy 
credal set transform [31,17], and the plausibility transform [55,6]. However, only the plausibility transform, is consistent with 
m in the DS theory in the sense that Pm1⊕m2 = Pm1 ⊗ Pm2 , where, as mentioned in Section 2, ⊗ is the combination rule 
in probability theory, and ⊕ is Dempster’s combination rule in DS theory [55,6]. Thus, if a probability transform is used to 
define entropy of m, then we argue that it must be the plausibility transform as it is the only one that is consistent with 
Dempster’s combination rule.

First, let’s define Bet Pm . Suppose m is a BPA for X . Then Bet Pm is a PMF for X defined as follows:

Bet Pm(x) =
∑

a∈2�X : x∈a

m(a)

|a| (19)

for all x ∈ �X . It is easy to verify that Bet Pm is a PMF. It is argued in [6] that Bet Pm is an inappropriate probabilistic rep-
resentation of m in the DS theory. The following example provides one reason why Bet Pm is incompatible with Dempster’s 
combination rule.

Example 2. This example is taken from [50]. Consider a situation where we have vacuous prior knowledge of X with 
�X = {x1, . . . , x70} and we receive evidence represented as BPA m for X as follows: m({x1}) = 0.30, m({x2}) = 0.01, 
and m({x2, . . . , x70}) = 0.69. Then Bet Pm is as follows: Bet Pm(x1) = 0.30, Bet Pm(x2) = 0.02, and Bet Pm(x3) = . . . =
Bet Pm(x70) = 0.01. If Bet Pm were appropriate for m, then after receiving evidence m, x1 is 15 times more likely than x2. 
Now suppose we receive another distinct piece of evidence that is also represented by m. As per the DS theory, our to-
tal evidence is now m ⊕ m. If on the basis of m (or Bet Pm), x1 was 15 times more likely than x2, then now that we 
have evidence m ⊕ m, x1 should be even more likely (exactly 152 = 225 times) than x2. But Bet Pm⊕m(x1) ≈ 0.156 and 
Bet Pm⊕m(x2) ≈ 0.036. So according to Bet Pm⊕m , x1 is only 4.33 more likely than x2. This implies that the second piece of 
evidence favors x2 over x1 (by a factor of 15/4.33 = 3.46). But the two distinct pieces of evidence are represented by the 
same BPA. This doesn’t make much sense, and the only rational conclusion is that Bet Pm is inconsistent with Dempster’s 
combination rule.

Next, let’s define maximum entropy credal set transform, Cr Pm . Suppose m is a BPA for X . Then Cr Pm is a PMF for X
defined as follows:

Cr Pm = arg max
P X ∈Pm

Hs(P X ). (20)

In words, Cr Pm is the PMF of X that has the highest Shannon entropy of all PMFs in the credal set Pm . Regarding numerical 
computation of the first component of Cr Pm , which involves nonlinear optimization, some algorithms are described in [32,
34,18,29,5].

The following example illustrates the Cr Pm transform, and shows that it does not satisfy the consistency with DS theory 
semantics requirement Pm1⊕m2 = Pm1 ⊗ Pm2 .

Example 3. This example is adapted from [51]. A mafia boss has decided to assassinate Mr. Jones. He has three assassins on 
his payroll, Peter (pe), Paul (pa), and Mary (ma). We have two pieces of distinct evidence. First, the mafia boss will toss a 
fair coin to decide on the assassin—if the toss results in heads, he will pick either pe or pa, and we know nothing about 



R. Jiroušek, P.P. Shenoy / International Journal of Approximate Reasoning 92 (2018) 49–65 55
the process of picking pe or pa. If the toss results in tails, he will pick ma. This piece of evidence can be represented by a 
BPA m1 for K (�K = {pe, pa, ma}) such that m1({pe, pa}) = 0.5, m1({ma}) = 0.5. The second piece of evidence is that Peter 
has a perfect alibi, and therefore cannot be the killer of Mr. Jones. This piece can be modeled by the BPA m2 for K such 
that m2({pa, ma}) = 1. Mr Jones is found dead. The main question of interest is: Who killed Mr. Jones?

For m1, Pm1 = {P ∈ P : P (pe) + P (pa) = 0.5, P (ma) = 0.5}, and Cr Pm1 is as follows: Cr Pm1 (pe) = 0.25, Cr Pm1 (pa) =
0.25, and Cr Pm1 (ma) = 0.50. For m2, Pm2 = {P ∈ P : P (pe) = 0}, and Cr Pm2 is as follows: Cr Pm2 (pe) = 0, Cr Pm2 (pa) =
0.50, and Cr Pm2 (ma) = 0.50.

m1 ⊕m2 is as follows: (m1 ⊕m2)({pa}) = 0.5, and (m1 ⊕m2)({ma}) = 0.5. Pm1⊕m2 = {P ∈ P : P (pa) = 0.5, P (ma) = 0.5}, 
which is a singleton subset. Therefore, Cr Pm1⊕m2 is such that Cr Pm1⊕m2 (pe) = 0, Cr Pm1⊕m2 (pa) = 0.5, and Cr Pm1⊕m2 (ma) =
0.5.

Notice that Cr Pm1 ⊗ Cr Pm2 is as follows: (Cr Pm1 ⊗ Cr Pm2 )(pe) = 0, (Cr Pm1 ⊗ Cr Pm2 )(pa) = 1/3, and (Cr Pm1 ⊗
Cr Pm2 )(ma) = 2/3, which is different from Cr Pm1⊕m2 . Thus, Cr Pm is inconsistent with Dempster’s combination rule.

Finally, let’s define the plausibility transform [55,6]. Suppose m is a BPA for X . The plausibility transform, denoted by 
Pl_Pm , is based on the plausibility function Plm corresponding to m, and is defined as follows:

Pl_Pm(x) = K −1 · Plm({x}) = K −1 · Q m({x}) (21)

for all x ∈ �X , where K is a normalization constant that ensures Pl_Pm is a PMF, i.e., K = ∑
x∈�X

Plm({x}) = ∑
x∈�X

Q m({x}).
[6] argues that of the many methods for transforming belief functions to PMFs, the plausibility transform is one that 

is consistent with Dempster’s combination rule in the sense that if we have BPAs m1, . . . , mk for X , then Pl_Pm1⊕...⊕mk =
Pl_Pm1 ⊗ . . .⊗ Pl_Pmk , where ⊗ denotes Bayes combination rule (pointwise multiplication followed by normalization). It can 
be shown that the plausibility transform is the only transform that has this property, which follows from the fact that for 
singleton subsets, the values of the plausibility function Plm are equal to the values of the commonality function Q m , and 
the fact that Dempster’s combination rule is pointwise multiplication of commonality functions followed by normalization 
(Eq. (14)).

Example 4. Consider a BPA m for X as described in Example 2 as follows: m({x1}) = 0.30, m({x2}) = 0.01, m({x2, . . . , x70}) =
0.69. Then, Plm for singleton subsets is as follows: Plm({x1}) = 0.30, Plm({x2}) = 0.70, Plm({x3}) = · · · = Plm({x70}) = 0.69. 
The plausibility transform of m is as follows: Pl_Pm(x1) = 0.3/49.72 ≈ 0.0063, and Pl_Pm(x2) = 0.7/49.72 ≈ 0.0146, and 
Pl_Pm(x3) = · · · = Pl_Pm(x70) ≈ 0.0144. Notice that Pl_Pm is qualitatively different from Bet Pm . In Bet Pm , x1 is 15 times 
more likely than x2. In Pl_Pm , x2 is 2.33 times more likely than x1.

Now suppose we get a distinct piece of evidence that is identical to m, so that our total evidence is m ⊕m. If we compute 
m ⊕ m and Pl_Pm⊕m , then as per Pl_Pm⊕m , x2 is 2.332 more likely than x1. This is a direct consequence of the consistency 
of the plausibility transform with Dempster’s combination rule.

One practical use of an uncertainty theory is to make decisions under uncertainty. To achieve this, we must first agree 
on the semantics of the theory. The semantics of the DS belief function theory cannot be “a matter of personal opinion” 
[50]. For the BPA m in Example 2, does it mean that x1 is 15 times more probable than x2 (as suggested by the pignistic 
transform)? Or does it mean that x2 is 2.33 more probable than x1 (as suggested by the plausibility transform)? One way 
to decide is to base our decisions on the center-piece of the DS theory, Dempster’s combination rule. It is Dempster’s 
combination rule that distinguishes the DS theory from the Fagin–Halpern theory, which views a belief function as a credal 
set of PMFs.

There are, of course, semantics that are consistent with DS theory, such as multivalued mappings [9], random codes [43], 
transferable beliefs [51], and hints [27].

Desired properties of entropy of BPAs in the DS theory. The following is a list of six desired properties of entropy H(m), 
where m is a BPA. Most of these are motivated by the properties of Shannon’s entropy of PMFs described in Section 2. 
Before listing the properties, let us emphasize that we implicitly assume existence and continuity—given a BPA m, H(m)

should always exist, and H(m) should be a continuous function of m. We do not list these two requirements explicitly.
Let X and Y denote random variables with state spaces �X and �Y , respectively. Let mX and mY denote distinct BPAs 

for X and Y , respectively. Let ιX and ιY denote the vacuous BPAs for X and Y , respectively.

1. (Consistency with DS theory semantics) If a definition of entropy of m, or a portion of a definition, is based on a transform 
of BPA m to a PMF Pm , then the transform must satisfy the condition Pm1⊕m2 = Pm1 ⊗ Pm2 . Notice that this property 
is not postulating the use of a probability transform. Only that if a transform is used, then it must be consistent with 
Dempster’s rule. As the plausibility transform is the only one that satisfies this property, any definition that uses a 
transform different from the plausibility transform will not satisfy this property.

2. (Non-negativity) H(mX ) ≥ 0, with equality if and only if there is a x ∈ �X such that mX ({x}) = 1. This is similar to the 
probabilistic case.

3. (Maximum entropy) H(mX ) ≤ H(ιX ), with equality if and only if mX = ιX . This makes sense as the vacuous BPA ιX for X
has the most uncertainty among all BPAs for X . Such a property is also advocated in [4].
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4. (Monotonicity) If |�X | < |�Y |, then H(ιX ) < H(ιY ). This is similar to Axiom 2 of Shannon.
5. (Probability consistency) If mX is a Bayesian BPA for X , then H(mX ) = Hs(P X ), where P X is the PMF of X corresponding 

to mX , i.e., P X (x) = mX ({x}) for all x ∈ �X , and Hs(P X ) is Shannon’s entropy of PMF P X . In other words, if mX is a 
Bayesian BPA for X , then H(mX ) = ∑

x∈�X
mX ({x}) log

(
1

mX ({x})
)

.

6. (Additivity) Having distinct BPAs mX and mY for X and Y , respectively, we can combine them using Dempster’s rule 
yielding BPA mX ⊕ mY for {X, Y }. Then,

H(mX ⊕ mY ) = H(mX ) + H(mY ). (22)

This is a weak version of the compound axiom for Shannon’s entropy of a PMF (for the case of independent random 
variables).

The additivity property is quite weak, and is satisfied by most definitions of entropy that are on a log scale. The con-
sistency with DS theory semantics property helps to bolster the additivity property, and ensures that any definition of 
entropy for m in the DS theory is consistent with Dempster’s combination rule. As we will see in Section 5, not all pre-
vious definitions in the literature are consistent with Dempster’s combination rule, even though they satisfy the additivity 
property.

Klir and Wierman [26] also describe a set of properties that they believe should be satisfied by any meaningful measure 
of uncertainty based on intuitive grounds. Some of the properties that they suggest are also included in the above list. For 
example, probability consistency and additivity appear in both sets of requirements. Nevertheless, two of them do not make 
intuitive sense to us.

First, Klir and Wierman suggest a property that they call “set consistency” as follows:

7. (Set consistency) H(m) = log(|a|) whenever m is deterministic with focal set a, i.e., m(a) = 1.

This property would require that H(ιX ) = log(|�X |). The probability consistency property would require that for the 
Bayesian uniform BPA mu , H(mu) = log(|�X |). Thus, these two requirements would entail that H(ιX ) = H(mu) = log(|�X |). 
We disagree. Recall the Ellsberg paradox [14] phenomenon described in Section 1, also called ambiguity aversion. According 
to our requirements, H(ιX ) > H(mu), which make more intuitive sense than requiring H(ιX ) = H(mu). The Ellsberg paradox 
phenomenon is an argument in favor of our requirements. The persons who prefer the urn with 50 red balls and 50 blue 
balls (whose uncertainty is described by H(mu)) to the urn with 100 total balls for which the number of blue or red balls 
is unknown (whose uncertainty is described by H(ιX )) do so because they are convinced that there is less uncertainty in 
H(mu) than in H(ιX ).

Second, Klir and Wierman require a property they call “range” as follows:

8. (Range) For any BPA mX for X , 0 ≤ H(mX ) ≤ log(|�X |).

The probability consistency property requires that H(mu) = log(|�X |). Also including the range property prevents us, e.g., 
from having H(ιX ) > H(mu). So we do not include it in our list as it violates our intuition.

Finally, Klir and Wierman require the subadditivity property defined as follows.

9. (Subadditivity) Suppose m is a BPA for {X, Y }, with marginal BPAs m↓X for X , and m↓Y for Y . Then,

H(m) ≤ H(m↓X ) + H(m↓Y ). (23)

This property is the analog of the corresponding property for Shannon’s entropy for probability distribution. We agree that 
it is an important property, and the only reason we do not include it in our list is because we are unable to meet this 
requirement in addition to the six requirements that we do include.

Abellán and Moral [4] interpret a BPA m as a credal set of PMFs as in Eq. (18). With this interpretation, they propose a 
set monotonicity property as follows.

10. (Set monotonicity) If m1 and m2 are BPA functions for X with credal sets Pm1 and Pm2 , respectively, such that Pm1 ⊆
Pm2 , then H(m1) ≤ H(m2).

If the credal set semantics of a BPA function were appropriate for the DS theory, then it would be reasonable to adopt 
the set monotonicity property. However, as we have argued earlier, credal set semantics are not compatible with Dempster’s 
combination rule. If our current knowledge of X is represented by BPA m1, and we obtain a piece of evidence represented by 
BPA m2 for X that is distinct from m1, then in the DS theory, our new knowledge is represented by m1 ⊕m2. In general, it is 
not possible to formulate any relationship between Pm1 and Pm1⊕m2 . For these reasons, we do not adopt Abellán–Moral’s 
set monotonicity property.
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5. Previous definitions of entropy of BPAs in the DS theory

In this section, we review all previous definitions of entropy of BPAs in the DS theory of which we are aware. We also 
verify whether or not these previous definitions satisfy the six basic properties described in Section 4.

Höhle. One of the earliest definitions of entropy for DS theory is due to Höhle [20], who defines entropy of BPA m as 
follows. Suppose m is a BPA for X with state space �X .

Ho(m) =
∑

a∈2�X

m(a) log

(
1

Belm(a)

)
, (24)

where Belm denotes the belief function corresponding to m as defined in Eq. (9). Ho(m) captures only the conflict measure 
of uncertainty. Ho(ιX ) = 0. Thus, Ho does not satisfy non-negativity, maximum entropy, and monotonicity properties. For 
Bayesian BPA, m({x}) = Belm({x}), and therefore, Ho does satisfy the consistency with DS theory semantics and probability 
consistency property. It satisfies the additivity property but not the subadditivity property [13].

Smets. Smets [48] defines entropy of BPA m as follows. Suppose m is a non-dogmatic BPA for X , i.e., m(�X ) > 0. Let Q m

denote the commonality function corresponding to BPA m. As m is non-dogmatic, it follows that Q m(a) > 0 for all a ∈ 2�X . 
The entropy of m is as follows:

Ht(m) =
∑

a∈2�X

log

(
1

Q m(a)

)
. (25)

If m is dogmatic, Ht(m) is defined as +∞. Smets’ definition Ht(m) is designed to measure “information content” of m, 
rather than uncertainty. Like Höhle’s definition, Ht(ιX ) = 0, and therefore, Ht does not satisfy the non-negativity, maximum 
entropy, and monotonicity properties. As a Bayesian BPA is not non-dogmatic, the probabilistic consistency property is not 
satisfied either. If m1 and m2 are two non-conflicting (i.e., normalization constant in Dempster’s combination rule K = 1) 
and non-dogmatic BPAs, then Ht(m1 ⊕ m2) = Ht(m1) + Ht(m2). Thus, it satisfies the additivity property for the restricted 
class of non-dogmatic BPAs. It also satisfies the consistency with DS theory semantics property. It does not satisfy the 
subadditivity property [13].

Yager. Another definition of entropy of BPA m is due to Yager [57]:

H y(m) =
∑

a∈2�X

m(a) log

(
1

Plm(a)

)
, (26)

where Plm is the plausibility function corresponding to m as defined in Eq. (8). Yager’s definition H y(m) measures only 
conflict in m, not total uncertainty. Like Höhle’s and Smets’ definitions, H y(ιX ) = 0, and therefore, H y does not satisfy the 
non-negativity, maximum entropy, and monotonicity properties. It does satisfy the probability consistency property because 
for Bayesian BPA, Plm({x}) = m({x}). It satisfies the consistency with DS theory semantics, the additivity property, but not 
the subadditivity property [13].

Nguyen. Nguyen [35] defines entropy of BPA m for X as follows:

Hn(m) =
∑

a∈2�X

m(a) log

(
1

m(a)

)
(27)

The same definition is stated in [33]. Like all previous definitions, it captures only the conflict portion of uncertainty. As 
in the previous definitions, Hn(ιX ) = 0. Thus, Hn does not satisfy the non-negativity, maximum entropy, and monotonicity 
properties. However, as it immediately follows from the properties of Shannon’s entropy, it does satisfy the probabilistic con-
sistency property. The fact that it also satisfies the additivity property follows from the fact that log of a product is the sum 
of the logs. Thus, H(mX ⊕ mY ) = ∑

a∈2�{X,Y } mX (a↓X ) mY (a↓Y ) log
(

1
mX (a↓X ) mY (a↓Y )

)
=

(∑
a↓X ∈2�X mX (a↓X ) log

(
1

mX (a↓X )

))
+(∑

a↓Y ∈2�Y mY (a↓Y ) log
(

1
mY (a↓Y )

))
= H(m↓X ) + H(m↓Y ). It satisfies the consistency with DS theory semantics property, but 

not the subadditivity property as can be seen from Example 5.

Example 5. Consider BPA m for {X, Y } as follows: m({(x, y), (x̄, ȳ)}) = m({(x, ȳ), (x̄, y)}) = 1
2 . For this BPA, Hn(m) = 1. Also, 

m↓X = ιX , and m↓Y = ιY . Therefore, Hn(m↓X ) = 0, and Hn(m↓Y ) = 0. Thus, subadditivity is not satisfied.

Dubois and Prade. Dubois and Prade [13] define entropy of BPA m for X as follows:

Hd(m) =
∑

�

m(a) log(|a|). (28)
a∈2 X
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Dubois–Prade’s definition captures only the non-specificity portion of uncertainty. If X is a random variable with state 
space �X , Hartley [19] defines a measure of entropy of X as log(|�X |). Dubois–Prade’s definition Hd(m) can be regarded 
as the mean of Hartley entropy of m. If ιX denotes the vacuous BPA for X , then Hd(ιX ) = log(|�X |). If m is a Bayesian BPA, 
then Hd(m) = 0 as all the focal elements of m are singletons. Thus, Hd satisfies the consistency with DS theory semantics, 
maximum entropy, and monotonicity properties, but it does not satisfy the non-negativity and probabilistic consistency 
properties. However, it does satisfy the additivity and subadditivity properties [13]. Ramer [39] proves that Hd is the unique 
definition of non-specificity entropy of m that satisfies additivity and the subadditivity properties.

Lamata and Moral. Lamata and Moral [28] suggest a definition of entropy of BPA m as follows:

Hl(m) = H y(m) + Hd(m), (29)

which combines Yager’s definition H y(m) as a measure of conflict, and Dubois–Prade’s definition Hd(m) as a measure 
of non-specificity. It is easy to verify that Hl(ιX ) = Hl(mu) = log(|�X |), which violates the maximum entropy property. 
It satisfies the consistency with DS theory semantics, non-negativity, monotonicity, probability consistency, and additivity, 
properties. It does not satisfy the subadditivity property [13].

Klir and Ramer. Klir and Ramer [25] define entropy of BPA m for X as follows:

Hk(m) =
∑

a∈2�X

m(a) log

(
1

1 − ∑
b∈2�X m(b)

|b\a|
|b|

)
+ Hd(m). (30)

The first component in Eq. (30) is designed to measure conflict, and the second component is designed to measure non-
specificity. It is easy to verify that Hk(ιX ) = Hk(mu) = log(|�X |), which violates the maximum entropy property. It satisfies 
the consistency with DS theory semantics, non-negativity, monotonicity, probability consistency, and additivity, properties. 
It does not satisfy the subadditivity property [53].

Klir and Parviz. Klir and Parviz [24] modify Klir and Ramer’s definition Hk(m) slightly to measure conflict in a more refined 
way. The revised definition is as follows:

H p(m) =
∑

a∈2�X

m(a) log

(
1

1 − ∑
b∈2�X m(b)

|a\b|
|a|

)
+ Hd(m). (31)

Klir and Parviz argue that the first component in Eq. (31) is a better measure of conflict than the first component in Eq. (30). 
Like Hk(m), H p(m) satisfies the consistency with DS theory semantics, non-negativity, monotonicity, probability consistency, 
and additivity properties, but not the maximum entropy, and subadditivity [54] properties.

Pal et al. Pal et al. [36,37] define entropy Hb(m) as follows:

Hb(m) =
∑

a∈2�X

m(a) log

( |a|
m(a)

)
. (32)

Hb(m) satisfies consistency with DS theory semantics, non-negativity, monotonicity, probability consistency, and additivity 
[37], properties. Hb(ιX ) = Hb(mu) = log(|�X |). Thus, it does not satisfy the maximum entropy property. The maximum value 
of Hb(m) is attained for m such that m(a) ∝ |a|, for all a ∈ 2�X . Thus, for a binary-valued variable X , the maximum value 
of Hb(m) is 2 whereas Hb(ιX ) = 1.

Maeda and Ichihashi. Maeda–Ichihashi [31] define Hi(m) using the credal set Pm semantics of m described in Section 4 as 
follows:

Hi(m) = max
P X ∈Pm

{Hs(P X )} + Hd(m) = Hs(Cr Pm) + Hd(m) (33)

where the first component is interpreted as a measure of conflict only, and the second component is interpreted as a 
measure of non-specificity. Hi(m) satisfies all properties including the subadditivity property described in Eq. (23) [31]. As 
discussed in Section 4, the maximum entropy credal set transform Cr Pm is not consistent with Dempster’s combination rule. 
Hi(m) may be appropriate for a theory of belief functions interpreted as a credal set with the Fagin–Halpern combination 
rule. It is, however, inappropriate for the Dempster–Shafer theory of belief functions with Dempster’s rule as the rule for 
combining (or updating) beliefs.

Harmanec and Klir. Harmanec–Klir [17] define Hh(m) as follows:

Hh(m) = max
P X ∈Pm

Hs(P X ) = Hs(Cr Pm), (34)

where they interpret Hh(m) as a measure of total uncertainty. Abellán [1] interprets minP X ∈Pm Hs(P X ) as a measure of 
conflict, and the difference between Hh(m) and minP ∈P Hs(P X ) as a measure of non-specificity. Hh(ιX ) = Hh(mu) =
X m
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log(|�X |). Thus, it doesn’t satisfy the maximum entropy property. It does, however, satisfy all other properties including 
subadditivity. Like Maeda–Ichihashi’s definition, Harmanec–Klir’s definition based on the Cr Pm transform is inconsistent 
with Dempster’s combination rule, and, thus, violates consistency with DS theory semantics property.

Abellán and Moral. Maeda–Ichihashi’s definition Hi(m) does not satisfy the set monotonicity property in Eq. (10) suggested 
by Abellán–Moral [4]. They suggest a modification of Maeda–Ichihashi’s definition in Eq. (33) where they add a third com-
ponent so that the modified definition satisfies the set monotonicity property in addition to the six properties satisfied by 
Maeda–Ichihashi’s definition. Their definition is as follows:

Ha(m) = Hs(Cr Pm) + Hd(m) + min
P X ∈Pm

K L(P X , Q X ), (35)

where K L(P X , Q X ) is the Kullback–Leibler divergence between PMFs P X and Q X defined as follows:

K L(P X , Q X ) =
∑

x∈�X

P X (x) ln

(
P X (x)

Q X (x)

)
, (36)

and Q X ∈ Pm is a PMF of X that has the maximum Shannon entropy in the first term, i.e., Hs(Q X ) = maxP X ∈Pm {Hs(P X )}. 
Like Maeda–Ichihashi’s definition, Abellán–Moral’s definition does not satisfy the consistency with DS theory semantics 
property.

Jousselme et al. Jousselme et al. [22] define H j(m) based on first transforming a BPA m to a PMF Bet Pm using the pignistic
transform [12,49], and then using Shannon’s entropy of Bet Pm .

H j(m) = Hs(Bet Pm) =
∑

x∈�X

Bet Pm(x) log

(
1

Bet Pm(x)

)
. (37)

(A similar definition, called pignistic entropy, appears in [11] in the context of the Dezert–Smarandache theory, which can 
be considered a generalization of the DS belief functions theory.) H j(m) satisfies the non-negativity, monotonicity, proba-
bility consistency, and additivity properties [22]. It does not satisfy the maximum entropy property as H j(ιX ) = H j(mu) =
log(|�X |). Although Jousselme et al. claim that H j(m) satisfies the subadditivity property (Eq. (23)), a counter-example is 
provided in [23]. One basic assumption behind H j(m) is that Bet Pm is an appropriate probabilistic representation of the 
uncertainty in m in the DS theory. As we have argued in Section 4, Bet Pm is inconsistent with Dempster’s combination rule.

Pouly et al. Pouly et al. [38] define entropy of a “hint” associated with a BPA m. A hint is a formalization of the multivalued 
mapping semantics for BPAs, and is more fine-grained than a BPA. Formally, a hint H = (�1, �2, P , �) consists of two state 
spaces �1 and �2, a PMF P on �1, and a multivalued mapping � : �1 → 2�2 . The PMF P and multivalued mapping �
induces a BPA m for �2 such that m(�(θ1)) = P (θ1). An example of a hint is as follows.

Example 6. A witness claims that he saw the defendant commit a crime. Suppose that we have a PMF on the reliability R
of the witness as follows. Let r and r̄ denote the witness is reliable or not, respectively. Then, P (r) = 0.6, and P (r̄) = 0.4. 
The question of interest, denoted by variable G , is whether the defendant is guilty (g) or not ( ḡ). If the witness is reliable, 
then given his or her statement, the defendant is guilty. If the witness is not reliable, then his or her claim has no bearing 
on the question of guilt of the defendant. Thus, we have a multivalued mapping � : {r, ̄r} → 2{g,ḡ} such that �(r) = {g}, and 
�(r̄) = {g, ̄g}. In this example, the hint H = ({r, ̄r}, {g, ̄g}, P , �). The hint H induces a BPA for G as follows: m({g}) = 0.6, 
m({g, ̄g}) = 0.4.

Pouly et al.’s definition of entropy of hint H = (�1, �2, P , �) is as follows:

Hr(H ) = Hs(P ) + Hd(m), (38)

where m is the BPA on state space �2 induced by hint H . The expression in Eq. (38) is derived using Shannon’s entropy 
of a joint PMF on the space �1 × �2 whose marginal for �1 is P , and an assumption of uniform conditional PMF for 
�(ω) ⊆ �2 given ω ∈ �1. This assumption results in a marginal PMF for �2 that is equal to Bet Pm , where m is the BPA 
on state space �2 induced by hint H . Dempster’s combination rule never enters the picture in the derivation on Hr(H ). 
Hr(H ) has nice properties (on the space of hints). Hr(H ) is on the scale [0, log(|�1|) + log(|�2|)]. For a BPA m defined 
on the state space �2, it would make sense to use only the marginal of the joint PMF on �1 × �2 for �2, which is Bet Pm . 
Thus, if one were to adapt Pouly et al.’s definition for BPAs, it would coincide with the Jousselme et al.’s definition, i.e.,

Hr(m) = H j(m) = Hs(Bet Pm) =
∑
θ∈�2

Bet Pm(θ) log

(
1

Bet Pm(θ)

)
. (39)

Thus, Pouly et al.’s definition of entropy of BPA m has the same properties as Jousselme et al.’s definition.
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Table 1
A summary of the six desired properties and subadditivity of the various definitions of entropy of DS belief functions.

Definition Cons. with DS Non-neg. Max. ent. Monoton. Prob. cons. Additivity Subadd.

Höhle, Eq. (24) yes no no no yes yes no
Smets, Eq. (25) yes no no no no yes no
Yager, Eq. (26) yes no no no yes yes no
Nguyen, Eq. (27) yes no no no yes yes no
Dubois–Prade, Eq. (28) yes no yes yes no yes yes
Lamata–Moral, Eq. (29) yes yes no yes yes yes no
Klir–Ramer, Eq. (30) yes yes no yes yes yes no
Klir–Parviz, Eq. (31) yes yes no yes yes yes no
Pal et al., Eq. (32) yes yes no yes yes yes no
Maeda–Ichihashi, Eq. (33) no yes yes yes yes yes yes
Harmanec–Klir, Eq. (34) no yes no yes yes yes yes
Abellán–Moral, Eq. (35) no yes yes yes yes yes yes
Jousselme et al., Eq. (37) no yes no yes yes yes no
Pouly et al., Eq. (39) no yes no yes yes yes no
Deng, Eq. (40) yes yes no no yes no no

Deng. Deng [10] proposes a definition of entropy of BPA m for X as follows:

H g(m) = Hn(m) +
∑

a∈2�X

m(a) log(2|a| − 1) (40)

The first component, Nguyen’s definition of entropy, is a measure of conflict, and the second component is a measure of 
non-specificity. Deng’s definition satisfies the probability consistency property. Abellán [2] shows that Deng’s definition does 
not satisfy monotonicity, additivity, and subadditivity properties. It also does not satisfy the maximum entropy property.

A summary of the properties of the various definitions of entropy of DS belief functions is shown in Table 1.

6. A new definition of entropy for DS theory

In this section, we propose a new definition of entropy for DS theory. The new definition of entropy is based partially 
on the plausibility transform.

A new definition of entropy of a BPA. To explain the basic idea behind the following definition consider a simple example 
with an urn containing n balls of up to two colors: white (w), and black (b). Suppose we draw a ball at random from the 
urn and X denotes its color. What is the entropy of the BPA for X in the situation where we know that there is at least one 
ball of each color in the urn? The simplest case is when n = 2. In this case the entropy is exactly the same as in tossing a 
fair coin: log(2) = 1. Naturally, the greater n is, the greater uncertainty in the model. As there is no information preferring 
one color to another one, the only probabilistic description of the model is a uniform PMF. In DS theory, the BPA describing 
this situation is m({w}) = m({b}) = 1

n , and m({w, b}) = n−2
n . Therefore, the entropy function for this BPA must be greater 

than or equal to Shannon’s entropy of a uniform PMF with two states (log(2) = 1), and increasing with increasing n. This is 
why the following definition of entropy of a BPA m consists of two components. The first component is Shannon’s entropy 
of a PMF that corresponds to m, and the second component includes entropy associated with non-singleton focal sets of m.

Suppose m is a BPA for X . The entropy of m is defined as follows:

H(m) = Hs(Pl_Pm) + Hd(m) =
∑

x∈�X

Pl_Pm(x) log

(
1

Pl_Pm(x)

)
+

∑
a∈2�X

m(a) log(|a|). (41)

Like some of the definitions in the literature, the first component in Eq. (41) is designed to measure conflict in m, and 
the second component is designed to measure non-specificity in m. Both components are on the scale [0, log(|�X |)], and 
therefore, H(m) is on the scale [0, 2 log(|�X |)].

Theorem 1. The entropy H(m) for BPA m for X defined in Eq. (41) satisfies the consistency with DS theory semantics, non-negativity, 
maximum entropy, monotonicity, probability consistency, and additivity properties.

Proof. The entropy H(m) has two components, both of which are consistent with DS theory semantics. Thus, it satisfies the 
consistency with DS theory semantics property.

We know that Hs(Pl_Pm) ≥ 0, and Hd(m) ≥ 0. Thus, H(m) ≥ 0. For H(m) = 0 to hold, both Hs(Pl_Pm) = 0, and Hd(m) =
0 must be satisfied. Hs(Pl_Pm) = 0 if and only if there exists x ∈ �X such that Pl_Pm(x) = 1, which occurs if and only if 
m({x}) = 1. Hd(m) = 0 if and only if m is Bayesian. Thus, H(m) satisfies the non-negativity property.

Let n denote |�X |. Then P PlιX
(x) = 1

n for all x ∈ �X , and therefore Hs(P PlιX
) = log(n), which is the maximum of all PMFs 

defined on �X . Also Hd(ιX ) = log(n), which is the maximum of Dubois–Prade’s entropy over all BPAs m for X . Thus, H(m)

satisfies the maximum entropy property.
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H(ιX ) = 2 log(|�X |). Thus, since it is monotonic in |�X |, H(m) satisfies the monotonicity property.
If m is Bayesian, then Pl_Pm(x) = m({x}) for all x ∈ �X , and Hd(m) = 0. Thus, H(m) satisfies the probability consistency 

property.
Suppose mX is a BPA for X , and mY is a BPA for Y . Then, as it is shown in [6], P PlmX ⊕mY

= P PlmX
⊗ P PlmY

, and the 
normalization constant in the case of PMFs for disjoint arguments is 1. Thus, Hs(P PlmX ⊕mY

) = Hs(P PlmX
) + Hs(P PlmY

). Also, 
it is proved in [13], that Hd(mX ⊕ mY ) = Hd(mX ) + Hd(mY ). Thus, H(m) satisfies the additivity property. �

The additivity property was stated in terms of BPAs mX for X and mY for Y . Suppose we have a set of variables, say v , 
and r, s ⊆ v . This property could have been stated more generally in terms of BPAs m1 for r and m2 for s where r ∩ s = ∅. 
In this case still H(m1 ⊕ m2) = H(m1) + H(m2) because both components of the new definition (i.e., Hs and Hd) satisfy 
the more general property. However, if r ∩ s 
= ∅, then generally H(m1 ⊕ m2) may be different from H(m1) + H(m2). This is 
because neither the first component of the new definition, nor the Dubois–Prade component, satisfy the stronger property. 
An example illustrating this is described next.

Example 7. Consider BPA m1 for binary-valued variable X as follows:

m1({x}) = 0.1,

m1({x̄}) = 0.2,

m1(�X ) = 0.7,

and BPA m2 for {X, Y } as follows:

m2({(x, y), (x̄, y)}) = 0.08,

m2({(x, y), (x̄, ȳ)}) = 0.72,

m2({(x, ȳ), (x̄, y)}) = 0.02,

m2({(x, ȳ), (x̄, ȳ)}) = 0.18.

Assuming these two BPAs represent distinct pieces of evidence, we can combine them with Dempster’s rule obtaining 
m = m1 ⊕ m2 for {X, Y } as follows:

m({(x, y)}) = 0.08,

m({(x, ȳ)}) = 0.02,

m({(x̄, y)}) = 0.02,

m({(x̄, ȳ)}) = 0.18,

m({(x, y), (x̄, y)}) = 0.056,

m({(x, y), (x̄, ȳ)}) = 0.504,

m({(x, ȳ), (x̄, y)}) = 0.014,

m({(x, ȳ), (x̄, ȳ)}) = 0.126.

Now, the PMF Pl_Pm1 of X obtained using the plausibility transform of m1 is as follows:
Pl_Pm1 (x) = 0.47, and Pl_Pm1 (x̄) = 0.53, and its Shannon’s entropy is Hs(Pl_Pm1 ) = 0.998. Hd(m1) = 0.7. Thus, H(m1) =

1.698.
The PMF Pl_Pm2 of {X, Y } obtained using the plausibility transform is as follows:
Pl_Pm2 (x, y) = 0.4, Pl_Pm2 (x, ȳ) = 0.1, Pl_Pm2 (x̄, y) = 0.05, Pl_Pm2(x̄, ȳ) = 0.45, and its Shannon’s entropy is

Hs(Pl_Pm2) = 1.595. Hd(m2) = 1. Thus, H(m2) = 2.595.
The joint PMF of {X, Y } obtained using the plausibility transform is as follows:
Pl_Pm(x, y) = 0.38, Pl_Pm(x, ȳ) = 0.09, Pl_Pm(x̄, y) = 0.05, Pl_Pm(x̄, ȳ) = 0.48, and its Shannon’s entropy is H(Pl_Pm) =

1.586. Also, Dubois–Prade’s entropy of m is Hd(m) = 0.7. Thus, H(m) = 2.286.
Notice that H(m) = 2.286 
= H(m1) + H(m2) = 1.698 + 2.595 = 4.293, H(Plm) = 1.586 
= H(P Plm1

) + H(P Plm2
) = 0.998 +

1.595 = 2.593, and Hd(m) = 0.7 
= Hd(m1) + Hd(m2) = 0.7 + 1 = 1.7.

7. Additional properties of H(m)

In this section, we describe some additional properties of H(m) defined in Eq. (41).
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Entropy as an expected value. One interpretation of Shannon’s entropy in probability theory is that it equals the expected 
value of information received when learning state x ∈ �X , i.e.,

Hs(P X ) =
∑

x∈�X

P X (x)I(x), (42)

where

I(x) = log2

(
1

P X (x)

)

represents the information received when learning that state x ∈ �X has occurred. Notice that the amount of this informa-
tion is not the property of state x, but that of its probability.

In the case where our knowledge is encoded by a BPA m (instead of a PMF), we can decompose the information in 
m into two parts. The first part is the PMF Pl_Pm , and the second part (not captured by the first part) is log(|a|), which 
happens with probability m(a). Consider the vacuous BPA function ιX for X , where �X = {x, ̄x}. We can decompose the 
uncertainty in ιX into the uncertainty in the PMF P PlιX

(which is given by P PlιX
(x) = 1/2, and P PlιX

(x̄) = 1/2). But this 
doesn’t capture the entire uncertainty in ιX . We also have to include the uncertainty log(|�X |). The expected value of the 
first part is Shannon’s entropy H(P PlιX

) = 1 bit, and the expected value of the second is ιX (�X ) log(|�X |) = 1 bit.
Thus, we can interpret H(m) as an expected value, but with respect to two different sources of uncertainty. The first 

part is expected value of information I(x) with respect to PMF Pl_Pm , and the second part is expected value of information 
necessary to eliminate the uncertainty emerging from the size of �X , i.e., log(|a|), with respect to “distribution” m, i.e., ∑

a∈2�X m(a) log(|a|). The second part corresponds to the measure of uncertainty suggested by Richard Hartley in 1928 [19], 
about which Rényi showed that it is the only one satisfying additivity and monotonicity properties (for a precise formulation 
of this property see [40]). Notice that both parts are measured in same units (bits), and it makes sense to add the two.

Subadditivity property. As shown in Example 8 below, our definition does not satisfy the subadditivity property in Eq. (23).

Example 8. Consider a two-dimensional BPA m for binary-valued variables {X, Y } with five focal elements:

m({(x, y)}) = m({(x, ȳ)}) = 0.1, m({(x̄, y)}) = m({(x̄, ȳ)}) = 0.3, and m(�{X,Y }) = 0.2.

The joint PMF of {X, Y } using the plausibility transform is as follows: Pl_Pm((x, y)) = 0.1875, Pl_Pm((x, ȳ)) = 0.1875, 
Pl_Pm((x̄, y)) = 0.3125, Pl_Pm((x̄, ȳ)) = 0.3125. Its Shannon’s entropy is Hs(Pl_Pm) = 1.9544. The Dubois–Prade’s entropy 
of m is Hd(m) = 0.4. Thus, H(m) = 2.3544.

The marginal BPA m↓X is as follows: m↓X ({x}) = 0.2, m↓X ({x̄}) = 0.6, and m↓X (�X ) = 0.2. The PMF P Plm↓X of X obtained 
using the plausibility transform of m↓X is as follows: P Plm↓X (x) = 0.333, and P Plm↓X (x̄) = 0.667, and its Shannon’s entropy 
is Hs(P Plm↓X ) = 0.9183.

Similarly, the marginal BPA m↓Y is as follows: m↓Y ({y}) = 0.4, m↓Y ({ ȳ}) = 0.4, and m↓Y (�Y ) = 0.2. The PMF P Plm↓Y of 
Y is as follows: P Plm↓Y (y) = P Plm↓Y ( ȳ) = 0.5, and therefore its Shannon’s entropy is Hs(P Plm↓Y ) = 1.

Thus, Hs(Pl_Pm) = 1.9544 > Hs(P Plm↓X ) + Hs(P Plm↓Y ) = 0.9183 + 1 = 1.9182. Dubois–Prade’s entropies are as follows: 
Hd(m↓X ) = Hd(m↓Y ) = 0.2. Thus, Hd(m) = 0.4 = Hd(m↓X ) + Hd(m↓Y ) = 0.2 + 0.2 = 0.4. Therefore, H(m) = 2.3544 >
H(m↓X ) + H(m↓Y ) = (0.9183 + 0.2) + (1 + 0.2) = 1.1183 + 1.2 = 2.3183.

Entropy of m ⊕ m. Shannon’s entropy of PMFs has the following property:

Hs(P X ⊗ P X ) ≤ Hs(P X ) (43)

Repetitio est mater studiorum. Learning the same knowledge twice should contribute to our cognizance more than learning 
it only once. In general, the Bayes combination rule is not idempotent, i.e., P X ⊗ P X 
= P X . Some PMFs are idempotent. For 
example, the equally likely PMF, and PMFs that rule out some states and have equally likely probabilities for the others, 
are idempotent. For non-idempotent PMFs, if we combine P X with itself, then the states with higher probabilities are now 
more likely, and states with lower probabilities are less likely. Consider the following property of Shannon entropy [52]:

Suppose X is a random variable with state space �X = {x1, . . . , xn}, and suppose P1 and P2 are PMFs for X such that 
P1(xi) = pi and P2(xi) = qi . Suppose that q1 ≥ q2 ≥ . . . ≥ qn , and p1 = q1 − �, p2 = q2 + �, pi = qi for i = 3, . . . , n, where 
0 ≤ � ≤ q1. Then Hs(P2) ≥ Hs(P1).

Using this property repeatedly, it can be shown that the inequality in Eq. (43) holds. One may be tempted to believe 
that such a property also holds for all BPAs, i.e., H(m ⊕ m) ≤ H(m). But, as shown in Example 9, it is not true.

Example 9. Consider a BPA m for X , where �X = {x1, x2, x3} as follows: m({x1}) = 1
3 , m({x2, x3}) = 2

3 . Dubois–Prade’s en-
tropy Hd(m) = 2

3 . Also, for this BPA m, the PMF Pl_Pm is as follows: Pl_Pm(x1) = 1
5 , Pl_Pm(x2) = Pl_Pm(x3) = 2

5 . Thus, 
Hs(Pl_Pm) = 1.522, and H(m) = Hs(Pl_Pm) + Hd(m) = 2.189.
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If we compute m ⊕ m, we have (m ⊕ m)({x1}) = 1
5 , and (m ⊕ m)({x2, x3}) = 4

5 . Dubois–Prade’s entropy Hd(m ⊕ m) = 4
5 . 

Notice that Hd(m ⊕ m) > Hd(m). The PMF P Plm⊕m is as follows: P Plm⊕m (x1) = 1
9 , P Plm⊕m (x2) = P Plm⊕m (x3) = 4

9 . And, its 
Shannon’s entropy Hs(P Plm⊕m ) = 1.392. Notice that Hs(P Plm⊕m ) < Hs(Pl_Pm). However, H(m ⊕ m) = Hs(m ⊕ m) + Hd(m ⊕
m) = 2.192, which is greater than H(m) = 2.189.

To understand this more intuitively, notice that our definition of entropy H(m) has two components. The first one, 
Hs(Pl_Pm) can be considered a measure of conflict (or confusion or dissonance or discord or strife), and the second one, 
Hd(m) can be considered a measure of non-specificity. Thus, while the property in Eq. (43) holds for PMFs, it is not valid 
for BPAs in the DS theory because of the non-specificity component. When we combine m with itself, probability migrates 
from subsets with lower plausibility to subsets with larger plausibility [6]. If we have a BPA such that a larger subset has 
higher plausibility, then Hd(m ⊕ m) > Hd(m).

8. Summary and conclusion

Interpreting Shannon’s entropy of a PMF of a discrete random variable as the amount of uncertainty in the PMF [47], we 
propose six desirable properties of entropy of a basic probability assignment in the DS theory of belief functions. Four of 
the six properties are motivated by the analogous properties of Shannon’s entropy of PMFs. The maximum entropy property 
is based on our intuition that a vacuous belief function has more uncertainty than a Bayesian belief function. Some of 
these six properties are different from the five properties proposed by Klir and Wierman [26]. Two of the properties they 
require, set consistency and range, are inconsistent with some of the properties we propose. Also, one of the properties 
that they require, subadditivity, is not included in our set as we are unable to formulate a definition of entropy that would 
simultaneously satisfy the six properties we suggest plus subadditivity. Also, besides the six properties, we also require that 
H(m) should always exist, and H(m) should be a continuous function of m. Thus, a set monotonicity property suggested by 
Abellán–Masegosa [3] based on credal set semantics of belief functions that are not compatible with Dempster’s rule is not 
included in our set of requirements.

We review some earlier definitions given by Höhle [20], Smets [48], Yager [57], Nguyen [35], Dubois–Prade [13], Lamata–
Moral [28], Klir–Ramer [25], Klir–Parviz [24], Pal et al. [37], Maeda–Ichihashi [31], Abellán–Moral [4], Harmanec–Klir [17], 
Jousselme et al. [22], Pouly et al. [38], and Deng [10]. None of these definitions satisfy all the six properties listed earlier. 
Pouly et al.’s definition is for the joint space of hints, �1 × �2. If one were to adapt Pouly et al.’s definition for BPAs, then 
as the marginal entropy for �2 reduces to the pignistic entropy, their definition for BPAs would coincide with that proposed 
by Jousselme et al.

Smets’ definition is motivated by interpreting H(m) as a measure of information contained in m, rather than uncertainty. 
Höhle’s, Yager’s, and Nguyen’s definitions are motivated by interpreting entropy of a BPA as a measure of conflict (or 
confusion or discord or strife) only. Dubois–Prade’s definition is motivated by interpreting entropy of a BPA as a measure of 
its non-specificity (or imprecision) only.

As first suggested by Lamata and Moral [28], we propose a new definition of entropy of BPA as a combination of Shan-
non’s entropy of an equivalent PMF that captures the conflict measure of entropy, and Dubois–Prade’s entropy of a BPA that 
captures the non-specificity (or Hartley) measure of entropy. The equivalent PMF is that obtained by using the plausibility 
transform [55,6]. We show that this new definition satisfies all six properties we propose.

One could create a definition, e.g., that combines Jousselme et al.’s definition (Eq. (37)) with Dubois–Prade’s definition 
(Eq. (28)), i.e., H(m) = H j(m) + Hd(m), and such a definition would also satisfy five of our six properties, but as we have 
argued before, the first component, pignistic entropy, is not consistent with semantics for the DS theory.

We also describe some additional properties of our definition of entropy of BPA m. In particular, we describe our defini-
tion as the sum of an expected value of Shannon’s entropy, which is a measure of conflict, and expected value of Hartley’s 
entropy, which is a measure of non-specificity. We demonstrate that our definition does not satisfy the subadditivity prop-
erty. This is because the first component, Hs(Pl_Pm), does not satisfy the subadditivity property. Finally, we show that while 
Shannon’s entropy satisfies the inequality Hs(P X ⊗ P X ) ≤ H(P X ), our definition of H(m) does not satisfy the corresponding 
inequality, H(m ⊕ m) ≤ H(m). This is because the Dubois–Prade component, generalized Hartley entropy, does not satisfy 
this inequality, i.e., Hd(m ⊕ m) may be greater than Hd(m).

An open question is whether there exists a definition of entropy of BPA m in the DS theory that satisfies the six properties 
we list in Section 4, and the subadditivity property. Our definition satisfies the six properties, but it does not satisfy the 
subadditivity property.
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