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Influence diagrams have been applied to diverse decision problems. In this paper, 
we describe their application to the speed profile optimization problem – a problem 
traditionally solved by the methods of optimal control theory.
Influence diagrams appeared to be well-suited to these types of problems. It is mainly 
due to their ability to perform computations efficiently if the utility function is additively 
decomposed along the vehicle path, which is the case for utility functions based on, 
e.g., the total driving time or the total fuel consumption. Also, driving constraints can be 
efficiently included in the influence diagram. If the vehicle speed deviates from the optimal 
speed profile during the real drive, a new optimal speed profile can be quickly computed 
in the compiled influence diagram.
The theory of influence diagrams has not yet been sufficiently developed for continuous 
variables and nonlinear utility functions. We cope with this issue by discretization and by 
stochastic approximations of deterministic problems.
We performed experiments on a real problem – the speed control of a Formula 1 race 
car. Influence diagrams can provide a good solution of the problem very quickly. This 
solution can be used as an initial solution for the methods of the optimal control theory 
and improves the convergence of these methods.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Optimization of a vehicle speed profile is a well-known problem studied in the literature. Some authors minimize the 
energy consumption [16,3,18,4,14,17] while others aim at minimizing the total time [24]. Traditionally, this problem is 
solved by methods of the optimal control theory [10].

In this paper we describe an application of influence diagrams [7,19,21,9] to the problem of the optimization of a vehicle 
speed profile, which specifies the recommended vehicle speed at each point on the path. This paper extends our results 
previously published in two conference papers [11] and [25].

There are two key properties that allow efficient computations with influence diagrams. The first one is that the overall 
utility function is the sum of local utilities in all considered segments of the vehicle path. This is the case not only when the 
goal is to minimize the total time, but also when we aim at the minimal total fuel consumption or a linear combination of 
these two. The second key property is the Markov property. This allows us to aggregate the whole future in one probability 
and one utility potential. These potentials are defined over the speed variable in the current path segment.
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We illustrate the proposed method using an example of the speed profile optimization of a Formula 1 race car at the 
Silverstone F1 circuit [24,26]. The goal is to minimize the total lap time. This example will be used throughout the paper to 
explain the key concepts and for the final experimental evaluation of the proposed approach. An advantage of this example 
is that the optimal solution is known [24]. This allows us to compare both the influence diagram solution and the solution 
found by an optimal control theory method with the analytic solution.

In Section 2 we introduce the physical model of the vehicle using an ordinary differential equation. Since all constraints 
are naturally given with respect to the vehicle position, we describe the vehicle dynamics with respect to its position. The 
state variable will be the vehicle speed. In Section 3 we specify the optimal control problem we want to solve, which is to 
find a vehicle speed profile that minimizes the total time and satisfies all speed constraints.

In Section 5 we describe influence diagrams that can be used for this task. We explain the basic operations with prob-
ability and utility potentials. We also discuss the two methods that we use for the inclusion of the speed constraints. In 
Section 6 we derive an exact optimal algorithm for the continuous influence diagram. It is possible to find the exact solution 
due to the very specific form of the problem. In a more general setup such a solution would be hard to find. Therefore it 
is worthwhile to explore the behavior of the discretized version, which we do in Section 7. In this Section we introduce 
an enhancement used for the values that are on the border of the set of admissible speeds. Since similar problems are 
often solved using the methods of Nonlinear Optimal Control we briefly discuss the ACADO toolkit, which we use in the 
experiments to provide us a solution using a common method of optimal control – the multiple shooting method.

The final part of the paper is devoted to numerical experiments. We compare the solutions provided by influence di-
agrams with different discretizations, and with or without proposed enhancements, with the gold standard, which is the 
solution provided by the optimal algorithm we propose in Section 6. We also present comparisons with the results of 
ACADO and with real test pilots at the Silverstone F1 circuit. The experiments show that influence diagrams with the pro-
posed enhancements can be very fast in providing good results that are close to the optimum. Each such solution can be 
used as a starting point of an optimal control algorithm that can further improve the precision of the solution.

2. The physical model of the vehicle

In this paper, the path of the vehicle will be fixed and known in advance. Therefore it is admissible to define the vehicle 
position as a distance from the start point. Let s(t) be the vehicle position at time t . The speed at time t is the first 
derivative of the position with respect to time v(t) = ṡ(t) and the acceleration at time t is the first derivative of the speed 
with respect to time a(t) = v̇(t) = s̈(t).

All model constraints will be given with respect to the vehicle position; therefore we describe the model dynamics with 
respect to the position. The state variable will be the speed. By the chain rule for the derivative of a composed function we 
have

a = dv

dt
= dv

ds
· ds

dt
= dv

ds
· v . (1)

From this we get the following ordinary differential equation (ODE):

v · dv

ds
= a . (2)

Let amax be the maximum tangential engine acceleration of the vehicle1 and amin be the maximum tangential brakes 
deceleration.2 Engine acceleration corresponding to position s is defined by the following equation:

ae(u) =
{

u · amax if u > 0
u · amin otherwise,

(3)

where u is a value of the control.3 Negative values correspond to braking and positive values to accelerating. Let position s
be from interval [0, S], where S ∈R. The control function u is restricted by

−1 ≤ u(s) ≤ +1 . (4)

Deceleration caused by aerodynamic drag is

ad(s) = cv · v(s)2 . (5)

The actual vehicle acceleration at position s is

1 Note that this is a property of the vehicle engine (without considering the aerodynamic drag and friction forces). The real maximum vehicle acceleration 
is lower.

2 This is a property of the vehicle brakes (without considering the aerodynamic drag and friction forces). The real maximum deceleration is higher.
3 We use the letter u because it is standard in control theory.
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Fig. 1. A point mass moving along a path.

Fig. 2. The radius profile.

a(s) = ae(u(s)) − ad(s) − g · sinβ(s) , (6)

where β(s) is the inclination angle at position s and g is the gravitational constant. Theoretically, sin β can range from −1
to +1, but for regular roads we can expect sin β ∈ [−0.2, +0.2]. By substituting (6) into (2) we get the following equation 
that fully describes the vehicle dynamics:

v(s) · dv(s)

ds
= ae(u(s)) − cv · v(s)2 − g · sinβ(s) (7)

Example 1. All examples in this paper will follow [24] and we consider a Formula 1 race car with the engine acceleration 
characteristics amax = 16 m s−2 and amin = 18 m s−2. The constant characterizing aerodynamic drag will be cv = 0.0021 m−1.

3. Problem specification

The vehicle path is specified by a radius profile, which is defined as the radius r(s) of the circular arc which best 
approximates the path curve at position s (see Fig. 1). The radius r(s) defines the maximum speed at position s as

v(s) ≤ vmax(s) =
√

amax
n · r(s) , (8)

where amax
n is the maximum lateral acceleration, which is a vehicle property mainly influenced by the tires and by the 

aerodynamic downforce generated by the wings and by the low air pressure under the car. Following [24], we assume that 
the latter does not depend on the speed.

Example 2. For a typical F1 race car, amax
n = 30 m s−2. This implies that

vmax(s) = √
30 · r(s) . (9)

If r(s) = 30 m then the maximum speed is 108 km/h.

Example 3. In Fig. 2, we present the radius profile of the F1 Silverstone circuit (the bridge version). Radii larger than 500 m
are not depicted.4 From the radius profile, we derive the maximum speed profile by means of Formula (9). See Fig. 3 for 
the maximum speed profile.

4 A radius of 500 m allows for the maximum speed of 441 km/h – a speed never reached by an F1 race car.



570 V. Kratochvíl, J. Vomlel / International Journal of Approximate Reasoning 88 (2017) 567–586
Fig. 3. The maximum speed profile.

We assume the initial speed to be given; thus we have the boundary condition v(0) = v0, where v0 is a constant known 
in advance.5 To compute time t(s, s + �s) needed to get from position s to position s + �s we have to solve

ds

dt
= v(s) , (10)

which results in

t(s, s + �s) =
s+�s∫
s

1

v(s′)
ds′ . (11)

The optimality criteria is to minimize the total time t(S) taken to get to the goal at position s = S . We will assume β(s) = 0. 
We can specify the problem using the language of optimal control theory as:

minimize
v(s)

S∫
0

1

v(s)
ds

subject to

dv(s)

ds
· v(s) = ae(u(s)) − cv · v(s)2 for all s ∈ [0, S]

0 < v(s) ≤ vmax(s) for all s ∈ [0, S]
−1 ≤ u(s) ≤ 1 for all s ∈ [0, S]

v(0) = v0 . (12)

4. Solution of the ODE for the vehicle speed and the total time

In the rest of the paper we will assume there is no inclination of the road, i.e., β(s) = 0 for all s ∈ [0, S]. By solving the 
ODE (7), we get the formula for the speed at position s + �s

v(s + �s) =
√

v(s)2 exp(−2cv�s) + ae(u(s))

cv
(1 − exp(−2cv�s)) . (13)

This function is illustrated in Fig. 4 where the speed is plotted as a function of the position for the control u = 1 (full 
throttle) and the initial speed of 0.1 km/h, and for the control u = −1 (maximum breaking) and the initial speed of 
300 km/h, respectively.

We will also make use of the inverse function of v , which provides the value of the speed at position s for a given value 
of speed v(s + �s) at position s + �s:

w(s) =
√

v(s + �s)2 exp(2cv�s) + ae(u(s))

cv
(1 − exp(2cv�s)) . (14)

5 Note that the initial speed coincides with the final speed (of the previous lap).
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Fig. 4. The speed as a function of position for the control u = 1 and the initial speed of 0.1 km/h (left), and for the control u = −1 and the initial speed of 
300 km/h (right).

Fig. 5. The total time as a function of position for the control u = 1 and the initial speed of 0.1 km/h.

To derive the formula for the total time spent to get from position s to position s + �s we substitute (13) into (11) and 
solve the integral. We get the following Formula6

t(s, s + �s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1√
ae(u(s)) · cv

·
⎛
⎜⎝ log

( √
ae(u(s)) · exp(2cv · �s)

+√
ae(u(s)) · exp(2cv · �s) − ae(u(s)) + cv · v(s)2

)
− log

(√
ae(u(s)) + √

cv · v(s)2
)

⎞
⎟⎠ if (c1)

exp(cv · �s)

cv · v(s)
if (c2)

+∞ otherwise.

(15)

We assume v(s) ≥ 0, the condition (c1) is

if ae(u(s)) > 0 or

(
ae(u(s)) < 0 and v(s) ≥

√
ae(u(s))

cv
· (1 − exp(2cv · �s))

)
,

the condition (c2) is

ae(u(s)) = 0 and v(s) > 0.

Since this Formula is quite complicated, we illustrate the function in Fig. 5 where the total time is plotted as a function of 
the position for the control u = 1 and the initial speed of 0.1 km/h.

Remark 1. If we further simplify the model by disregarding the decrease of acceleration due to the aerodynamic drag within 
the segment [s, s + �s] then the acceleration is constant and equal to a(s) = ae(u(s)) − cv · v(s)2 at the segment [s, s + �s]. 
Then we get the Formula

v(s + �s) =
√

v(s)2 + 2 · a(s) · �s , (16)

which corresponds to the well-known formula of the motion with the uniform acceleration a(s). This is the Formula used 
in the experiments reported in [11]. In this paper we stick to Formula (13) since it is more precise. In Fig. 6, we compare 
speed profiles generated by Formulae (13) (full line) and (16) (dashed line), using constant control u = 1 with the segment 

6 Note that during the computations using this Formula we may get complex numbers but the result is always a real number.



572 V. Kratochvíl, J. Vomlel / International Journal of Approximate Reasoning 88 (2017) 567–586
Fig. 6. The speed profiles for the control u = 1 and the initial speed of 200 km/h at a path segment 20 m long for the full and simplified speed formulae.

Fig. 7. A part of the influence diagram for one path segment.

initial speed of v(s) = 200 km/h at a path segment 20 m long. Note that for the initial speed of 200 km/h, the speed 
difference after 20 m is about 0.48 km/h.

5. Influence diagrams for vehicle speed optimization

An influence diagram [7] is a Bayesian network augmented with decision variables and utility functions. In this section, 
we specify an influence diagram for the problem of optimization of a vehicle speed profile [11].

We split the vehicle path into n segments of the same length �s. Let [s, s +�s] denote the segment starting at position s. 
We assume the control u(s) (and therefore the engine acceleration ae(s) – as defined in (3)) to be constant at the segment 
[s, s + �s]. For i = 0, 1, . . . , n − 1 corresponding to the positions i · �s of the vehicle there is:

• one random variable V i representing the speed and taking values from a set V ,
• one decision variable Ui representing the control and taking values from a set U ,
• one utility potential f i+1 representing the time to drive a path segment and taking values from R+ , and

one random variable Vn for the final speed taking values from a set V . The variables Ui and V i will be either continuous 
(Subsection 5.1) or discrete (Subsection 5.2).

In Fig. 7, we present the structure of a part of the influence diagram corresponding to one segment of the path.
The physical model of the vehicle (given in Sections 2 and 4) is used to define the probability and utility functions of 

the influence diagram. First, we define the function that provides the speed at the end of a segment i with its arguments 
being the speed vi at the beginning of the segment and the control ui in the segment.

Definition 1 (Speed at the end of a path segment). Let ui be the value of the control variable in the path segment [i · �s,
(i + 1) · �s] and vi the speed at the beginning of this segment. We define function v ′ that provides the speed at the end of 
this segment by

v ′(ui, vi) = v((i + 1) · �s) , (17)

where the function v is defined by (13) with the substituted values of v(s) = vi and u(s) = ui .

In Section 6 we will use the inverse function of v ′ .

Definition 2 (Speed at the beginning of a path segment). We define function w ′ that gives the initial speed vi such that after 
driving distance �s with the control ui the speed is vi+1 as
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w ′(ui, vi+1) = w(i · �s) , (18)

where the function w is defined by (14) with the substituted values of v(s) = vi and u(s) = ui .

Definition 3 (Time to drive a path segment). We define function f that provides the time to drive the path segment [i · �s,
(i + 1) · �s] as a function of the initial speed vi and the control ui

f (ui, vi) = t(i · �s, (i + 1) · �s) , (19)

where the function t is defined by (15) with the substituted values of v(s) = vi and u(s) = ui .

This function defines the values of the utility potentials in both types of the influence diagrams (i.e., continuous and also 
discrete ones).

5.1. Influence diagram with continuous variables

Let v ′(ui, vi) be the function specified in (17). For i = 0, . . . , n − 1 and all combinations of values (ui , vi, vi+1) we define 
the conditional probability

P (V i+1 = vi+1|Ui = ui, V i = vi) =
{

1 if vi+1 = v ′(ui, vi)

0 otherwise.

In this case the vehicle behavior is deterministic.

5.2. Influence diagrams with discrete variables

It is often not possible to find a precise solution to the influence diagrams with continuous variables (especially when 
utilities are nonlinear). In such a case, a natural option is to work with discrete variables. In the problem of speed profile 
optimization, we will discretize the speed and control variables equidistantly, i.e., the sets V,U will be finite with the 
discretization steps being dV , dU , respectively.

However, this brings a fundamental problem since, despite vi ∈ V and ui ∈ U then, typically, the value v ′(ui, vi) of 
variable V i+1 defined by Formula (17) is not in V . For this reason we approximate

P (V i+1 = v ′(ui, vi)|Ui = ui, V i = vi) = 1

by two conditional probabilities

P (V i+1 = vi+1|Ui = ui, V i = vi) and P (V i+1 = vi+1|Ui = ui, V i = vi)

for values vi+1 ≤ v ′(ui, vi) and vi+1 ≥ v ′(ui, vi) that are values from V closest to v ′(ui, vi). We define the probabilities in 
the following way

P (V i+1 = v|Ui = ui, V i = vi) =
⎧⎨
⎩ 1 − |v − v ′(ui, vi)|

dV
if v ∈ {vi+1, vi+1}

0 otherwise.
(20)

The idea behind Formula (20) is that the closer the value of vi+1, vi+1 ∈ V to the exact speed value v ′(ui, vi) the greater its 
probability. The definition given above guarantees the expected value of V i+1 given Ui = ui and V i = vi is equal to v ′(ui, vi)

defined by Formula (17). We will illustrate the idea in the following example.

Example 4. Assume a speed of vi = 120 km/h and four different values of u1, u2, u3, u4 of Ui for which Formula (17) gives 
speed values 126, 129, 137, and 145 (in km/h), respectively. Let V ⊃ Vi = {120, 130, 140, 150} km/h.

Then the vectors (pv , v ∈ Vi) of conditional probabilities P (V i+1 = v|Ui = ui, V i = vi) are defined as

P (V i+1 = vi+1|V i = vi, Ui = ui) =

⎧⎪⎪⎨
⎪⎪⎩

(0.4,0.6,0,0) for ui = u1

(0.1,0.9,0,0) for ui = u2

(0,0.3,0.7,0) for ui = u3

(0,0,0.5,0.5) for ui = u4

See Fig. 8 for the visualization of the above-specified conditional probabilities.
The expected values of V i+1 are

E(V i+1|V i = vi, Ui = ui) =

⎧⎪⎪⎨
⎪⎪⎩

0.4 · 120 + 0.6 · 130 = 126 for ui = u1

0.1 · 120 + 0.9 · 130 = 129 for ui = u2

0.3 · 130 + 0.7 · 140 = 137 for ui = u3

0.5 · 140 + 0.5 · 150 = 145 for ui = u4 ,

which are the values of v ′(ui, vi) defined by Formula (17).
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Fig. 8. Conditional probabilities of speed values of V i+1 for four different control values u1
i , u2

i , u3
i , u4

i .

By the above-described approximation the relations between variables Ui, V i , and V i+1 are no more deterministic. We 
approximated the deterministic continuous influence diagram by a non-deterministic discrete influence diagram.

Remark 2. The discretization also causes problems during the inference around the values vmax
i and vmin

i . We will address 
this issue in Section 7.

5.3. Operations with probability and utility potentials

We will use Greek alphabet symbols to denote probability and utility potentials. ϕ is a probability potential if it maps 
from the Cartesian product of state spaces of its variables to the interval [0, 1] and ψ a utility potential if it maps from 
the Cartesian product of state spaces of its variables to real numbers R. From this point forward, we will use the following 
abbreviations∑

V i

ϕ(V i, ·) =
∑

vi∈Vi

ϕ(V i = vi, ·) and

max
Ui

ψ(Ui, V i) = max
ui∈Ui(vi)

ψ(Ui = ui, V i = vi) .

M will be a generalized marginalization operation. The operator M acts differently for a discrete random variable A, 
a continuous random variable B , and a decision variable U of a (probability or utility) potential ξ :

M
A

ξ(A, . . .) =
∑

A

ξ(A, . . .),

M
B

ξ(B, . . .) =
∫

ξ(B = b, . . .) db,

M
U

ξ(U , . . .) = max
U

ξ(U , . . .) .

For a set of variables C , we define MC ξ(C, . . .) as a sequence of single-variable marginalizations.

5.4. Speed constraints as admissible control sets

A solution of the optimal speed profile problem has to fulfill constraints on the speed. We consider two basic ways of 
implementing the speed constraints in the inference algorithm, which we are going to discuss in this and the next Sections.

We assume that a maximum speed vmax
i and a minimum speed vmin

i are given in advance at each path coordinate 
i = 1, . . . , n. Let the admissible set of speed values at the end of the path be

Vn = {v ∈ V, vmin
n ≤ v ≤ vmax

n } . (21)

Now, for i = n − 1, n − 2, . . . , 1 we will inductively apply the speed constraints so that we allow only those control signals 
ui ∈ U that lead to vi+1 = v ′(ui, vi) for which vi+1 ∈ Vi+1. It means that we define functions Ui(V i) such that, for each 
value vi of variable V i , they provide the set of admissible control values:

Ui(vi) = {u ∈ U : v ′(ui, vi) ∈ Vi+1} . (22)

This set inductively defines the set of admissible speed values at i for which there exists an admissible control value:

Vi = {v ∈ V : vmin
i ≤ v ≤ vmax

i , Ui(v) 
= ∅} . (23)

This, again, inductively defines a set Ui−1(vi−1). This process is repeated until i = 1.
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Remark 3. If the speed variables V i, i = 0, 1, . . . , n are continuous then in each step i we would need to derive functions 
Ui : V → U . However, as we will see in Section 6, a simpler approach is available due to a specific nature of our problem.

5.5. Speed constraints as likelihood evidence

Likelihood evidence is a vector that takes a value between zero and one for each state of the corresponding vari-
able [8, Section 1.4.6]. In the discrete case, the likelihood evidence is, for a given speed constraint for variable V i , a vector 
ϕe

i (vmin
i , vmax

i ) of length |V| such that

ϕe
i (vmin

i , vmax
i ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if vmin
i ≤ vi ≤ vmax

i

1 − vi − vmax
i

dV
if vi = min{v ∈ V, v > vmax

i }

1 − vmin
i − v j

dV
if v j = max{v ∈ V, v < vmin

i }
0 otherwise.

(24)

The idea behind Formula (24) is that the closer the value of vmax
i is to the nearest speed value v ∈ V that is greater 

than vmax
i , the higher is the likelihood of v . A similar argument applies to vmin

i . During the inference, we propagate the 
constraints using the probability potentials.

ϕi(V i) = MV i+1,Ui P (V i+1|Ui, V i) · ϕe
i+1(0, vmax

i+1) ,

where ϕi is the probability potential sent to the neighboring clique. See the following example that illustrates this process.

Example 5. Let V = {0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100} m/s be the set of speed values and U = {−1, −0.8, −0.6, −0.4,

−0.2, 0.2, 0.4, 0.6, 0.8, 1} the set of control values. Assume �s = 1 and vmax
2 = 42 m/s. Following (24) we set the likelihood 

evidence

ϕe
2(0, vmax

2 ) = (1,1,1,1,1,0.2,0,0,0,0,0) .

Next, we calculate the 3-dimensional probability potential characterizing the vehicle speed P (V 2|U1, V 1) using (20) and the 
car characteristics from Example 1. Since it has |U | · |V|2 values, which in this example is 113, we present only a few values 
as an example:

P (V 2|U1 = u1, V 1 = v1)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0.202,0.798,0,0,0,0,0,0,0,0,0) for u1 = −1 and v1 = 10 m/s
(0.002,0.998,0,0,0,0,0,0,0,0,0) for u1 = 0 and v1 = 10 m/s
(0,0.853,0.147,0,0,0,0,0,0,0,0) for u1 = 1 and v1 = 10 m/s
. . .

(0,0,0,0,0,0,0.040,0.960,0,0,0) for u1 = −1 and v1 = 70 m/s
(0,0,0,0,0,0,0.015,0.985,0,0,0) for u1 = 0 and v1 = 70 m/s
(0,0,0,0,0,0,0,0.992,0.008,0,0) for u1 = 1 and v1 = 70 m/s
. . .

When marginalizing we first sum over the values of V 2 and then take maximum over the values of U1, i.e., we get

MV 2,U1

(
P (V 2|U1, V 1) · ϕe

2(0,42)
)

= (1,1,1,1,1,0.237,0.009,0,0,0,0) .

Note that this approximately corresponds to the likelihood evidence

ϕe
1(0,42.37) = (1,1,1,1,1,0.237,0,0,0,0,0)

which means that for the speed v1 = 42.37 m/s there exists a control u1 ∈ U such that we can get to a speed value lower 
than the required 42 m/s. Actually, it holds that v ′(−1, 42.37) = 41.88 < 42.

5.6. Policy and strategy

The control of the vehicle speed is realized by means of the control policy.
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Definition 4. Control policy is a set of functions

δ = {
δ(Ui |V i) : i ∈ {1, . . . ,n − 1}, vi ∈ V

}
such that for all i = 1, . . . , n and all vi ∈ V it maps ui ∈ U to values from [0, 1] and it holds that∑

ui∈U
δ(Ui = ui|V i = vi) = 1 . (25)

Definition 5. A control policy δ is deterministic if for all i = 1, . . . , n and all vi ∈ V it holds that there is a function δi : V → U
such that for all u ∈ U

δ(Ui = u|V i = vi) =
{

1 if u = δi(vi)

0 otherwise.
(26)

Remark 4. In this paper, all considered policies will be deterministic.

Definition 6. The expected value E f of a deterministic control policy δ specified by functions ui is the sum or the integral 
over all possible configurations of random variables corresponding to the products of the probability and the criteria values 
of that configuration:

E f (δ) = M
V 1,...,Vn

P (V 1, . . . , Vn) · f (V 1, . . . , Vn) (27)

where

P (V 1, . . . , Vn) = P (V 1) ·
n−1∏
i=1

P (V i+1|Ui = ui(vi), V i) (28)

f (V 1, . . . , Vn) =
n−1∑
i=1

f (V i, V i+1) . (29)

The criteria to be optimized will be the expected value E f of a deterministic control policy.

Definition 7. An optimal deterministic policy δ∗ is a deterministic policy such that

E f (δ) ≤ E f (δ
∗) (30)

holds for all control policies δ. We will use the symbol u∗
i to denote the function ui : V → U that specifies the optimal 

deterministic policy δ∗ according to Definition 5. The symbol u∗
i (V i) denotes the set of all functions u∗

i for all values vi of 
variable V i .

5.7. Efficient computation of an optimal control policy

Using the recursive application of the commutative and distributive laws, we get the following theorem that specifies 
a computationally efficient algorithm for finding an optimal decision policy. Note that our algorithm is just a special case 
of general inference methods for influence diagrams [9,21,20]. But since our influence diagram has a simple structure, 
it is useful to derive an inference algorithm tailored for the task we are solving. Note that, in this case, because of the 
topology of the influence diagram, the algorithm does not involve divisions. You can find more about that aspect in [22]. 
The computations can also be viewed as a special case of dynamic programming [2].

Theorem 1.

E∗
f = E f (δ

∗) = M
V 1

P (V 1) · ψ(V 1) , (31)

where ψ(V 1) is computed recursively for i = 1, . . . , n − 1 as

ψ(V i) = max
Ui

M
V i+1

P (V i+1|V i, Ui) ·
(

f (V i, V i+1) + ψ(V i+1)
)

(32)

with the recursion terminal values being ψ(Vn) = 0(Vn), where 0(Vn) stands for the vector taking the zero value for all states of 
variable Vn.
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The proof can be found in Appendix A.

Remark 5. In each step i = 1, . . . , n, an optimal deterministic policy is specified (according to Definition 5) by a function 
ui : V → U such that ui(vi) = u∗

i (vi), where u∗
i (vi) is the value of Ui that maximizes Formula (32) for a given vi .

6. Continuous influence diagram solution

In this section, we present an algorithm that finds an optimal speed profile for a given discretization of the vehicle path. 
Recall that the optimality criterion is the total time and our goal is to minimize it.

Next we present a Corollary to Theorem 1 that specifies an algorithm for the case of deterministic vehicle behavior.

Corollary 1. Assume that the vehicle behavior is deterministic. Then

E∗
f = E f (δ

∗) = M
V 1

P (V 1) · ψ(V 1) , (33)

where ψ(V 1) is computed recursively for i = 1, . . . , n − 1 and for all vi ∈ V as:

ψ(vi) = f
(

vi, v ′( max Ui(vi), vi
)) + ψ

(
v ′(max Ui(vi), vi

))
. (34)

The recursion terminal values are defined as ψ(vn) = 0 for all vn ∈ V .

Proof. Formula (34) follows from (32) – the optimization is given by minimizing the total time. Therefore maxUi corre-
sponds to picking the highest value from Ui(vi). Also, note that for the deterministic vehicle behavior and for any potential 
ξ(V i, V i+1) it holds for all ui ∈ U , vi ∈ V that

M
V i+1

P (V i+1|Ui = ui, V i = vi) · ξ(V i = vi, V i+1) = ξ(V i = vi, V i+1 = v ′(ui, vi)) . �
From Corollary 1 we derive a computationally efficient Algorithm 1 that can be used to efficiently compute the optimal 

speed profile of the vehicle satisfying the speed constraints. We will use the function w(ui , vi+1) that gives the initial speed 
vi such that the speed is vi+1 after driving the distance s with the control ui . The idea behind this algorithm is that the 
function f , which is to be maximized, implies that the best policy for any vi, i = 1, . . . , n − 1 is to speed up as much as 
possible to be able to slow down by the maximum allowed deceleration to satisfy v∗

j ≤ vmax
j for all j > i. First, the maximal 

speed profile is constructed from the speed constraints and the maximum deceleration of the vehicle. Second, the best 
policy is found with the maximum acceleration until the speed meets the maximum profile constructed at the first stage of 
the algorithm.

input : vmax
i , i = 1, . . . , n – maximal speed values

output: v∗
i , i = 1, . . . , n – speed values minimizing the total time

v∗
n = vmax

n ;
for i = n − 1, . . . , 1 do

v∗
i = w ′(−1, v∗

i+1);

if (v∗
i > vmax

i ) then
v∗

i = vmax
i ;

end
end
for i = 1, . . . , n − 1 do

vi+1 = v ′(+1, v∗
i );

if (vi+1 < v∗
i+1) then

v∗
i+1 = vi+1;

end
end

Algorithm 1: Optimal speed profile construction.

We should stress that it is possible to find the exact solution of the continuous influence diagram thanks to a very 
specific form of our problem. In a more general setup such a solution would be hard to find and quite often impossible 
without resorting to numeric approximation methods. Therefore it is worthwhile to explore the behavior of the discretized 
version, which we are going to do in the next Sections. The exact solution of the continuous influence diagram will be used 
as the gold standard for the comparisons.
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7. Discrete influence diagram solution

Among the first influence diagram inference algorithms are those published in [19,21,9,12]. In some special cases – see 
[13] – the inference can be simplified so that no division operation is needed. This is also the case of the influence diagram 
for the optimal speed profile – as was shown in Theorem 1.

Let us briefly recall the solution algorithm from [9]: First, utility nodes are eliminated and the ID is converted into a 
junction tree. To every clique C in the junction tree, we associate a probability potential ϕC and a utility potential ψC . 
Cliques follow the information ordering. In the influence diagram for the speed profile optimization, the cliques are Ci =
{Ui, V i, V i+1}, i = 0, 1, . . . , n − 1. In this case, the junction tree is initiated as follows: ϕCi = P (V i+1|Ui, V i), ψCi = f (Ui, V i)

as they specified by Formulae (20) and (19), respectively.
Let Ci and Ci+1 be adjacent cliques with separator Si . To pass a message from clique Ci+1 to clique Ci potentials ϕCi

and ψCi are updated7 as follows [9]:

ψ ′
Ci

= ψCi + ψSi

ϕSi

, (35)

ϕ′
Ci

= ϕCi · ϕSi , (36)

where

ϕS = M
Ci+1\Si

ϕCi+1 , ψSi = M
Ci+1\Si

(
ϕCi+1 · ψCi+1

)
(37)

and M is a generalized marginalization operation as defined in Section 5.3.
The elimination order follows the inverse order as determined by a sequence that respects the information constraints in 

the sense that because Vk precedes Vk+1 in the information sequence, Vk+1 must be marginalized before Vk . Similarly, V i
precedes Ui and therefore Ui must be marginalized before V i . In the process of marginalizing the decision (control) variable 
Ui in (37) to get ψS , we keep track of where the maximum is attained – it is a function of the remaining variables in the 
domain, which is V i in our case. This yields a policy for the decision variable. The collection of all policies constitutes an 
optimal strategy for the ID. The optimal strategy together with the initial speed is used to determine the optimal speed and 
control profile. To start the marginalization process we initialize with ψS = 0 and ϕS = 1.

The analytical complexity of the algorithm is O (|U | · |V|2 · n).

7.1. Including speed constraints during the inference

The first method of incorporating speed constraints follows. At first, we represent all speed constraints as likelihood 
evidence on the speed as it is discussed in Section 5.5. Let Ci = {V i+1, Ui, V i}. During the updating by Formula (36) we 
include the respective speed constraint using evidence potential ϕe

i+1 = ϕe
i+1(vmin

i+1, v
max
i+1) to the probability potential ϕCi as 

follows:

ϕ′
Ci

= ϕCi · min(ϕSi ,ϕ
e
i+1) . (38)

The rest of the algorithm remains the same.

Remark 6. Note that this way of including speed constraints is heuristics only. However, it can be supported by the fact that 
ϕS passing through the separator can also be viewed as likelihood evidence on possible speed values (see Example 5). By 
using the minimum operator in (38) we consider only more restrictive values from the two potentials.

7.2. Speed constraints – control

In the second approach, we rewrite speed constraints into control constraints following Section 5.4. First, forbidden 
combinations (ui, vi) are identified. To do so, a zero-one table T (Ui, V i) is created:

T (Ui = ui, V i = vi) =
{

1 if v ′(ui, vi) ≤ vmax
i+1

0 otherwise.

Then, we eliminate the forbidden combinations (ui , vi) from the maximization process (37). When computing the policy 
for V i = vi during elimination of the decision variable Ui , only the maximum on {u ∈ U : T (V i = vi, Ui = u) = 1} is taken 
into account. If ∀u ∈ U; T (V i = vi, U = u) = 0 we put δi(vi) = −1 and ψS (vi) = 0. That is,

ψS(V i) = max
Ui

(ψ(Ui, V i) · T (Ui, V i)) ,

7 Given two potentials ϕ and ψ , their product ϕ · ψ and the quotient ϕ/ψ are defined in the natural way, except that 0/0 is defined to be 0 and x/0 is 
undefined for x 
= 0 [9].
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Fig. 9. Comparison of speed restriction implementations. The shaded areas correspond to the speed values forbidden by the constraints. (For interpretation 
of the references to color in this figure, the reader is referred to the web version of this article.)

where

ψ(Ui, V i) =
∑
V i+1

ϕCi · ψCi

for Ci = {V i+1, Ui, V i}. The difference of the above-mentioned approaches is illustrated by Fig. 9 where short parts of the 
constructed vehicle speed profiles are depicted.

7.3. Computational enhancements for the border speed values

Let Vi, i = 0, 1, . . . , n be the set of admissible speed values computed as specified in Section 5.4. We will refer to the 
minimum and maximum values from these sets as to the border speed values. As we saw in Algorithm 1, the optimal 
solutions of our problem consist of border speed values only. Therefore it is of a special importance to be as precise as 
possible in the computations close to the border. The precision can be significantly improved if the utility for speed values 
just beyond the border speed values are also computed. The idea is simple. First, we will illustrate the problem we want to 
address by the following example.

Example 6. Let V i and V i+1 be two consecutive speed variables. Further let the maximum allowed speed at i and i + 1 be 
vmax

i = 31 and vmax
i+1 = 32, respectively.8 Assume that we can derive

v ′(+0.1,32) = 32 ≤ vmax
i+1

v ′(+1.0,31) = 32 ≤ vmax
i+1

v ′(+1.0,30) = 31 ≤ vmax
i+1

using (17) representing the vehicle characteristics. If the best strategy is to drive as fast as possible then the best policies 
δi(vi) for given speed values vi are

δi(32) = +0.1

δi(31) = +1.0

δi(30) = +1.0 .

Now, assume that the speed values are discretized with a discretization step of dV = 2 so that V = {. . . , 30, 32, 34, . . .} and 
the considered speed at i is vi = 31. Since vi = 31 /∈ V we have to estimate the value of δi(31) from the values of V that 
are the closest to vi = 31, that is, 30 and 32. In this case we get:

δi(31) = 0.5 · δi(30) + 0.5 · δi(32) = +0.55 .

We can see that this value is quite distant from the optimal control for vi = 31, which is +1.0. This implies that the 
recommended vehicle speed values keep a certain distance from the speed limits. This behavior is illustrated by the blue 
line in Fig. 9b at the distance s ∈ [1000, 1100]. The plot grid corresponds to the speed and track discretizations.

8 In this example we provide the speed values in m/s.
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The behavior – illustrated by Example 6 – can be suppressed by a finer speed discretization at the expense of a higher 
computational complexity. A less computationally demanding possibility is an enhancement based on the following idea.9

We can derive the border speed from the potential ϕSi computed during the propagation. During the inference, we derive 
the value of the maximum speed v M with a non-zero probability (the border speed) using the inverse of (24) applied to 
the result of the combination operation specified in Formula (38):

min(ϕSi ,ϕ
e
i (0, vmax

i )) . (39)

We will use the following definition where we define two values from V that are the nearest to a given speed value v .

Definition 8. Let V be a discrete set of speed values and v ∈ R
+ be a speed value such that minV ≤ v ≤ maxV . Then

�v�V = max{v ′ ∈ V, v ′ ≤ v}
�v�V = min{v ′ ∈ V, v ′ ≥ v} .

The symbol V may be omitted if the context is clear.

First, we compute the policy δi for the decision variable Ui given the speed v for all speed values v ∈ V plus for the 
value v M , which is the border speed value defined by (39). Second, we check whether δi(�v M�) 
= δi(�v M�). Assume that 
it is the case.10 Now, the goal is to modify the policy for δi(�v M�) so that the weighted average of policies δi(�v M�) and 
δi(�v M�) equals to the desired δi(v M):

(1 − α) · δi(�v M�) + α · δi(�v M�) = δi(v M) , (40)

where

α = �v M� − v M

dV
. (41)

This is required because Formula (40) specifies how the value of δi(v M) is computed during the inference. From (40) we get 
that

δi(�v M�) = δi(v M) − α · δi(�v M�)
(1 − α)

. (42)

Note that the value of δi(�v M�) may lay outside of the interval [−1, +1]. This does not cause any problems since this policy 
is never used directly, it is only used for the computation of the policy for the border speed value.

Using a similar line of reasoning, we derive the formula for the value of the utility potential ψSi (�v M�):

ψSi (�v M�) = ψSi (v M) − α · ψSi (�v M�)
(1 − α)

. (43)

To highlight the differences between all approaches to implementing speed constraints, we choose a low discretization 
of speed and track |V| = 25, �s = 20 m. We calculate speed profiles in two parts of the track and depict them in Fig. 9. 
The grid corresponds to the chosen discretizations of speed and track. With a finer discretization, this behavior tends to 
disappear. Note that with the implemented enhancements, the profile overlaps the solution given by Algorithm 1 (for the 
respective track discretization).

7.4. Zero compression method

To speed up the computations in influence diagrams we employ the property that all probability potentials P =
P (V i+1|Ui, V i) are not only the same but also very sparse since for each configuration of parents they represent the function 
v ′(u, v) by at most two non-zero probability values. Each three-dimensional array representing P can be represented by a 
two-dimensional array with indices and values of non-zero elements. This method is often called zero-compression [1]. The 
analytical complexity of the algorithm drops from O (|U | · |V|2 · n) to O (|U | · |V| · n).

9 We will illustrate the idea for upper restrictions of the speed. An application to lower restrictions of the speed is similar.
10 We do nothing if it is not the case.
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8. Solution using methods of nonlinear optimal control

Optimization theory represents a standard tool to solve these kinds of problems. Optimal control theory is well developed 
and one can choose from a variety of software tools [15] to find a very-close-to-optimal solution of the problem.

We decided to use ACADO Toolkit [5] – a software environment and an algorithm collection for automatic control and 
dynamic optimization. We have several reasons for this choice: ACADO is implemented as self-contained code, it is com-
pletely written in C++, it is very well documented, it implements single and multiple shooting methods for the numerical 
solution of optimal control problem, and it is easily configurable. Last but not least, ACADO as a project is very alive, with 
a strong community eager to help.

The ACADO Toolkit can deal with optimal control problems written in the form of (12). Since ACADO Toolkit authors 
assume functions to be smooth or at least sufficiently differentiable [6] we approximated (3) using a logistic approximation 
of the Heaviside step function H(x) (with constant k = 700).

Generally, ACADO requires no discretization. But, to be able to incorporate the so-called path constraints (different speed 
limits in different parts of the track), track discretization has to be specified when encoding the problem (12). We chose 
equidistant track discretizations identical with the one used for the definition of influence diagram to be able to compare 
the solutions. The discretization of speed and control was not specified.

In this very particular case, ACADO fails in finding a solution without a good initial solution. When we provided an 
approximate solution found by an influence diagram (even with a very rough discretization) as the initial solution – it 
speeds up the convergence of ACADO substantially.

9. Experiments

We performed experiments with real data from the bridge version of the Formula 1 circuit in Silverstone. This version 
of the circuit was used for the British Grand Prix in the years 2000–2009. The Bridge Version is 5.141 km long. In our 
experiments, we used detailed information from the Silverstone circuit about the GPS coordinates of the path and the speed 
of four test pilots [23]. The total (lap) time achieved by the best test pilot was 85.51 s. The fastest ever lap time – 78.12 s – 
was attained by Sebastian Vettel with his Red Bull-Renault when qualifying for the 2009 British Grand Prix [26].

Using a deterministic relation between the variables, we are inevitably working with states of zero probability. If the task 
is minimize a criterion, the zero probability values may lead to a wrong solution. Therefore, we formulate the problem as 
a maximization task. Instead of the minimization, we maximize the savings with respect to the worst performance. We use 
the total time savings as the optimality criteria. The time savings at the segment [i, i + 1] are defined as

f ′
i+1 = f max − f (ui, vi), (44)

where f (ui, vi) is defined by Formulae (19) and (15). The value of f max is the maximum possible time spent in one 
segment.

Remark 7. For speed values close to zero, the values of f (ui, vi) are very high. This would imply high values of f max and 
might cause rounding errors. To avoid this problem, we disregard speeds lower than 5 m/s in the definition of f max .

We have used various vehicle path, speed and control discretizations during our experiments. We compared solutions 
given by ACADO with those from Algorithm 1. We experimented with different methods of including speed constraints. We 
also compared computational demands of different algorithms.

9.1. Comparison of the optimal speed profile with the profile of a test pilot

Fig. 10 contains three speed profiles, the first is computed by ACADO, the second by Algorithm 1 and the third corre-
sponds to a real test pilot performance at the Silverstone F1 circuit (it is obtained using a GPS measurement system [23]). 
The shaded areas are forbidden by the speed constraints. Note that the testing pilot violates the restrictions several times. 
Also, the testing pilot’s acceleration is slower than expected. The speed constraints used in the model seem to be overly 
cautious and the car acceleration ability a bit exaggerated. The speed profiles obtained by ACADO and Algorithm 1 overlap 
each other. To illustrate how much they overlap, their difference is depicted in Fig. 11.

9.2. Comparison of the influence diagram solutions for different discretizations and different methods for speed constraints

Fig. 12 illustrates the behavior of various methods implementing speed constraints (see Sections 7.1, 7.2, and 7.3). To 
emphasize the difference, we used a relatively rough discretization of the speed and control variables (|U | = |V| = 100). 
Discretization of the track was �s = 5 m. The ACADO speed and control profiles are used as the solution that the methods 
are compared with. In the control profiles we can see that the first two methods for including speed constraints (Sec-
tions 7.1 and 7.2) suffer by oscillations near the border speed. This problem is almost eliminated by the computational 
enhancements described in Section 7.3. The differences of the profiles from the one given by ACADO are illustrated in 
Fig. 13.
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Fig. 10. A comparison of speed profiles obtained by ACADO, Algorithm 1, with a real profile of a testing pilot measured by GPS system [23].

Fig. 11. Differences between speed and control profiles generated by Algorithm 1 and ACADO (�s = 5 m).

As mentioned earlier, the occurrence of oscillations of the control when driving with a speed value close to the border 
one depends on the speed discretization. The finer the speed discretization, the smaller the oscillations and the closer the 
speed value to the border one.

9.3. Evaluation of the speed profile quality

As a criteria for the quality of the speed profiles we used the Euclidean distance of a given speed profile from the optimal 
one computed by Algorithm 1. The results are summarized in Table 1 for various speed and control discretizations. Note 
that �s = 5 in this case.
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Fig. 12. Speed and control profile for various methods (|V| = |U | = 100).

Fig. 13. Differences between optimal profile from Algorithm 1 and profiles generated by various methods (|V| = |U | = 100).

In Table 2 we compare the estimated total driving time by ACADO and Algorithm 1. The differences are mainly caused 
by a different track discretization since some speed constraints are omitted and interpolated in the case of a rough dis-
cretization step. The most precise estimate should be the one given by Algorithm 1 for the finest discretization.



584 V. Kratochvíl, J. Vomlel / International Journal of Approximate Reasoning 88 (2017) 567–586
Table 1
Euclidean distance of speed profiles from the profile of Algorithm 1.

|V| |U | Likelihood evidence Control constr. Enhancement

25 25 844.794 848.061 97.225
25 50 845.486 846.729 97.263
50 25 234.245 195.261 61.302
50 50 232.035 193.823 61.265
50 100 230.982 193.169 61.298
100 50 136.348 130.015 15.028
100 100 135.295 129.755 15.066
200 100 73.385 68.221 7.249
400 100 30.392 26.531 1.585

Table 2
Estimated total driving time by ACADO and Algorithm 1.

�s ACADO Algorithm 1

20 m 78.17 78.30
10 m 78.52 78.73
5 m 78.69 78.81
1 m NA 78.84

Table 3
Computational time needed by different methods.

�s ID 
100 × 100

ID 
100 × 400

ID 
100 × 800

ACADO sqp it qp it

20 m 4.14 16.34 33.36 25.02 9 259
10 m 7.59 25.05 52.17 171.61 9 508
5 m 10.97 43.67 88.87 2049.59 10 1016
1 m 48.61 202.95 434.19 – – –

9.4. Computational complexity of the methods used

In the last table – Table 3 – we compare the computational complexity of discrete influence diagram inference methods 
with ACADO. Various discretizations of U and V are denoted as “ID |U | × |V|” in the header of Table 3. Results given 
by ACADO are more precise; however, ACADO needs a good initial solution to be able to solve the problem. This is the 
case when a solution obtained from an influence diagram is used. In that case, ACADO finishes the task using about 10
iterations of the sequential quadratic programming (denoted as sqp it in Table 3), each with a different number of quadratic 
programming iterations (denoted as qp it).

Nevertheless, even so, the time needed to find the solution is much longer than for influence diagrams. For a finer 
discretization of the path �s = 1 ACADO was not even able to complete the task despite a good initial solution. Note 
that while for influence diagrams the computational time increases linearly (Section 7), with finer track discretization the 
dependence of ACADO is exponential.

10. Discussion

We proposed an application of influence diagrams to speed profile optimization and tested it in a real-life scenario. We 
have been able to find optimal solutions efficiently. We verified that these solutions are in accordance with the analytical 
solution of the considered problem.

In this paper we perform all experiments on an F1 circuit that lies on a flat surface – i.e., we assume the zero inclination 
angle β(s) at all track positions s. Non-zero inclination angles mean that the conditional probability tables P (V i+1|Ui, V i)

describing the vehicle dynamics are different at each path segment i. This does not cause any serious computational prob-
lems. We only need to generate these CPTs when they are needed. Actually, in our code used in computational experiments 
this option is already implemented.

The proposed method allows the application of influence diagrams to more complex scenarios of a speed profile op-
timization. Speed constraints can be invoked not only by the path radii, but also by other causes like traffic regulations, 
weather conditions, distance to other vehicles, etc.

Moreover, these conditions can change dynamically. Also, the criteria to be optimized need not be the total time only. 
We can also consider the safety, fuel consumption, etc. We can do the computations efficiently as long as the utility function 
is additively decomposed along the path segments.

We also tested our algorithm in a different scenario where the optimization criterion was a weighted average of the total 
driving time and the total fuel consumption on a road with a varying inclination angle. Numerical optimization methods 
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can be used to solve this problem. The influence diagrams seem suitable here as well since the optimization criteria are 
also additively decomposed along the path. Our preliminary experiments (not reported in this paper) suggest that we can 
get good solutions quickly for these scenarios as well.

We believe that influence diagrams are very appropriate for dynamically changing environments since optimum policies 
are precomputed for any speed the vehicle can attain. The optimal speed profile can be quickly updated if the conditions 
change. Influence diagrams are also especially handy in more complex real-life scenarios where the analytic solution is 
unknown.

Appendix A. Proof of Theorem 1

Proof. For any j = 1, . . . , n we will denote the joint probability distribution as

P (U1, . . . , U j, V 1, . . . , V j) = P (V 1) ·
j∏

i=2

P (V i|Ui−1, V i−1) · δ(Ui−1|V i−1)

and the total utility as

f (V 1, . . . , V j) =
j−1∑
i=1

f (V i, V i+1) .

For the maximal expected value it holds that

E∗
f = max

U1,...,Un−1
M

V 1,...,Vn

(
P (U1, . . . , Un−1, V 1, . . . , Vn) · f (V 1, . . . , Vn)

)

= max
U1,...,Un−1

M
V 1,...,Vn

(
P (U1, . . . , Un−1, V 1, . . . , Vn)

·
(

f (V 1, . . . , Vn) + ψ(Vn)
) )

(A.1)

= max
U1,...,Un−1

M
V 1,...,Vn−1

⎛
⎜⎜⎜⎜⎜⎝

P (U1, . . . , Un−1, V 1, . . . , Vn−1)

·
∑
Vn

P (Vn|Vn−1, Un−1) ·

⎛
⎜⎜⎝

f (V 1, . . . , Vn−1)

+ f (Vn−1, Vn)

+ψ(Vn)

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠ .

We can write

E∗
f = max

U1,...,Un−1
M

V 1,...,Vn−1

⎛
⎝ P (U1, . . . , Un−1, V 1, . . . , Vn−1)

·
(
ξ(V 1, . . . , Vn−1) + ψ(Un−1, Vn−1)

)
⎞
⎠ ,

where

ξ(V 1, . . . , Vn−1) = M
Vn

(
P (Vn|Vn−1, Un−1) · f (V 1, . . . , Vn−1)

)
(A.2)

ψ(Un−1, Vn−1) = M
Vn

P (Vn|Vn−1, Un−1) ·
(

f (Vn−1, Vn) + ψ(Vn)
)

. (A.3)

Equation (A.2) can be simplified to

ξ(V 1, . . . , Vn−1) =
(
M
Vn

P (Vn|Vn−1, Un−1)
)

· f (V 1, . . . , Vn−1) (A.4)

= f (V 1, . . . , Vn−1) , (A.5)

where the second transformation is due to M
Vn

P (Vn|Vn−1, Un−1) = 1. This implies

E∗
f = max

U1,...,Un−1
M

V 1,...,Vn−1

⎛
⎝ P (U1, . . . , Un−1, V 1, . . . , Vn−1)

·
(

f (V 1, . . . , Vn−1) + ψ(Un−1, Vn−1)
)

⎞
⎠ .

As the next step, we will, for each vn−1 ∈ V , find a value un−1 of decision variable Un−1 that maximizes E f over the 
terms containing Un−1. Note that the value of Un−1 cannot influence the past since the value of Vn−1 is already known 
when deciding on Un−1. It means that the values of Vn−1 effectively separate the influence diagram into two parts and 
maximization over Un−1 can be performed only in the part containing Un−1:
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E∗
f = max

U1,...,Un−2
M

V 1,...,Vn−1

⎛
⎝ P (U1, . . . , Un−2, V 1, . . . , Vn−1)

·max
Un−1

δ(Un−1|Vn−1) ·
(

f (V 1, . . . , Vn−1)

+ψ(Un−1, Vn−1)

) ⎞
⎠ .

Since f (V 1, . . . , Vn−1) does not depend on Un−1, we get

E∗
f = max

U1,...,Un−2
M

V 1,...,Vn−1

(
P (U1, . . . , Un−2, V 1, . . . , Vn−1)

· ( f (V 1, . . . , Vn−1) + ψ(Vn−1))

)
(A.6)

where

ψ(Vn−1) = max
Un−1

ψ(Un−1, Vn−1) .

From Formula (A.1) we can get Formula (A.6) by substituting n − 1 for n. Therefore we can repeat the transformations again 
and again until n = 2. In the case n = 2 Formula (A.6) is reduced to

E∗
f = M

V 1
P (V 1) · ψ(V 1) ,

which is Formula (31) of the Theorem we want to prove. �
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