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Abstract
Modal logics for reasoning about the power of coalitions capture the notion of effectivity functions associated with game
forms. The main goal of coalition logics is to provide formal tools for modelling the dynamics of a game frame whose states
may correspond to different game forms. The two classes of effectivity functions studied are the families of playable and
truly playable effectivity functions, respectively. In this article, we generalize the concept of effectivity function beyond the
yes/no truth scale. This enables us to describe the situations in which the coalitions assess their effectivity in degrees, based
on functions over the outcomes taking values in a finite Łukasiewicz chain. Then we introduce two modal extensions of
Łukasiewicz finite-valued logic together with many-valued neighbourhood semantics in order to encode the properties of
many-valued effectivity functions associated with game forms. As our main results we prove completeness theorems for the
two newly introduced modal logics.
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1 Introduction

Modelling collective actions of agents and capturing their effectivity is among the important research
topics on the frontiers of game theory, computer science and mathematical logic. The main efforts
are concentrated on answering the following question: what is the set of outcome states that can
effectively be implemented by a coalition of agents? A game-theoretic framework for studying
collective actions and their enforceability is based on the notion of game forms. Loosely speaking,
a game form is a pure description of a game and its rules, without regard to the agents’ preferences.
Game frames enable us to capture a more general action model in which a game form is associated
with every state of the frame and the outcome states of the game forms are the states of the frame.
From the game-theoretic viewpoint, the game frames are extensive form games with simultaneous
moves of the players; see [18, 23].

The concept of α-effectivity ([1, 21]) is one of the key approaches to characterize the coalitional
effectivity within game form models. A coalition C is α-effective for a set of outcome states X if the
players in C can choose a joint strategy that enforces an outcome in X no matter what strategies are
adopted by the other players. The previous definition gives rise to the concept of a (truly) playable
effectivity function. In his seminal paper [20], Pauly introduces Coalition Logic CLN to reason
about α-effectivity in game forms with player set N . The axiomatization of CLN is an attempt
to characterize the class of α-effectivity functions in a multi-modal language. Pauly also defined
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a neighbourhood semantics with respect to which CLN is complete. The logic CLN was subsequently
analysed and extended by many authors; see [2, 6]. In particular, Goranko et al. [10] found a gap
in Pauly’s characterization of playable effectivity functions (see [20, Theorem 3.2]), which led to
the introduction of truly playable effectivity functions.1 The reader is invited to consult Section 2
together with Appendix A, where we recall all the necessary notions regarding Boolean effectivity
functions and the distinction between playable and truly playable functions, respectively.

In this article, we extend the results of Pauly [20] and Goranko et al. [10] to the situations in
which the effectivity of coalitions is evaluated on a finer finite scale than {0,1}. This generalization is
based on several assumptions. First, we assume that coalitions evaluate their effectivity with respect
to a certain family of [0,1]-valued functions over the state space and not only with respect to the sets
of states. Second, the effectivity of coalitions comes in degrees rather than in Boolean values. Third,
the underlying logical framework is that of finitely-valued Łukasiewicz logic, which offers a great
expressive power, while preserving many desirable properties of logics at the same time.

Our main goal is to investigate the properties of many-valued modal logics Pn and TPn devised
for capturing the refined notion of effectivity. To this end, we proceed as follows. In Section 3 we
generalize the notion of α-effectivity. Since we use finitely-valued Łukasiewicz logic, our scale is
always the set

Łn =
{

0, 1
n ,...,

n−1
n ,1

}
, where n is a positive integer.2 (1.1)

The choice of Łukasiewicz logic is not only a design choice that is suitable for applying the usual
operations of MV-algebras to the Łn-valued functions over the state space, but also a matter of
practical necessity since the homogeneity property (Definition 4.2) is among the key features of
(playable) many-valued effectivity functions. On the logical side it corresponds to the axioms
(1)–(2) of the logic Pn in Definition 5.9. It is worth mentioning that homogeneity appears as an axiom
in other modal languages as well; see [7, 19, 22]. The finiteness of our scale of truth degrees is essential
for the completeness results, which usually fail badly for modal extensions of infinitely-valued
Łukasiewicz logic [13].

We introduce the concept of Łn-valued effectivity function whose purpose is to capture the
effectivity of coalitions on the scale Łn. In order to understand the relation between effectivity
functions and game forms, we have to consider the class of playable and truly playable Łn-valued
effectivity functions, respectively, which are studied in Section 4. In particular, we establish
a characterization of truly playable Łn-valued effectivity functions (Theorem 4.9). In Section 5,
we develop tools to capture the properties of Łn-valued effectivity functions in a many-valued modal
language. These developments rely not only on recent advances in modal extensions of Łukasiewicz
logic (see [7, 13]), but they also require the introduction of neighbourhood semantics, which has
never been considered in the modal many-valued setting before, to the best of our knowledge.
The newly introduced logics Pn and TPn axiomatize in the many-valued modal language the
properties of playable and truly playable Łn-valued effectivity functions, respectively. Our main
results are Theorem 5.18 and Theorem 5.29, which show that the logics Pn and TPn are complete
with respect to the corresponding classes of Łn-valued coalitional frames. The key ingredient in
the proof of completeness of TPn is the many-valued generalization of the filtration technique for
neighbourhood models [8, Chapter 7.5]. These mathematical constructions have their own merit and
are among the main contributions of the aticle, since they provide a ‘bag of tricks’ that could be reused
to develop neighbourhood semantics for other modal extensions of finite-valued Łukasiewicz logics.

1We are grateful to Paolo Turrini who brought the paper [10] to our attention.
2Our notation for Łn as a set of cardinality n+1 follows [17].
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2 Game forms and effectivity functions

We recall basic facts about game forms and effectivity functions; see [1]. In what follows, S denotes
a nonempty set, N ={1,...,k} is a finite set and, for any i∈N , �i denotes a non-empty set. For any
set � we denote by P� the powerset of �.

Definition 2.1 ([1, Definition 3.1])
A (strategic) game form is a tuple G= (N ,{�i | i∈N },S,o), where N is a set of players,�i is a set of
strategies for each i∈N , S is a set of outcome states, and o : ∏

i∈N�i →S is an outcome function.

The game forms are not to be confused with strategic games. While a preference relation over S must
be defined for each player i∈N in a strategic game [18], no such requirement exists for a game form.
Below we provide some basic examples of game forms.

Example 2.2
(i) Let N ={1,2} and �1, �2 be some strategy sets. Assume that the players choose their strategies
simultaneously. Then we may set S =�1 ×�2 and define o as the identity function, which turns
({1,2},{�1,�2},�1 ×�2,o) into a game form. This game form just records an outcome as the pair
of chosen strategies. (ii) Suppose, on the other hand, that Player 2 makes his choice only after
observing the strategic choice of Player 1. This sequential procedure is modeled by a game form
such that�2 is the set of all functions r : �1 →�′

2, where�′
2 can be viewed as the set of all possible

moves that can be played by Player 2. Hence, �2 models the replies of Player 2 to the selection of
a strategy by Player 1. The outcome function is given by o(σ1,r)= (σ1,r(σ1)), where (σ1,r)∈�1 ×�2
and the set of outcome states is S =�1 ×�′

2.

An important example arises when the outcome function coincides with some social choice
correspondence in the sense of [1, Chapter 1].

Example 2.3
Let S ′ be any non-empty set of outcome states and �(S ′) be a set of admissible preference relations
on S ′. In most applications, �(S ′) will be either the set of total preorders (reflexive, transitive and
complete binary relations) or the set of linear orders. A map π : �(S ′)N →PS ′ is called a social
choice correspondence. Social choice correspondences implement collective decision procedures
mapping a preference profile σ ∈�(S ′)N of the agents into a set of outcome states that are considered
equivalent with respect to σ . If an agent (or a group of agents) wants to enforce a specific outcome,
his/her only possible strategy is to declare a preference relation that is likely to bring the collective
decision into an outcome π (σ ) that contains the desired state. We can describe this scheme as a game
form G= (N ,{�i | i∈N },S,o) in which �1 =···=�k =�(S ′), S =PS ′ and o=π .

The subsets C ⊆N are called coalitions. For every coalition C we denote by C its set-complement
in N . If σC ∈∏

i∈C�i and σC ∈∏
i∈C�i, then σCσC is the strategy tuple in

∏
i∈N�i defined by

(σCσC )i = (σC )i if i∈C and (σCσC )i = (σC )i if i∈C.

Definition 2.4 ([1, Definition 4.1])
Let G be a game form. The effectivity function of G is the mapping HG : PN →PPS defined as
follows: X ∈HG(C) if there exists σC such that for every σC , we have o(σCσC )∈X .

In other words, the condition X ∈HG(C) is true whenever the coalition C has the power to force the
outcome to lie in X . We refer to [1, 20, 21] for a discussion and examples of effectivity functions in
game theory and social choice.
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The notion of effectivity function of a game form can be generalized as follows.

Definition 2.5
A mapping E : PN →PPS is called an effectivity function.

The problem of characterizing effectivity functions that are effectivity functions of game forms is
solved by introducing the notion of true playability. It was used by Goranko et al. [10] in order to fix
the error in Pauly’s characterization result [20, Theorem 3.2], which was based on the weaker notion
of playability. We recall the two playability concepts in the next definition.

Definition 2.6
Let E : PN →PPS be an effectivity function. We say that E

(1) is superadditive if C1 ∩C2 =∅ and X ∈E(C1), Y ∈E(C2) imply that X ∩Y ∈E(C1 ∪C2), for
every C1,C2 ∈PN ;

(2) is outcome monotonic if X ∈E(C) and X ⊆Y imply Y ∈E(C), for every C ∈PN ;
(3) is N-maximal if X /∈E(∅) implies X ∈E(N );
(4) has the liveness property if ∅ /∈E(C), for every C ∈PN ;
(5) has the safety property if S ∈E(C), for every C ∈PN .

We call E playable whenever (1)–(5) are satisfied. We say that E is truly playable if it is playable
and E(∅) is a principal filter in PS.3

The following result, which was originally proved in [10, Theorem 1], amends the gap in the proof
of Pauly’s correspondence result in case of an infinite outcome space S. We provide an alternative
proof of Theorem 2.7 in Appendix A, which shows that this result can be considered as a corollary
of Peleg’s Theorem [21, Theorem 3.5*].

Theorem 2.7 ([10, Theorem 1])
Let E : PN →PPS be an effectivity function. There exists a game form G= (N ,{�i | i∈N },S,o)
satisfying E =HG if and only if E is truly playable.

3 Many-valued effectivity functions

We are going to generalize the concept of effectivity function for an arbitrary game form G= (N ,{�i |
i∈N },S,o) and Łukasiewicz chain Łn as in (2). Our goal is to capture the degree or extent to which
a coalition C can ‘enforce’ a function f : S →Łn. Before stating a formal definition, we will motivate
this idea by two situations where such many-valued assessments f may arise.

(1) A strategic game form G is made into a strategic game when a utility function (or a preference
relation) over the outcome set S is introduced for every player i∈N . Thus an arbitrary function
f ∈ŁS

n can be viewed as a utility function. However, this utility function is not necessarily
attached to any player’s preference relation.

(2) When the state space S is too large or complex to deal with, the distinction between the
subsets of S (equivalently, the functions S →{0,1}) and the functions f ∈ŁS

n may become
immaterial. It is not against the spirit of neighbourhood semantics to draw a direct parallel with
an analogous situation in topology: by Urysohn’s lemma any two closed disjoint subsets in
a normal topological space can be arbitrarily closely approximated by a [0,1]-valued continuous

3Our formulation of true playability is different from the original definition yet equivalent to it by [10, Proposition 5].
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function. Thus, for a sufficiently large natural number n, we may think of functions f ∈ŁS
n as

members of some limit sequence, which eventually encodes a subset of S. This interpretation of
an originally finite object is not uncommon in game theory. Indeed, it was one of the motivations
for the development of Aumann’s theory of ideal coalitions in coalition games with continuum
of players; see [5].

Definition 3.1
Let G= (N ,{�i | i∈N },S,o) be a game form. The Łn-valued effectivity function of G is the map
EG : PN ×ŁS

n →Łn defined by

EG(C,f )=max
σC

min
σC

f (o(σCσC )), C ∈PN , f ∈ŁS
n , (3.2)

where σC and σC range through the set of all joint strategies of coalitions C and C, respectively.

The meaning of definition (3.2) is the following: coalition C is effective for f ∈ŁS
n to the degree

EG(C,f )∈Łn, disregarding the strategic options of players in the opposite coalition C. Note that
the usual Boolean α-effectivity function associated with G coincides with the Ł1-valued effectivity
function of G.

Remark 3.2
In this article, we do not advocate any particular interpretation of the many-valued effectivity model
(3.2) as suggested by (1)–(2) above, nor do we insist on a special meaning of truth degrees. From
the purely mathematical point of view, any such interpretation is irrelevant since it yields the same
underlying game form under the assumption of several playability conditions introduced in Section 4.
This point will be explained in detail in Remark 4.10.

4 Playability of Łn-valued effectivity functions

Analogously to the classical literature [16, 21] on effectivity functions, we can study the notion of
effectivity in a setting independent of game forms. Let S be a set of outcomes and N be a finite player
set. We always assume that |S|≥2 and |N |≥2.

Definition 4.1
An Łn-valued effectivity function is a mapping E : PN ×ŁS

n →Łn.

Note that the Ł1-valued effectivity functions are exactly the effectivity functions PN ×{0,1}S →
{0,1} arising in the Boolean framework [1, 20]. Therefore we call any Ł1-valued effectivity function
a Boolean effectivity function.

Our goal is to characterize the class of Łn-valued effectivity functions that are associated with game
forms. This characterization is related to the properties of effectivity functions listed in Definition 4.2.
We use the standard connectives of Łukasiewicz logic and respective operations of MV-algebras; see
Appendix B. In particular, we always apply the operations of the MV-algebra Łn to functions f ∈ŁS

n
pointwise. For any Łn-valued effectivity function E, we define E(∅,−)−1(1)={f ∈ŁS

n |E(∅,f )=1}.
Definition 4.2
Let E be an Łn-valued effectivity function. We say that E

(1) is outcome monotonic whenever f ≥g implies E(C,f )≥E(C,g), for every C ∈PN and every
f ,g ∈ŁS

n ;
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(2) is N-maximal if ¬E(∅,¬f )≤E(N ,f ) for every f ∈ŁS
n ;

(3) is regular if it satisfies E(C,f )≤¬E(C,¬f ) for every C ∈PN and f ∈ŁS
n ;

(4) is superadditive if E(C1,f )∧E(C2,g)≤E(C1 ∪C2,f ∧g) for every C1,C2 ∈PN such that
C1 ∩C2 =∅ and every f ,g ∈ŁS

n ;
(5) is coalition monotonic if E(C,f )≤E(C ′,f ) for every C ⊆C ′ ∈PN and every f ∈ŁS

n ;
(6) is homogeneous if E(C,f ⊕f )=E(C,f )⊕E(C,f ) and E(C,f �f )=E(C,f )�E(C,f ) for every

C ∈PN and every f ∈ŁS
n ;

(7) has the liveness property if E(C,1)=1 for every C ∈PN ;
(8) has the safety property if E(C,0)=0 for every C ∈PN ;
(9) is principal if there is a g ∈ŁS

n such that {f ∈ŁS
n |E(∅,f )=1}={f ∈ŁS

n | f ≥⊙n
i=1g}.

We say that E is playable whenever it is outcome monotonic, N -maximal, superadditive,
homogeneous, and has liveness and safety properties. We say that E is truly playable if it is playable
and principal.

If n=1, then the definitions of (truly) playable Boolean effectivity function coincide with the
corresponding definitions used in the Boolean setting [10, 20]; cf. Definition 2.6.

Note that if E is an outcome monotonic and homogeneous Łn-valued effectivity function, then
E(C,−)−1(1) is an MV-filter of the MV-algebra ŁS

n [9]. Moreover, the Łn-valued effectivity function E
is principal whenever the MV-filter E(∅,−)−1(1) is principal; see Appendix B.

It may be difficult to get some intuition about the definition of a homogeneous Łn-valued effectivity
function in the game form framework. We refer to Remark 5.19 for an equivalent formulation of this
definition. The following result illustrates that homogeneity arises naturally in the context of game
forms. For every set Y ⊆S, we denote by χY the characteristic function of Y .

Proposition 4.3
If G= (N ,{�i | i∈N },S,o) is a game form, then EG is a truly playable Łn-valued effectivity function.

Proof. It follows directly from Definition 3.1 that EG is outcome monotonic, N -maximal and has
liveness and safety. Homogeneity of EG follows from the fact that the maps τ⊕ : x 
→x⊕x and
τ� : x 
→x�x are lattice homomorphisms of Łn. Moreover, EG(∅,−)−1(1)={g |g ≥χran(o)}, which
shows that EG is principal since

⊙n
i=1χran(o) =χran(o).

It remains to prove that EG is superadditive. Let C1,C2 ∈PN be such that
C1 ∩C2 =∅ and f1,f2 ∈ŁS

n . Denote by σ ∗
C1

and σ ∗
C2

two strategy tuples satisfying
E(C1,f1)=minσC1

f1(o(σ ∗
C1
σC1

)) and E(C2,f2)=minσC2
f2(o(σ ∗

C2
σC2

)). It follows that

E(C1,f1)∧E(C2,f2)=minσC1
minσC2

f1(o(σ ∗
C1
σC1

))∧f2(o(σ ∗
C2
σC2

)), which is not greater than

minσC1∩C2
(f1 ∧f2)(o(σ ∗

C1
σ ∗

C2
σC1∩C2

)). The conclusion follows from the fact that the latter is bounded
above by EG(C1 ∪C2,f1 ∧f2). �

As the next result shows, a Boolean effectivity function can be associated with any homogeneous
Łn-valued effectivity function. The Boolean algebra ŁS

1 ={0,1}S is called the Boolean skeleton of ŁS
n .

In other words, the Boolean skeleton of ŁS
n is the powerset of S if we identify the subsets of S with their

characteristic functions on S. An element f ∈ŁS
n belongs to the Boolean skeleton of ŁS

n if and only
if f ⊕f = f , and such an element is said to be idempotent. For every Łn-valued effectivity function
E : PN ×ŁS

n →Łn, we denote by E
 the restriction of E to PN ×ŁS
1 .

Lemma 4.4
If E is a homogeneous Łn-valued effectivity function, then E
 is a Boolean effectivity function. If in
addition E is playable (respectively, truly playable), then so is E
.
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Proof. For any idempotent element f ∈ŁS
n and for every C ∈PN , we obtain

E(C,f )⊕E(C,f )=E(C,f ⊕f )=E(C,f ).

Therefore E
 is a Boolean effectivity function.
If in addition E is playable (respectively, truly playable), then it satisfies conditions (1), (2), (4), (7)

and (8) (respectively, conditions (1), (2), (4), (7), (8) and (9)) of Definition 4.2. It follows that E
 also
satisfies the analogous Boolean conditions (see Appendix A) since they do not involve any existential
quantifier over the elements of ŁS

n . �
In order to study the playability property, we need more technical preliminaries. To this end, put

τ⊕(x)=x⊕x and τ�(x)=x�x, for every x∈Łn.

Definition 4.5
Let i∈{1,...,n}. We define the function τ i

n
: Łn →Łn by

τ i
n
(x)=

{
0 x< i

n ,

1 x≥ i
n ,

and we always assume that τ i
n

is the interpretation on Łn of an algebraic term which is a composition

of finitely many copies of the maps τ⊕ and τ� alone.4

Any mapping τ : Łn →Łn can be composed with a function f ∈ŁS
n . Thus we define τ (f )(s)=τ (f (s))

for every s∈S and f ∈ŁS
n .

Lemma 4.6
Let E,E′ : PN ×ŁS

n →Łn be homogeneous Łn-valued effectivity functions. Then E =E′ if and only
if E
=E′
.

Proof. Necessity is trivial. To prove sufficiency assume that E
=E′
. Let C ∈PN , f ∈ŁS
n and

i∈{1,... ,n}. Since τ i
n
(f ) is idempotent and E and E′ are homogeneous, we have E(C,f )≥ i

n if and

only if 1=E(C,τ i
n
(f ))=E′(C,τ i

n
(f )), which is equivalent to E′(C,f )≥ i

n . �

The following lemma is straightforward. Its statement uses the notion of the Boolean effectivity
function HG associated with a game form G; see Definition 2.4.

Lemma 4.7
Let G be a game form. If HG and EG are the Boolean and the Łn-valued effectivity function associated
with G, respectively, then HG =E
G .

For any r ∈[0,1], we denote by �r� the element min{a∈Łn |a≥r}. The following lemma will turn
out to be crucial for understanding the limits of expressive power of the language associated with
(truly) playable Łn-valued effectivity functions; see Proposition 5.8.

4The proof of existence of such a term appears in [19].
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Lemma 4.8
If H : PN ×ŁS

1 →Ł1 is a playable Boolean effectivity function, then the function E : PN ×ŁS
n →Łn

defined by

E(C,f )=max
{

i
n ∈Łn |H (C,τ i

n
(f ))=1

}
, (4.1)

for every C ∈PN and f ∈ŁS
n , is a playable Łn-valued effectivity function that satisfies E
=H . If in

addition H is truly playable, then so is E.

Proof. Clearly E
=H . It follows from outcome monotonicity of H that E is outcome monotonic.
Since H has liveness and safety, so does the function E. To prove that E is superadditive, assume
on the contrary that there exist f ,g ∈ŁS

n and C,D∈PN such that C ∩D=∅ and E(C ∪D,f ∧g)<
i
n ≤E(C,f )∧E(D,g) for some i∈{1,...,n}. On the one hand, it follows that H (C ∪D,τ i

n
(f )∧

τ i
n
(g))=H (C ∪D,τ i

n
(f ∧g))=0. On the other hand, we obtain H (C,τ i

n
(f ))=H (D,τ i

n
(g))=1 and

by superadditivity of H we get H (C ∪D,τ i
n
(f )∧τ i

n
(g))=1, a contradiction.

Now, let f ∈ŁS
n . Since τ i

n
(f ⊕f )=τ� i

2n �(f )∈ŁS
1 , it follows from the definition of E that E(C,f ⊕

f )≥ i
n if and only if H (C,τ� i

2n �(f ))=1. Using again the definition of E, the latter is equivalent to

E(C,f )≥� i
2n�, which is the same as E(C,f )⊕E(C,f )≥ i

n . We can proceed in a similar way to prove
that E(C,f �f )=E(C,f )�E(C,f ) for every f ∈ŁS

n .
To prove N -maximality of E, consider f ∈ŁS

n and i∈{0,...,n−1}. It follows from the definition
of E and N -maximality of H that E(N ,f )≤ i

n if and only if H (∅,¬τ (i+1)
n

(f ))=1. Since ¬τ (i+1)
n

(f )=
τ (n−i)

n
(¬f ), the last identity is equivalent to H (∅,τ (n−i)

n
(¬f ))=1 and finally to ¬E(∅,¬f )≤ i

n .

Assume that H is truly playable. Definition 2.6 yields existence of g ∈ŁS
1 such that

H (∅,−)−1(1)={h∈ŁS
1 |h≥g}. Since E is homogeneous, E(∅,−)−1(1)={f ∈ŁS

n |H (∅,τ1(f ))=
1}={f ∈ŁS

n |τ1(f )≥g}. The latter is equal to {f ∈ŁS
n | f ≥g} since E(∅,−)−1(1) is an MV-filter

of ŁS
n and g is idempotent. �

The following result, which is the Łn-valued generalization of [20, Theorem 3.2] and
[10, Theorem 1], completes the characterization of truly playable Łn-valued effectivity functions.

Theorem 4.9
An Łn-valued effectivity function E : PN ×ŁS

n →Łn is truly playable if and only if there is a game
form G such that E =EG .

Proof. By Proposition 4.3, EG is truly playable. Conversely, assume that E is truly playable. By
Lemma 4.4 and Theorem 2.7, there exists a game form G such that HG =E
, where HG is the Boolean
effectivity function of G. We obtain by Lemma 4.7 that E
=HG =E
G , where EG is the Łn-valued
effectivity function associated with G. The conclusion E =EG follows from Lemma 4.6. �
Remark 4.10
The previous theorem implies that the notions of playability for Boolean effectivity functions and
Łn-valued functions are equivalent on the game-theoretic level since any of those concepts leads
to a uniquely determined game form. In our more general setting, we were able to maintain the
correspondence with game forms by imposing homogeneity and the Łn-version of the playability
axioms in the case of the Łn-valued effectivity functions. Admittedly, we do not arrive at a new
concept of game form or extend the validity of Boolean effectivity functions to a larger class
of objects. Nevertheless, the importance of our approach presented herein lies in an alternative
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representation of the classical setting: allowing for a richer language and more truth degrees leaves
the underlying class of game forms invariant. This situation is similar to the development of
many-valued probability theory starting from Łukasiewicz logic: while every probability of an MV-
algebra induces a unique ‘classical’ probability [14], the more general concept of MV-probability
forms a solid basis for studying a number of stochastic phenomena, betting games among them;
cf. [17, Chapter 1].

It is useful to introduce a weaker notion of playability. To this end, we need this preparatory
result.

Lemma 4.11
If E is a playable Łn-valued effectivity function, then E is coalition monotonic and regular.

Proof. We proceed by contradiction to prove that E is regular. Assume that there are C ∈PN , f ∈ŁS
n

and i∈{1,...,n} such that ¬E(C,¬f )< i
n ≤E(C,f ). Put j=1− i−1

n . Since E is homogeneous, it
follows that E(C,τ i

n
(f ))=1 and E(C,τ j

n
(¬f ))=1. Thus we obtain by superadditivity E(N ,τ i

n
(f )∧

τ j
n
(¬f ))=1, which contradicts safety since τ i

n
(f )∧τ j

n
(¬f )=0.

We prove that E is coalition monotonic. Let C ⊆C ′ ∈PN and f ∈ŁS
n . By applying superadditivity

to C1 =C and C2 =C ′ \C we obtain E(C,f )≤E(C ′,f ), which is the desired result. �
Definition 4.12
An Łn-valued effectivity function E : PN ×ŁS

n →Łn is semi-playable if E(C,f )≤E(C,g) for every
f ≤g ∈ŁS

n and every coalition C �=N , if E has liveness and safety for coalitions C �=N , and if it
satisfies superadditivity for coalitions C1 and C2 such that C1 ∩C2 =∅ and C1 ∪C2 �=N .

Proposition 4.13
An Łn-valued effectivity function E : PN ×ŁS

n →Łn is playable if and only if it is semi-playable,
homogeneous, regular and N -maximal.

Proof. The first implication follows from Lemma 4.11. Conversely, assume that E is semi-playable,
homogeneous, regular and N -maximal. First we prove superadditivity. Let C ∈PN with C �=N .
We have to verify that E(C,f )∧E(C,g)≤E(N ,f ∧g). By way of contradiction, assume that there
is i∈{1,...,n} such that E(N ,f ∧g)< i

n ≤E(C,f )∧E(C,g). Since E is homogeneous, we obtain
E(C,τi/n(f ))=1=E(C,τi/n(g)), while, by N -maximality, E(∅,¬τi/n(f ∧g))=1. It follows from
superadditivity that E(C,τi/n(f )∧¬τi/n(f ∧g))=1, which is equivalent to E(C,τi/n(f )∧¬(τi/n(f )∧
τi/n(g)))=1, since τi/n(f ∧g)=τi/n(f )∧τi/n(g). From the fact that τi/n(f ) and τi/n(g) belong to the
Boolean skeleton of ŁS

n we deduce E(C,τi/n(f )∧¬τi/n(g))=1. We conclude that E(C,¬τi/n(g))=
1 by outcome monotonicity and finally that E(C,τi/n(g))=0 by regularity, which is the desired
contradiction.

It is easy to check that the liveness and safety conditions are satisfied for C =N . Moreover, E is
N -maximal and homogeneous by assumption. It remains to prove that E is outcome monotonic. If
f ≤g ∈ŁS

n , we obtain successively

E(N ,f )≤¬E(∅,¬f )≤¬E(∅,¬g)≤E(N ,g),

where the first inequality is obtained by regularity, the second by monotonicity and the third by
N -maximality. �
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5 Łn-valued modal language and semantics for effectivity functions

In this section, we build a many-valued modal logic in the spirit of [10, 20] that captures the properties
of (truly) playable Łn-valued effectivity functions.

5.1 Neighbourhood semantics for playable Łn-valued effectivity functions

Let L be the language {→,¬,1}∪{[C] |C ∈PN } where →, ¬, 1 are binary, unary and constant,
respectively, and [C] is a unary modality for every C ∈PN . The set FormL of formulas is defined
inductively from the countably infinite set Prop of propositional variables by the following rules:

φ ::=1 | p | φ→φ | ¬φ | [C]φ,

where p∈Prop and C ∈PN . We use 0 as an abbreviation of ¬1. The intended reading of the formula
[C]φ is ‘coalition C can enforce φ ’. In the language L, we also use the standard abbreviations for
defined connectives in Łukasiewicz logic; see Appendix B.

We introduce a semantics for L which is based on a class of action models called Łn-frames. Such
frames are Łn-valued extensions of coalition frames introduced in [20]. The coalition frames are
a very general model of interaction in which an effectivity function is associated with each outcome
state in S. Under the assumption of true playability, this is equivalent to specifying a game form for
every outcome state in S.

Definition 5.1
An Łn-frame is a tuple F= (S,E), where S is a non-empty set of outcome states and E is a mapping
sending each outcome state u∈S to an Łn-valued effectivity function E(u) : PN ×ŁS

n →Łn. A tuple
M= (F,Val) is an Łn-model (based on F) if F= (S,E) is an Łn-frame and Val : S ×Prop→Łn.

We use the Łukasiewicz interpretations of the connectives ¬,→,1 in Łn; see Appendix B. For
every Łn-model M, the valuation map Val is extended inductively to S ×FormL by setting

Val(u,φ→ψ)=Val(u,φ)→Val(u,ψ), (5.1)

Val(u,¬ψ)=¬Val(u,ψ), (5.2)

Val(u,1)=1, (5.3)

Val(u,[C]φ)=E(u)
(
C,Val(−,φ)

)
, (5.4)

for every C ∈PN and every φ,ψ ∈FormL. We use the standard notation and terminology. We say
that a formula φ is true in M= (F,Val) and write M |=φ if Val(u,φ)=1 for every u∈S. A formula
φ is valid in an Łn-frame F if it is true in every Łn-valued model based on F.

In order to proceed further, we need to generalize the technique of filtration [8, Chapter 7.5] for
neighbourhood models.

Definition 5.2
Let M= (S,E,Val) be an Łn-valued model and 
 be a set of formulas closed under subformulas
and the unary connectives τ⊕ : φ 
→φ⊕φ and τ� : φ 
→φ�φ. Consider the equivalence relation ≡

defined on S by

u≡
 v if ∀φ∈
 Val(u,φ)=Val(v,φ).
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We denote by |S| the set of equivalence classes |u| for ≡
 . An Łn-model M∗ = (|S|,E∗,Val∗) is
a 
-filtration of M if the following conditions are satisfied for every u∈S:

(1) Val∗(|u|,p)=Val(u,p) for every p∈Prop∩
,
(2) E(u)(C,Val(−,φ))=E∗(|u|)(C,|Val(−,φ)|) for every C ∈PN and φ∈
,

where the map |Val(−,φ)| : |S|→Łn is defined by |Val(|u|,φ)|=Val(u,φ).

Lemma 5.3
Let M= (S,E,Val) be an Łn-valued model and 
 be a set of formulas closed under subformulas and
the connectives τ⊕ and τ�. If M∗ = (|S|,E∗,Val∗) is a 
-filtration of M, then

Val(u,φ)=Val∗(|u|,φ) (5.5)

for every φ∈
 and every u∈S.

Proof. Note that identity (5.5) is equivalent to Val∗(−,φ)=|Val(−,φ)|. The proof is a standard
induction argument on the length ofφ∈
. We consider only the case whereφ=[C]ψ ∈
 for C ∈PN .
By the definition of Val∗ and the induction hypothesis, we obtain

Val∗(|u|,[C]ψ)=E∗(|u|)(C,Val∗(−,ψ))=E∗(|u|)(C,|Val(−,ψ)|).

It follows from Definition 5.2(2) that

E∗(|u|)(C,|Val(−,ψ)|)=E(u)(C,Val(−,ψ))=Val(u,[C]ψ). �
In what follows we focus on the relations between the language L and the Łn-frames in which the

effectivity functions are (truly) playable.

Definition 5.4
An Łn-frame F= (S,E) is said to be (truly) playable if E(u) is (truly) playable for every u∈S.
An Łn-model M is (truly) playable if it is based on a (truly) playable Łn-frame.

Our first aim is to prove that, similarly as in the Boolean case [10], there is no set of L-formulas
that can define truly playable Łn-frames inside the class of playable Łn-frames. To this end, we
show that for any playable Łn-model M and any formula φ, there is a finite playable Łn-model Mφ

such that M |=φ if and only if Mφ |=φ. We use this property and the fact that finite playable
Łn-models are truly playable to prove Proposition 5.8. The construction of Mφ is based
on a refinement of filtration for playable Łn-valued models. We proceed in two steps. The next
definition constitutes the first step in this direction.

Definition 5.5
Using the notation of Definition 5.2, an Łn-valued model M∗ = (|S|,E∗,Val∗) is an intermediate

-filtration of a playable Łn-model M= (S,E,Val) if M∗ is a 
-filtration of M that satisfies

E∗(|u|)(C,f )=max{E(u)(C,Val(−,φ)) |φ∈
 and |Val(−,φ)|≤ f }, (5.6)

E∗(|u|)(N ,f )=¬E∗(|u|)(∅,¬f ), (5.7)

for every proper coalition C ∈PN and every f ∈Ł|S|
n .
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Observe that since we have assumed playability (N -maximality, in particular) of M in
Definition 5.5, an intermediate
-filtration of M is indeed a
-filtration in the sense of Definition 5.2.

For every formula μ we denote by Cl(μ) the closure of the set of subformulas of μ for the
connectives ¬ and →. The next lemma shows that an intermediate Cl(μ)-filtration is an intermediate
step in the construction of a playable Cl(μ)-filtration of a playable Łn-model. Recall that by E(u)
 we
denote the function that is the restriction of the Łn-valued effectivity function E(u) : PN ×ŁS

n →Łn
to the domain PN ×ŁS

1 .

Lemma 5.6
Letμ∈FormL and M= (S,E,Val) be a playable Łn-model. If M∗ = (|S|,E∗,Val∗) is an intermediate
Cl(μ)-filtration of M, then the Boolean effectivity function E∗(|u|)
 : PN ×ŁS

1 →Ł1 is playable for
every u∈S.

Proof. By n.φ we denote the formula
⊕n

i=1φ. First, observe that if u∈S, f ∈Ł|S|
1 and C �=N

is a coalition, then

E∗(|u|)(C,f )=max{E(u)
(C,Val(−,n.φ)) |φ∈
 and |Val(−,n.φ)|≤ f },

which shows that E∗(|u|)
 is a Boolean effectivity function. We prove that E∗(|u|)
 is regular and
semi-playable (see Definition 4.12). It is straightforward to show that E∗(|u|)
(C,−) is monotonic
and has liveness and safety for every coalition C �=N . Moreover, N -maximality holds for E∗(|u|)

according to (5.7).

Let us prove superadditivity for coalitions C,D such that C ∩D=∅ and C ∪D �=N . If
f ,g ∈Ł|S|

1 , then E∗(|u|)(C,f )∧E∗(|u|)(D,g) is by definition equal to the maximum of the values
E(u)(C,Val(−,ψ))∧E(u)(D,Val(−,ρ)), whereψ and ρ run through the elements of Cl(μ) satisfying
|Val(−,ψ)|≤ f and |Val(−,ρ)|≤g. By superadditivity of E we have

E(u)(C,Val(−,ψ))∧E(u)(D,Val(−,ρ))≤E(u)(C ∪D,Val(−,ψ∧ρ)),

for every formula ψ and ρ. Thus it follows from the definition of E∗ that

E∗(|u|)(C,f )∧E∗(|u|)(D,g)≤E∗(|u|)(C ∪D,f ∧g),

which is the desired result.
It remains to prove that for every C ∈PN and every f ∈Ł|S|

1 such that E∗(|u|)(C,f )=1, we
have E∗(|u|)(C,¬f )=0. By condition (5.7), we may assume that C �=N . Suppose for the sake
of contradiction that E∗(|u|)(C,¬f )=1. By (5.6) this means that there are some ψ,ρ∈Cl(μ)
such that |Val(−,ψ)|≤ f and |Val(−,ρ)|≤¬f , and E(u)(C,Val(−,ψ))=E(u)(C,Val(−,ρ))=1. By
superadditivity of E, we obtain E(N ,Val(−,ψ∧ρ))=1 with ψ∧ρ∈Cl(μ) satisfying |Val(−,ψ∧
ρ)|≤ f ∧¬f . By (5.6), (5.7), Definition 5.2 (2), N -maximality of E and the fact that f ∈Ł|S|

1 , we
obtain E∗(|u|)(N ,0)=1. This is a contradiction since E∗(|u|)(N ,0)=¬E∗(|u|)(∅,1)=0 by (5.7) and
liveness of E∗ for the empty coalition. �

We combine Lemma 5.6 together with Lemma 4.8 to construct Cl(μ)-filtrations that preserve
playability.
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Proposition 5.7
If μ∈FormL and M= (S,E,Val) is a playable Łn-model, then there is a playable Cl(μ)-filtration
M+ = (|S|,E+,Val+) of M.

Proof. Consider the intermediate Cl(μ)-filtration M∗ = (|S|,E∗,Val∗) of M. By Lemma 5.6, the
Boolean effectivity function E∗(|u|)
 : PN ×Ł|S|

1 →Ł1 is playable for every u∈S. By Lemma 4.8,
the map E+(|u|) : PN ×Ł|S|

n →Łn defined by

E+(|u|)(C,f )=max
{

i
n ∈Łn |E∗(|u|)
(C,τ i

n
(f ))=1

}

is also playable. We prove thatM∗ := (|S|,E+,Val∗) is a Cl(μ)-filtration ofM. It suffices to check that
M+ satisfies condition (2) of Definition 5.2. Let u∈S, C ∈PN , φ∈Cl(μ) and i∈{1,...,n}. We obtain
by definition of E+ that E+(|u|)(C,|Val(−,φ)|)≥ i

n if and only if E∗(|u|)
(C,|Val(−,τ i
n
(φ))|)=1.

Since M∗ is an intermediate Cl(μ)-filtration of M, the last identity is in turn equivalent to
E(u)(C,Val(−,τ i

n
(φ))=1. Finally, this gives E(u)(C,Val(−,φ))≥ i

n . �

The next result shows that the gain of expressive power induced by the many-valued nature
of L and of its associated semantics is not enough to single out those playable models that are truly
playable.

Proposition 5.8
There is no set� of L-formulas such that a playable Łn-frame F is truly playable if and only if every
formula of � is valid in F.

Proof. Assume that there exists a set � of L-formulas such that a playable Łn-frame F is truly
playable if and only if every formula of � is valid in F. Let F be a playable Łn-frame which is not
truly playable. The existence of such F is a consequence of Lemma 4.8 applied to the effectivity
function E defined in [10, Proposition 4]. For every φ∈� and every model M based on F,
Proposition 5.7 provides a playable Cl(φ)-filtration M+. Since M+ has a finite set of outcome
states, it is truly playable. It follows from the definition of� that M+ |=φ and from Lemma 5.3 that
M |=φ. We have proved that every formula of� is true in every model based on F and we conclude
that F is truly playable, which is the desired contradiction. �

5.2 Łn-valued playable logic for finite playable Łn-frames

Proposition 5.8 says that L is not adequate for capturing the properties of Łn-valued effectivity
functions associated with game forms. Indeed, this language is not even expressive enough to
distinguish between the playable and the truly playable Łn-frames. Nevertheless, when the set of
outcome states S is finite, every playable Łn-valued effectivity function is truly playable and it turns
out that playability can be encoded by L-formulas; see our completeness result, Theorem 5.18. We
start with axiomatizing the properties of playable Łn-valued effectivity functions.

Definition 5.9
An Łn-valued playable logic is a subset L of FormL which is closed under Modus Ponens, Uniform
Substitution and Monotonicity (if φ→ψ ∈L, then [C]φ→[C]ψ ∈L for every C ∈PN ) and that
contains an axiomatic base of Łukasiewicz (n+1)-valued logic (see [11] or [9, Section 8.5])
together with the following axioms:
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The axioms of Łn-valued playable logic

(1) [C](p�p)↔[C]p�[C]p,
(2) [C](p⊕p)↔[C]p⊕[C]p,
(3) ¬[C]0,

(4) ([C]p∧[C ′]q)→[C ∪C ′](p∧q),
(5) [∅]p→¬[N ]¬p,

for every C,C ′ ∈PN such that C ∩C ′ =∅.

We denote by Pn the smallest Łn-valued playable logic, i.e. the intersection of all the Łn-valued
playable logics. We conform with common usage and we often write �Pn φ instead of φ∈Pn.

Remark 5.10
The use of the notation �Pn is justified by the observation that Pn can be equivalently introduced
through a Hilbert style proof system. Indeed, it suffices to consider the Hilbert system whose axioms
are the axioms (1)–(5) above together with an axiomatic base of Łukasiewicz (n+1)-valued logic,
and whose inference rules are Modus Ponens, Uniform Substitution and Monotonicity. Clearly,
a formula φ is a theorem in this system if and only if it belongs to Pn.

The axioms (1)–(5) together with the Monotonicity rule reflect the properties defining playability.
In Remark 5.19 at the end of this section, we give equivalent and more intuitive axioms that can
replace (1)–(2) in the axiomatization of Pn.

The following lemma can be proved by a standard induction argument.

Lemma 5.11
Let M be a playable Łn-model. If �Pn φ, then M |=φ.

We will prove completeness of Pn with respect to the class of playable Łn-models. Our proof is based
on the construction of the canonical model.

5.2.1 Construction of the canonical model
Let us denote by FPn the Lindenbaum-Tarski algebra of Pn, i.e. the quotient of FormL under the
syntactic equivalence relation ≡ defined by

φ≡ψ if �Pn φ→ψ and �Pnψ→φ,

equipped with the operations 1, ¬, → and [C] defined as 1 :=1/≡, ¬(φ/≡) :=¬φ/≡, φ/≡→ψ/≡
:= (φ→ψ)/≡ and [C](φ/≡) :=[C]φ/≡, for every C ∈PN and every φ,ψ ∈FormL. By abuse of
notation, we denote the class φ/≡ by φ.

Since Pn contains every tautology of Łukasiewicz (n+1)-valued logic, the {→,¬,1}-reduct of
FPn is an MV-algebra that belongs to the variety MVn generated by Łn.

In the Boolean setting, one of the key ingredients of the construction of the canonical model is
the ultrafilter theorem that allows us to separate by an ultrafilter any two different non-top elements
of a Boolean algebra B. We can rephrase this separation result using the bijective correspondence
between the ultrafilters of B and the homomorphisms of B into the two-element Boolean algebra 2:
for every a �=b∈B\{1}, there is a homomorphism u : B→2 such that u(a)=1 and u(b)=0. The
variety MVn has an analogous property [9].
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Lemma 5.12
Let A∈MVn. For every a �=b in A\{1}, there is a {¬,→,1}-homomorphism u : A→Łn such that
u(a)=1 and u(b) �=1.

This separation property explains our choice of the set W c of {¬,→,1}-homomorphisms from FPn

to Łn as the universe of the canonical model of Pn.
We will use the following technique to associate an Łn-valued effectivity function Ec(u) with every

u∈W c. For each i∈{1,...,n} we will define a subset Pi of PN ×W c ×ŁW c

n , such that P1 ⊇···⊇Pn.
Then we will safely set

Ec(u)(C,f ) :=max
{

i
n ∈Łn | (C,u,f )∈Pi

}
.

Definition 5.13
For every i∈{1,...,n} let Pi be the subset of PN ×W c ×ŁW c

n defined by

Pi =
{

(C,u,f ) |∃φ(
u([C]φ)≥ i

n and ∀v∈W c(v(φ)≥ i
n �⇒ f (v)≥ i

n

))}
. (5.8)

We use the convention P0 =PN ×W c ×ŁW c

n .

Lemma 5.14
The inclusion Pi ⊆Pi−1 holds for each i∈{1,...,n}.
Proof. Assume that φ satisfies the condition defining Pi in (5.8) for C, f , u and i>0 and put
ρ=τ i

n
(φ). Then u([C]ρ)=τ i

n

(
u([C]φ)

)=1≥ i−1
n . Moreover, if v(ρ)≥ i−1

n , then v(ρ)=1 since ρ

belongs to the Boolean skeleton of FPn . Therefore v(φ)≥ i
n , which gives f (v)≥ i

n ≥ i−1
n . �

Definition 5.15
The canonical model of Pn is the Łn-model M= (F,Valc) with F= (W c,Ec) where Ec(u)(C,f ) is
defined for every u∈W c, every C ∈PN and every f ∈ŁW c

n by

Ec(u)
(
C,f )=

{
max

{
i
n ∈Łn | (C,u,f )∈Pi

}
if C �=N ,

¬Ec(u)(∅,¬f ) if C =N ,
(5.9)

and where Valc is defined by
Valc(u,p)=u(p), (5.10)

for every p∈Prop and u∈W c.

In particular, for every (C,u,f )∈PN ×W c ×ŁW c

n with C �=N , we have

Ec(u)
(
C,f )≥ i

n
if and only if (C,u,f )∈Pi. (5.11)

The next proposition shows that the identity (5.10) remains true in the canonical model after
replacing p by any formula μ∈FormL.

Proposition 5.16 (Truth Lemma)
The canonical model (W c,Ec,Valc) of Pn satisfies Valc(u,μ)=u(μ) for every μ∈FormL and every
u∈W c.
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Proof. We proceed by induction on the number of connectives inμ. Ifμ∈Prop orμ∈{1,¬ψ,ψ→
ρ}, then the result follows immediately from (5.1) to (5.3).

Let μ=[C]ψ for someψ ∈FormL and C ∈PN \{N }. We will prove that for any u∈W c and i≤n,

Ec(u)
(
C,Valc(−,ψ)

)≥ i

n
if and only if u([C]ψ)≥ i

n
. (5.12)

First, assume Ec(u)
(
C,Valc(−,ψ)

)≥ i
n . Then, by (5.11) and (5.8), there is ρ∈FormL such that

u([C]ρ)≥ i
n and Valc(v,ψ)≥ i

n for any v∈W c satisfying v(ρ)≥ i
n . By the induction hypothesis, this

means that for every v∈W c with v(ρ)≥ i
n , we have v(ψ)≥ i

n . It follows that v
(
τ i

n
(ρ)→τ i

n
(ψ)

)=1

for every v∈W c. This yields �Pn τ i
n
(ρ)→τ i

n
(ψ) since the {→,¬,1}-reduct of FPn has the separation

property (Lemma 5.12). As Pn is closed under Monotonicity, we obtain

�Pn [C]τi/n(ρ)→[C]τi/n(ψ).

By axioms (1) and (2) of Pn (Definition 5.9) and Uniform Substitution, this is equivalent to

�Pn τ i
n
([C]ρ)→τ i

n
([C]ψ).

Hence, if v∈W c and v([C]ρ)≥ i
n , then v([C]ψ)≥ i

n . We can thus conclude that u([C]ψ)≥ i
n .

Conversely, let u([C]ψ)≥ i
n . We obtain (C,u,Val(−,ψ))∈Pi by the induction hypothesis and by

considering φ=ψ in the definition (5.8) of Pi. This proves (5.12).
Finally, assume μ=[N ]ψ for some ψ ∈FormL. We will prove

Ec(u)(N ,Val(−,ψ))=u([N ]ψ).

Indeed, on the one hand we obtain

Ec(u)(N ,Val(−,ψ))=¬Ec(u)(∅,Val(−,¬ψ))

by (5.9), which is in turn equal to u(¬[∅]¬ψ) by the induction hypothesis and the first part of this
proof. Axiom (5) of Pn yields Ec(u)(N ,Val(−,ψ))≤u([N ]ψ).

To prove the converse inequality, let us assume for the sake of contradiction that there
is i∈{1,...,n} such that Ec(u)(N ,Val(−,ψ))< i

n =u([N ]ψ). Therefore u([N ]τi/n(ψ))=1, while
Ec(u)(∅,Val(−,¬τi/n(ψ))=1 by (5.9). It follows from this identity that u([∅]¬τ i

n
(ψ))=1 by

induction hypothesis and the first part of the proof. From axiom (7) applied with C =N and
C ′ =∅ we get u([N ](τ i

n
(ψ)∧¬τ i

n
(ψ))

)=1; however, this is in contradiction with axiom (4) since

τ i
n
(ψ)∧¬τ i

n
(ψ)=0. �

5.2.2 Completeness result for Pn

In order to use the canonical model for the proof of completeness of Pn with respect to the class of
the playable Łn-models, we need the following result.

Lemma 5.17
The canonical model of Pn is a playable Łn-frame.
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Proof. Let u∈W c. It suffices to prove that Ec(u) is semi-playable, homogeneous, N -maximal and
regular. It is easily checked that Ec(u)(C,−) is monotonic for every coalition C �=N . The property
of N -maximality is obtained by (5.9).

For homogeneity, let C �=N ∈PN and f ∈ŁW c

n . We will prove that for any i∈{1,...,n},

Ec(u)(C,f ⊕f )≥ i

n
if and only if Ec(u)(C,f )⊕Ec(u)(C,f )≥ i

n
. (5.13)

First, assume Ec(u)(C,f )⊕Ec(u)(C,f )≥ i
n or, equivalently, Ec(u)(C,f )≥ i

2n . By the definition

of Ec, there is a formula ρ such that u([C]ρ)≥ i
2n and f (v)≥ i

2n for every v satisfying v(ρ)≥ i
2n .

On the one hand, by axioms (1) and (2) of Pn and considering φ=τ� i
2n �(ρ), we get u([C]φ)=

τ� i
2n �(u([C]ρ))=1≥ i

n . On the other hand, if v∈W c is such that v(φ)≥ i
n , then v(φ)=1 since

φ is an idempotent element of FPn . Therefore v(ρ)≥ i
2n . This implies f (v)≥ i

2n , or, equivalently,

(f ⊕f )(v)≥ i
n . We conclude that Ec(u)(C,f ⊕f )≥ i

n .
Conversely, assume Ec(u)(C,f ⊕f )≥ i

n for some i>0. The definition of Ec yields a formula
ρ such that u([C]ρ)≥ i

n and f (v)≥ i
2n for any v∈W c with v(ρ)≥ i

n . By considering φ=τi/n(ρ),

we obtain on the one hand that u([C]φ)=τ i
n

(
u([C]ρ)

)=1≥ i
2n . On the other hand, if v∈W c is

such that v(φ)≥ i
2n , then v(φ)=1, which means v(ρ)≥ i

n so that f (v)≥ i
2n . We have proved that

Ec(u)(C,f )≥ i
2n or, equivalently, Ec(u)(C,f )⊕Ec(u)(C,f )≥ i

n . This finishes the proof of (5.13).
Analogously, we can show that

Ec(u)(C,f �f )≥ i

n
if and only if Ec(u)(C,f )�Ec(u)(C,f )≥ i

n
.

Employing N -maximality and the first part of the proof, it is easy to prove that for every f ∈ŁW c

n , we
have Ec(u)(N ,f ⊕f )=Ec(u)(N ,f )⊕Ec(u)(N ,f ) and Ec(u)(N ,f �f )=Ec(u)(N ,f )�Ec(u)(N ,f ).
The function Ec(u) is hence homogeneous.

Let us prove that Ec(u) has safety for C �=N . By way of contradiction, assume that Ec(u)(C,0)≥ 1
n .

There is a formula φ such that u([C]φ)≥ 1
n and v(φ)=0 for every v∈W c. We deduce that

�Pn φ→0 and hence �Pn [C]φ→[C]0 by Monotonicity. It follows that 1
n ≤u([C]φ)≤u([C]0)=0,

a contradiction.
To prove that Ec(u) has liveness for every C �=N , it suffices to consider φ=1 in (5.8) in order to

show (C,u,1)∈P1.
We have to prove coalition monotonicity for C1 and C2 such that C1 ∩C2 =∅ and

C1 ∪C2 �=N . It is enough to prove the following: if Ec(u)(C1,f1)∧Ec(u)(C2,f2)≥ i
n for some

i∈{1,...,n}, then Ec(u)(C1 ∪C2,f1 ∧f2)≥ i
n . Let �∈{1,2} and denote by φ� a formula such that

u([C�]φ�)≥ i
n and f�(v)≥ i

n , for every v satisfying v(φ�)≥ i
n . Thus we can consider φ=φ1 ∧φ2

in (5.8) to get (C1 ∪C2,u,f1 ∧f2)∈Pi.
It remains to check that Ec(u) is regular. By (5.9), it suffices to prove that it is C-regular

for every C �=N . For the sake of contradiction, assume that there exists i∈{1,...,n} such that
¬Ec(u)(C,¬f )< i

n ≤Ec(u)(C,f ). It follows that Ec(u)(C,τ i
n
(f ))=1, while Ec(u)(C,τ j

n
(¬f ))=1

for j
n =1− i−1

n . By superadditivity, we obtain Ec(u)(N ,τ i
n
(f )∧τ j

n
(¬f ))=1,which is a contradiction

since τ i
n
(f )∧τ j

n
(¬f ) is the constant map 0. �
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Theorem 5.18 (Completeness of Pn)
For any φ∈FormL, the following assertions are equivalent:

(1) �Pn φ.
(2) φ is true in every playable Łn-model.
(3) φ is true in every finite playable Łn-model.
(4) φ is true in every truly playable Łn-model.

Proof. The implication (1) �⇒ (2) is the content of Lemma 5.11. The equivalences (2) ⇐⇒ (3)
and (3) ⇐⇒ (4) follow from Proposition 5.7 and Lemma 5.3. Finally, it remains to argue for the
implication (2) �⇒ (1). We know by Lemma 5.17 that Mc is a playable Łn-model. According to
Proposition 5.16, Mc |=φ means that the class of φ is equal to 1 in FPn , or, equivalently, �Pn φ. �
Remark 5.19
We can use the formulas τ i

n
(p) to replace axioms (1) and (2) of Pn (Definition 5.9) by a family of

axioms, which are easier to understand. Indeed, put

A={[C](p�p)↔ ([C]p�[C]p) |�∈{�,⊕},C ∈PN },
B={[C]τi/n(p)↔τi/n([C]p) | i∈{1,...,n},C ∈PN }.

It follows from the definition of an Łn-valued playable logic that B⊆Pn. A careful analysis of the
proofs of Lemma 5.14, Proposition 5.16, Lemma 5.17 and Theorem 5.18 shows that we have only
used the axioms in A in the form of substitutions in formulas of B. Denote by P′

n the smallest
set of formulas that contains an axiomatic base of Łukasiewicz (n+1)-valued logic, the set B, the
axioms (3)–(5) of Definition 5.9, and that is closed under Modus Ponens, Uniform Substitution and
Monotonicity. It follows from the previous observation that for any φ∈FormL we have �P′

n
φ if and

only if M |=φ for every playable Łn-model. Thus P′
n =Pn.

Thus the set of axioms A can be equivalently replaced by B. Hence, the content of axioms (1)–(2)
of Pn can be rephrased as follow.

For any i≤n, the following two assertions are equivalent:

• The truth value of the statement ‘coalition C can enforce φ’ is at least i
n .

• Coalition C can enforce an outcome state in which the truth value of φ is at least i
n .

5.3 Łn-valued truly playable logics for truly playable enriched Łn-frames

Theorem 5.18 says that Pn is the logic of playable rather than truly playable effectivity functions.
Moreover, by Proposition 5.8 there is no axiomatization of truly playable effectivity functions in the
language L. Thus the presented many-valued approach is a faithful generalization of the Boolean
framework; see [10]. In fact, the authors of [10] go beyond this limitation in the Boolean setting
by adding a new connective to L and by enriching the neighbourhood semantics with a Kripke
relation. We follow this idea by designing the modal equivalent of truly playable Łn-valued effectivity
functions.

Let L+ be the language L∪{[O]} where [O] is unary. The set FormL+ of formulas is defined
inductively from the countably infinite set Prop of propositional variables by the following rules:

φ ::=1 | p | φ→φ | ¬φ | [C]φ | [O]φ,
where p∈Prop and C ∈PN .
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In order to interpret L+-formulas, we enrich the Łn-frames with a binary relation.

Definition 5.20
A tuple F= (S,E,R) is an enriched Łn-frame if (S,E) is an Łn-frame and R⊆S ×S. We say that
F= (S,E,R) is standard if R={(u,v) |E(u)(∅,¬χ{v})=0}.

A tuple M= (S,E,R,Val) is an enriched Łn-model (based on (S,E,R)) if (S,E,R) is an enriched
Łn-frame and Val : S ×Prop→Łn.An enriched Łn-frame F= (S,E,R) or an enriched Łn-model M=
(S,E,R,Val) is called playable (truly playable, respectively) if (S,E) is a playable (truly playable,
respectively) Łn-frame.

In an enriched Łn-model, the valuation map Val is extended inductively to S ×FormL+ by using
rules (5.1) to (5.3) for the connectives 1, ¬ and →, by using rule (5.4) for the connectives [C], where
C ∈PN , and by putting

Val(u,[O]φ)=min{Val(v,φ) | (u,v)∈R} (5.14)

for any φ∈FormL+ and u∈S.
It turns out that the class of standard truly playable enriched Łn-frames can be defined inside the

class of standard playable enriched Łn-frames by an L+-formula. The next assertion is the Łn-valued
generalization of [10, Proposition 14].

Proposition 5.21
A standard playable enriched Łn-frame F is truly playable if and only if [∅]φ↔[O]φ is valid in F.

Proof. First assume that F is truly playable and standard. It follows from Lemma 4.4 that
F
 := (S,E
,R) is a standard truly playable enriched Ł1-frame. By [10, Proposition 14], for every
φ∈FormL+ the formula [∅]φ↔[O]φ is valid in F
 and we must prove that [∅]φ↔[O]φ is also
valid in F.

Assume that there is φ∈FormL+ and a model M= (S,E,R,Val) based on F such that
Val(u,[∅]φ)< i

n ≤Val(u,[O]φ) for some i≤n. It follows from homogeneity of E(u) that
Val(u,[∅]τ i

n
(φ))=0, while Val(u,[O]τ i

n
(φ))=1. Moreover, the map Val(−,τ i

n
(φ)) has range in Ł1.

Hence, any map Val′ : S ×Prop→Łn with Val′(w,p)=Val(w,τ i
n
(φ)) for every w∈S defines an

Ł1-model based on F
 that falsifies [∅]p↔[O]p, which is the desired contradiction. We can derive
a similar contradiction in case there is some φ∈FormL+ and a model M= (S,E,R,Val) based on F

such that Val(u,[∅]φ)≥ i
n >Val(u,[∅]φ) for some i∈{1,...,n}.

Conversely, let F= (S,E,R) be a standard playable enriched Łn-frame in which [∅]φ↔[O]φ is
valid for every φ∈FormL+ . Then F
= (S,E
,R) is a standard playable enriched Ł1-frame such that
[∅]φ↔[O]φ is valid for every φ∈FormL+ . Since F
 is truly playable by [10, Proposition 14], F is
truly playable as well. �

We have to adapt the filtration technique to fit in with the newly introduced language L+. The next
definition merges Definition 5.2 with [22, Definition 5.3].

Definition 5.22
Let M= (S,E,R,Val) be an enriched Łn-model and 
 be a set of formulas closed under subformulas
and the unary connectives τ⊕ and τ�. With the notation introduced in Definition 5.2, an enriched
Łn-model M∗ = (|S|,E∗,R∗,Val∗) is a 
-filtration of M if it satisfies (1) and (2) of Definition 5.2
and the following conditions:

(3) if (u,v)∈R, then (|u|,|v|)∈R∗,
(4) if (|u|,|v|)∈R∗ and u([O]φ)=1 for every φ∈
, then v(φ)=1.
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Lemma 5.23
Let M= (S,E,R,Val) be an enriched Łn-model and 
 be a set of formulas closed under subformulas
and the connectives τ⊕ and τ�. If

M |= {[O](φ⊕φ)↔[O]φ⊕[O]φ, [O](φ�φ)↔[O]φ�[O]φ}

and M∗ = (|S|,E∗,R∗,Val∗) is a 
-filtration of M, then

Val(u,φ)=Val∗(|u|,φ) (5.15)

for every φ∈
.

Proof. The proof is a routine induction argument on the length of φ∈
. Considering the proof of
Lemma 5.3, the only case we have to discuss is φ=[O]ψ ∈
. First, we note that by our assumption
on M and condition (4) of Definition 5.22, we have

Val(u,[O]ψ)≤Val(v,ψ) (5.16)

for every (|u|,|v|)∈R∗.
Let u∈S. Then the definition of Val∗ and the induction hypothesis yield

Val∗(|u|,[O]ψ)=min{Val(v,ψ) | (|u|,|v|)∈R∗}. (5.17)

The inequality Val∗(|u|,[O]ψ)≤Val(u,[O]ψ) holds true since (|u|,|v|)∈R∗ for every (u,v)∈R. The
other inequality is obtained by (5.16) and (5.17). �
Definition 5.24
An Łn-valued truly playable logic is a subset L of FormL+ that is closed under Modus Ponens,
Uniform Substitution and Monotonicity for every [C], where C ∈PN , and such that L contains an
axiomatic base of Łukasiewicz (n+1)-valued logic together with axioms (1)–(5) of logic Pn and the
following axioms:

The additional axioms of Łn-valued truly playble logic

(6) [O]1
(7) [O]p↔[∅]p,

(8) [∅](p→q)→ ([∅]p→[∅]q).

We denote by TPn the smallest Łn-valued truly playable logic.

Contrary to the Boolean case, it is not known if axiom (8) can be removed from the axiomatization
of TPn without changing TPn. Nevertheless, the following result holds true.

Lemma 5.25
TPn is closed under the necessitation rule for [∅].
Proof. Let �TPn φ. Then �TPn 1→φ and �TPn [∅]1→[∅]φ by Monotonicity, which is equivalent
to �TPn [O]1→[O]φ by axiom (7). The conclusion follows from axiom (6) and Modus Ponens. �
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We prove completeness of TPn with respect to the standard truly playable enriched Łn-models
by the technique of the canonical model. We denote by FTPn the Lindenbaum-Tarski algebra of
TPn.

Definition 5.26
The canonical model of TPn is the enriched Łn-model M= (F,Valc) with F= (W c,Ec,Rc), where
W c =MV(FTPn ,Łn), Ec and Valc are as in Definition 5.15, and Rc is defined by

Rc ={(u,v) |∀φ u([O]φ)=1 �⇒ v(φ)=1}.
Proposition 5.27 (Truth Lemma)
The canonical model M= (F,Valc) of TPn satisfies Valc(u,μ)=u(μ) for every μ∈FormL+ and
every u∈W c.

Proof. The proof is carried out by induction on the number of connectives in μ. The only case not
considered in the proof of Proposition 5.16 is μ=[O]φ. However, this case was considered in the
proof of [13, Proposition 5.6] or in the proof of [12, Proposition 5.5]. �
It is worth noticing that Proposition 5.27 relies on the fact that the modality [O] is normal.

Proposition 5.28
Let μ∈FormL+ and let M∗ = (|W c|,E∗,Val∗) be an intermediate Cl(μ)-filtration of
(W c,Ec,Valc). If

R∗ ={(|u|,|v|) |∀φ∈Cl(μ) u([O]φ)=1 �⇒ v(φ)=1},
then the model M+ = (|W c|,E+,R∗,Val∗) is a standard truly playable Cl(μ)-filtration of the
canonical model M= (W c,Ec,Rc,Valc) of TPn, where E+ is obtained from E∗ as in Proposition 5.7.

Proof. By Proposition 5.7 we know that M is playable. As M is finite, it is truly playable. By
Proposition 5.7 and by definition of R∗, the model M+ is a Cl(μ)-filtration of M in the sense of
Definition 5.22.

It remains to prove that M+ is standard. First, assume that u,v∈W c and E+(|u|)(∅,¬χ{|v|})=0.
It follows from the definition of E+ and E∗ that

E(u)(∅,Val(−,φ))=0

for every φ∈Cl(μ) such that Val(v,φ)=0. We conclude that (|u|,|v|)∈R∗ by the definition of R∗.
Let E(|u|,|v|)∈R∗. We will prove that E+(|u|)(∅,¬χ{|v|})=0. By way of contradiction, assume

that there is φ∈Cl(μ) such that Val(v,φ)=0 and

E(u)(∅,Val(−,φ))= i

n
>0.

Since χ{|v|} is idempotent and E(u) is homogeneous, we may assume i=n. It follows from
Definition 5.20 and Proposition 5.27 that u([∅]φ)=1. By axiom (7) of TPn, we deduce u([O]φ)=1.
The last identity is a contradiction since (|u|,|v|)∈R∗ and v(φ)=0. �
Theorem 5.29 (Completeness of TPn)
For any φ∈FormL+ , the following assertions are equivalent:

(1) �TPn φ.
(2) φ is true in every standard truly playable enriched Łn-model.
(3) φ is true in every finite standard playable enriched Łn-model.
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Proof. It is clear that (2) �⇒ (3). Moreover, (1) �⇒ (2) can be proved by a straightforward
induction argument. To prove (2) �⇒ (1), we obtain by Proposition 5.28 and Proposition 5.27 that
φ is true in the canonical model of TPn, which means �TPn φ. �

6 Conclusions and future research

In this article, we have studied some generalizations of Pauly’s Coalition Logic in modal extensions
of Łukasiewicz logic. Below we list some ideas for possible applications and topics for further
investigations.

(1) The gain of expressive power owing to the many-valued modal language that is used could
be exploited to encode some properties of strategic or voting games, such as, for instance, the
distribution of power among coalitions in weighted voting games.

(2) In modal extensions of (n+1)-valued Łukasiewicz logics, two types of relational structures
can naturally be considered, giving rise to two types of completeness results [13]. On the one
hand, there is the class of frames (structures with binary accessibility relations), while, on the
other hand, there is the class of Łn-frames. The latter are frames in which the set of allowed
truth values in a world is a prescribed subalgebra of Łn for every world of the frame. Such a
prescription could also be considered in the context of Łn-valued (truly) playable logics, where
the neighbourhood semantics replace the relational ones. The possible aim is to obtain new
completeness results with respect to this enriched semantics.

(3) We have based our generalizations of Coalition Logic on modal extensions of Łukasiewicz
logic. Other families of many-valued logics could be considered as a basis for many-valued
versions of Coalition Logic. For example, it would be interesting to compare expressive power
between the language developed in this article and a many-valued coalitional language based
on modal extensions of Gödel logics [15].

(4) Coalition Logic is among many formal calculi developed to model the deductive aspects of
games. Other systems have been considered, such as ATL [3, 4] and its epistemic extensions
[24]. A natural task could be to design the many-valued versions of those calculi in order
to capture wider classes of games or protocols in which errors are allowed; see [22], for
instance.

(5) We did not consider the complexity issue of the satisfiability problem for the many-valued
modal languages and models introduced in this article. This topic becomes a subject of further
investigation although we conjecture that the problem is PSPACE-hard as in the Boolean case
[20], since the number of possible truth values remains finite.

Funding
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Appendix

A Representation of Boolean effectivity functions

Let N ={1,...,k} be a finite set of players with k ≥2 and S be a (possibly infinite) set of outcomes
such that |S|≥2. A family B⊆PS that contains S is called a structure on S. We say that B is closed

under finite intersections if X1,...,Xj ∈B implies
⋂j

i=1Xi ∈B for every j∈N. An effectivity function
E : PN →PPS is said to be compatible with a structure B on S if E(C)⊆B for every C ∈PN , E has
liveness and safety, E(∅)={S}, and E(N )=B\{∅}. An effectivity function is outcome monotonic
with respect to B when the following implication holds true for every C ∈PN : if X ∈E(C), X ⊆Y
and Y ∈B, then Y ∈E(C).

Theorem A.1 ([21, Theorem 3.5*])
Let B be a structure on S closed under finite intersections and E : PN →PPS be an effectivity
function compatible with B. Then the following conditions are equivalent:

(1) E is superadditive and outcome monotonic w.r.t. B.
(2) There exists a game form G= (N ,{�i | i∈N },S,o) satisfying E(C)=HG(C)∩B for every

C ∈PN .

As announced in Section 2, we will prove that the characterization of effectivity functions generated
by game forms from [10, Theorem 1] can be obtained as a consequence of Peleg’s Theorem 3.5* in
[21]. We restate the theorem for reader’s convenience. We use the notion of true playability introduced
in Definition 2.6.

Theorem A.2 ([10, Theorem 1])
Let E : PN →PPS be an effectivity function. There exists a game form G= (N ,{�i | i∈N },S,o)
satisfying E =HG if and only if E is truly playable.

Proof. As for the first implication, it is easy to see that HG is playable. Set Z ={z ∈S |z =
o(σN ) for some strategy profile σN }. Then Z ∈HG(∅). Clearly, for any set of outcomes X ⊆S we
have X ∈HG(∅) if and only if X contains the ‘range’ Z . This means that HG(∅) is the principal filter
generated by Z and HG is truly playable.

In order to show the converse implication, let E be truly playable and put Z =⋂
E(∅). Since E has

safety, Z �=∅, and since E(∅) is a principal filter, E(∅)={X ∈PS |Z ⊆X }. Consider the mapping
E′ : PN →PPZ defined as follows:

X ∈E′(C) if X ∈E(C), for every X ∈PZ and every C ∈PN .

We claim that E′ is compatible with the structure PZ on Z . Indeed, it follows that E′(∅)={Z} and
E′(C)⊆PZ \{∅} for every C ∈PN . By monotonicity, Z ∈E′(C) for every C ∈PN . It remains to prove
that PZ \{∅}⊆E(N ). Let ∅ �=X ⊆Z . If X =Z , then we already know that X ∈E(N ). Otherwise, X is
a non-empty proper subset of Z and thus X /∈E(∅). We obtain by N -maximality of E that X ∈E(N )
and by superadditivity that X ∩Z ∈E(N ). We have proved that the complement in Z of any nonempty
proper subset of Z is in E(N ), which yields PZ \{∅}⊆E(N ). We can conclude that E′(N )=PZ \{∅}.
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By Theorem A.1, there is a game form G′ = (N ,{�i | i∈N },Z,o) such that E′ =HG′ . Put
G= (N ,{�i | i∈N },S,o). We will show that E =HG . To this end, let C ∈PN and X ∈E(C). By
superadditivity, X ∩Z ∈E(C), therefore X ∩Z ∈E′(C)=HG′ (C). By the definition of HG′ and HG ,
we get X ∈HG(C). For the converse inclusion HG ⊆E, assume that X ∈PS belongs to HG(C). By
the definition of HG , there exists σC such that o(σCσC )∈X ∩Z for every σC . This means X ∩Z ∈
HG′ (C)=E′(C), which gives X ∩Z ∈E(C). Finally, X ∈E(C) follows from outcome monotonicity.

�
Since every filter on a finite set is principal, the class of truly playable functions and the class of

playable functions coincide whenever the set of outcome states S is finite.

B Finite MV-algebras

For a general background on Łukasiewicz logic and MV-algebras see [9, 17]. In this Appendix, we
recall the basic notions and facts about MV-algebras that are needed in this article.

An MV-algebra is an algebra (A,⊕,¬,0), where ⊕ is a binary operation, ¬ is a unary operation
and 0 is a constant, such that the following equations are satisfied:

(1) (A,⊕,0) is an Abelian monoid,
(2) ¬(¬x)=x,
(3) ¬0⊕x=¬0,
(4) ¬(¬x⊕y)⊕y=¬(¬y⊕x)⊕x.

We introduce the new constant 1 and two additional operations � and → as follows:

1=¬0,

x�y=¬(¬x⊕¬y),

x→y=¬x⊕y.

We say that an MV-algebra (A,⊕,¬,0) is finite whenever A is finite. As usual we will say that ‘A
is an MV-algebra’ when no danger of confusion arises. For every MV-algebra A, the binary relation
≤ on A given by

x≤y whenever x→y=1

is a partial order. As a matter of fact, ≤ is a lattice order induced by the join ∨ and the meet ∧
operations defined by

x∨y=¬(¬x⊕y)⊕y,

x∧y=¬(¬x∨¬y),

respectively. Thus defined, the lattice reduct of A is a distributive lattice with top element 1 and
bottom element 0. If the order ≤ of A is total, then A is said to be an MV-chain.

The algebraic semantics of finite-valued Łukasiewicz logics is given by finite MV-chains. The
standard example of a finite MV-chain is a finite Łukasiewicz chain given by

Łn =
{

0, 1
n ,...,

n−1
n ,1

}
, where n is a positive integer.



154 Modal extensions of Łukasiewicz logic

For every x,y∈Łn, put

¬x=1−x,

x⊕y=min(x+y,1).

Then (Łn,⊕,¬,0) becomes an MV-chain, where the lattice operations ∧ and ∨ are the minimum and
the maximum of x,y∈Łn, respectively. Further derived operations �, → and ↔ on Łn are given by

x�y=max(x+y−1,0),

x→y=min(1,1−x+y),

x↔y=1−|x−y|.

Observe that the choice n=1 gives a two-element Łukasiewicz chain Ł1 ={0,1}, in which ⊕ coincides
with ∨ and � coincides with ∧. The semantics of classical propositional logic is thus determined by
Ł1. On the other hand, the algebraic semantics of finite (n+1)-valued Łukasiewicz logic with n≥2
is given by the variety of MV-algebras MVn that is axiomatized by Grigolia’s axioms [11]:

(1)
⊙n

i=1x=⊙n+1
i=1 x,

(2)
⊕n+1

i=1
⊙m

j=1x=⊙n+1
i=1

⊕m
j=1

⊙m−1
k=1 x,

for every integer m∈{2,...,n−1} that does not divide n. Moreover, it is known that MVn is generated
(as a variety) by the Łukasiewicz chain Łn.

An MV-filter (or a filter) in an MV-algebra A is a subset F ⊆A such that

(1) 1∈F ,
(2) if x,y∈F , then x�y∈F ,
(3) if x∈F and x≤y∈A, then y∈F .

A principal filter in A is a filter F for which there exists x∈A such that F coincides with the smallest
filter containing x. If A is finite, this means simply F ={y∈A |y≥⊙n

i=1x} for some x∈A.
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