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Abstract: We state necessary and su�cient conditions for weak lower semicontinuity of integral functionals

of the form u Ü→ ∫
Ω

h(x, u(x))dx, where h is continuous and possesses a positively p-homogeneous recession

function, p > 1, and u ∈ Lp(Ω;ℝm) lives in the kernel of a constant-rank �rst-order di�erential operator A

which admits an extension property. In the special case A = curl, apart from the quasiconvexity of the inte-

grand, the recession function’s quasiconvexity at the boundary in the sense of Ball and Marsden is known

to play a crucial role. Our newly de�ned notions ofA-quasiconvexity at the boundary, generalize this result.

Moreover, we give an equivalent condition for the weak lower semicontinuity of the above functional along

sequences weakly converging in Lp(Ω;ℝm) and approaching the kernel of A even if A does not have the

extension property.
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1 Introduction
In this paper, we investigate the in�uence of concentration e�ects generated by sequences {uk} ⊂ Lp(Ω;ℝm),
1 < p < +∞, which satisfy a linear di�erential constraint, either Auk = 0 (A-free sequence) or Auk → 0 in

W−1,p(Ω;ℝd) (asymptotically A-free sequence), on weak lower semicontinuity of integral functionals of the

form

I(u) := ∫
Ω

h(x, u(x))dx. (1.1)

HereA is a �rst-order linear di�erential operator. To the best of our knowledge, the �rst such resultwasproved

in [15] for nonnegative integrands. In this case, the crucial necessary and su�cient condition ensuring this

property is the so-called A-quasiconvexity, cf. De�nition 2.5 below. However, if we refrain from considering

only nonnegative integrands, this condition is not necessarily su�cient. A prominent example isA=curl, i.e.,

when u has a potential. It is well known that besides (Morrey’s) quasiconvexity, the weak lower semicontinu-

ity of I(u) := ∫
Ω

h(x, u(x))dx for |h(x, s)| ≤ C(1 + |s|p) (i.e., possibly negative and noncoercive) also strongly

depends on the behavior of h( ⋅ , s) on the boundary of Ω. This was �rst observed by Meyers [24] and then

elaborated more explicitly in [20]. Moreover, it turns out that for the special case where h(x, ⋅ ) possesses
a recession function the precise condition is the so-called quasiconvexity at the boundary [3, 22]. Namely,
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2 | J. Krämer et al.,A-quasiconvexity at the boundary and weak lower semicontinuity

if {uk} ⊂ Lp(Ω;ℝm) is a weakly converging sequence, concentrations of {|uk|p} ⊂ L1(Ω;ℝm) at the bound-

ary of Ω can destroy weak lower semicontinuity. We refer to [6, 13] for general background and [17, 18] for

a thorough analysis of oscillation and concentration e�ects in the gradient (curl-free) case.

The situation is considerably more complicated in case of more general operatorsA. Some observations

can be found in [21], but there, the focus is on the behavior of minimizing sequences and in particular, no

local conditions on the integrand in the spirit of quasiconvexity at the boundary are derived. In order to

see the problem we are facing here, let us isolate a necessary condition for the weak lower semicontinuity

of I in a simple prototypical situation, a possible candidate to replace quasiconvexity at the boundary for

generalA.

Example 1.1. Consider a unit half-ball Ω := B(x
0
, 1) ∩ {x | (x − x

0
) ⋅ νx

0

≤ 0} ⊂ ℝn with some �xed unit vec-

tor νx
0

. We are mainly interested in the behavior of the functional along sequences concentrating near x
0
,

where the boundary of Ω is locally �at with normal νx
0

(a boundary of class C1 actually su�ces for the

argument below, with some additional technicalities). In addition, we assume for simplicity that the inte-

grand h : ℝm → ℝ is smooth and positively p-homogeneous, i.e., for any ℓ ≥ 0 and s ∈ ℝm, h(ℓs) = ℓph(s).
Given any u ∈ Lp(ℝn;ℝm) ∩ kerA such that u is compactly supported in B(0, 1), lower semicontinuity

along {uk} ⊂ Lp(ℝn;ℝm) ∩ kerA, uk(x) := kn/pu(k(x − x0)), then implies lim infk→∞ I(uk) ≥ I(0) = 0, because

uk ⇀ 0 in Lp. Since I(uk) = ∫
Ω

h(u)dx for all k by a change of variables, shifting x
0
to the origin we get a nec-

essary condition on h: For all u ∈ Lp(B(0, 1);ℝm) ∩ kerA such that u vanishes near the boundary of B(0, 1),

∫
B(0,1)∩{x⋅νx

0

≤0}

h(u(x))dx ≥ 0 = ∫
B(0,1)∩{x⋅νx

0

≤0}

h(0)dx

for all u ∈ Lp(B(0, 1);ℝm) ∩ kerA with u = 0 near ∂B(0, 1). (1.2)

It is clear that for the positively p-homogeneous function h, (1.2) generalizes quasiconvexity at the boundary

at the zero matrix (for gradients, i.e., curl-free �elds) to more general di�erential constraints given by A.

Hence, in caseA =curl and together with quasiconvexity, (1.2) (at every x
0
∈ ∂Ω, for a smooth domain Ω) is

also su�cient for weak lower semicontinuity. However, as the example below shows, this is no longer true

for generalA, which also means that (1.2) is too weak to act as the correct generalization of quasiconvexity at
the boundary for our purposes.

Example 1.2. Let n = m = 2, p = 2. We takeA to be the di�erential operator of the Cauchy–Riemann system,

i.e., Au = 0 if and only if ∂
1
u
1
− ∂

2
u
2
= 0 = ∂

2
u
1
+ ∂

1
u
2
(which in turn means that u

1
+ iu

2
is holomorphic

on its domain as a function of z = x
1
+ ix

2
∈ ℂ). Then, (1.2) is trivially satis�ed for any function h : ℝm → ℝ

with h(0) = 0, because the only admissible u is the zero function. Similarly, any h is A-quasiconvex: as A-

quasiconvexity is tested with periodic functions in kerA with zero mean, due to Liouville’s theorem the

only allowed test function is the zero function. Nevertheless, for h(x, s) := −|s|2 and any bounded domain

Ω ⊂ ℝ2 ≅ ℂ with smooth boundary, I is not weakly lower semicontinuous in Lp ∩ kerA. Indeed, let

uk(z) :=
1

k(z − zk)
,

where {zk} ⊂ ℂ \ Ω is a sequence de�ned in such a way that

∫
Ω

|uk(z)|2 dz = 1.

(There always exists such zk by continuity, because for �xed k and uk,y(z) := 1

k(z−y) , ∫Ω|uk,y|
2

dz → 0 as

|y| → ∞ and ∫
Ω

|uk,y|2 dz → +∞ as dist(y;Ω) → 0.) In particular, zk approaches the boundary of Ω from the

outside as k increases). Then, uk ⇀ 0 in L2(Ω;ℝ2) but lim infk→∞ I(uk) = −1 < I(0) = 0.

The example shows that test functions in the operator kernel and with zero “boundary conditions” do not

su�ce to analyze concentration e�ects on the boundary like that of our holomorphic sequence uk in the

example, where a singularity is approaching the boundary from the outside. Replacing the class of test

functions in (1.2) by periodic functions with zero mean as in the de�nition of A-quasiconvexity does not

help either, because (1.2) would still be trivially satis�ed in the example, now due to Liouville’s theorem.
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Altogether, we see that the problem of weak lower semicontinuity for a generic operator A is considerably

more involved, once negative integrands are allowed.

Nevertheless, sequences of functions with smaller and smaller support are certainly natural to test weak

lower semicontinuity (mlsc) along “point concentrations”. The only question is how that should be re�ected

in anappropriate stronger version of (1.2). This dilemma is resolvedbelow inDe�nitions 3.1 and3.2 by allow-

ing test functions to depart (in a controlled way) from the kernel ofA. We show that this approach naturally

gives a new necessary and su�cient condition for the weak lower semicontinuity of I along asymptotically

A-free sequences (Auk → 0) called here strongA-quasiconvexity at the boundary; cf. De�nition 3.2, even for

quite rough domains. Obviously, strongA-quasiconvexity at the boundary also su�ces for the wlsc of I along
sequences in the kernel ofA.We also derive a necessary and su�cient condition for the latter situation, called

A-quasiconvexity at the boundary, cf. De�nition 3.1. As the name suggests, strong A-quasiconvexity at the

boundary impliesA-quasiconvexity at the boundary, but in general, these notions are not equivalent as out-

lined in Section 5, where we also discuss a su�cient condition on the operator A and the domain ensuring

equivalence (De�nition 5.1). The picture is therefore more complicated than in the case of nonnegative inte-

grands h, where A-quasiconvexity (see De�nition 2.5) of h(x, ⋅ ) is known to be a necessary and su�cient

condition for the weak lower semicontinuity of I [15, Theorems 3.6 and 3.7] in both cases, i.e., ifAuk = 0 or

ifAuk → 0 inW−1,p(Ω;ℝd).
Let us emphasize that variational problems with di�erential constraints naturally appear in hyper-

elasticity, electromagnetism, or in micromagnetics [7, 26, 27] and are closely related to the theory of com-

pensated compactness [25, 29, 30]. The concept of A-quasiconvexity goes back to [5] and has been proved

to be useful as a uni�ed approach to variational problems with di�erential constraints, including results on

homogenization [4, 11], dimension reduction [19] and characterization of generalized Young measures [2]

in theA-free setting. Moreover, �rst results onA-quasia�ne functions andweak continuity appeared in [16].

As to weak lower semicontinuity, the theory was �rst developed for nonnegative integrands in [15] as men-

tioned before, with extensions to nonnegative functionals with nonstandard growth [14] and the case of an

operator A with nonconstant coe�cients [28]. The recent work [1] analyzes lower semicontinuity of func-

tionals with linearly growing integrands, including negative integrands but excluding concentrations at the

domain boundary.

The plan of the paper is as follows. We �rst recall some needed de�nitions and results in Section 2. Our

newly derived conditions which, together withA-quasiconvexity precisely characterize weak lower semicon-

tinuity are studied in Section 3. The main results are summarized in Theorem 4.3 and Theorem 4.6. After the

concluding remarks in the �nal section, some auxiliary material is provided in the appendix.

2 Preliminaries
Unless explicitly stated otherwise, we always work with a bounded domain Ω ⊂ ℝn such that Ln(∂Ω) = 0,

equipped with the Euclidean topology and the n-dimensional Lebesgue measure Ln. We denote with

Lp(Ω,ℝm), 1 ≤ p ≤ +∞, the standard Lebesgue space. Furthermore, W1,p(Ω;ℝm), 1 ≤ p < +∞, stands for

the usual space of measurable mappings which together with their �rst (distributional) derivatives are in-

tegrable with the p-th power. The subspace of mappings in W1,p(Ω;ℝm) with zero traces is standardly

denoted W1,p
0

(Ω;ℝm). If 1 < p < +∞, then W−1,p(Ω;ℝm) denotes the dual space of W1,p�
0

(Ω;ℝm), where

p�−1 + p−1 = 1. A sequence {uk} converges to zero in measure if Ln({x ∈ Ω : |uk(x)| ≥ δ}) → 0 as k → ∞ for

every δ > 0.

We say that v ∈ Υp(ℝm) if there exists a continuous andpositively p-homogeneous function v∞ : ℝm → ℝ
such that

lim

|s|→∞

v(s) − v∞(s)
|s|p

= 0 . (2.1)

Such a function is called the recession function of v. It is well known that v/| ⋅ |p with v ∈ Υp(ℝm) can be

continuously extended on the compacti�cation ofℝm by the sphere, denoted here βSℝm.
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4 | J. Krämer et al.,A-quasiconvexity at the boundary and weak lower semicontinuity

2.1 The operatorA andA-quasiconvexity

Following the notation in [15], we consider linear operators A(i)
: ℝm → ℝd, i = 1, . . . , n, and de�ne the

operatorA : Lp(Ω;ℝm) → W−1,p(Ω;ℝd) by

Au :=
n
∑
i=1
A(i) ∂u

∂xi
, where u : Ω → ℝm ,

i.e., for all w ∈ W1,p�
0

(Ω;ℝd),

⟨Au, w⟩ = −
n
∑
i=1

∫
Ω

A(i)u(x) ⋅ ∂w(x)
∂xi

dx.

For w ∈ ℝn, we de�ne the linear map

A(w) :=
n
∑
i=1
wiA(i)

: ℝm → ℝd .

Throughout this article, we assume that there is r ∈ ℕ ∪ {0} such that

rankA(w) = r for all w ∈ ℝn , |w| = 1, (2.2)

i.e.,A has the so-called constant-rank property.
Below we use kerA to denote the set of all locally integrable functions u such thatAu = 0 in the sense of

distributions, i.e., ∫ u ⋅A∗w dx = 0 for all w ∈ C∞ compactly supported in the domain, where

A∗ = −
n
∑
i=1

(A(i))T
∂u
∂xi

is the formal adjoint ofA. Of course, kerA depends on the domain considered, which always should be clear

from the context below. In particular, a periodic function u in the space

Lp
#

(ℝn;ℝm) := {u ∈ Lp
loc

(ℝn;ℝm) : u is Q-periodic}

is in kerA if and only if Au = 0. Here and in the following, Q denotes the unit cube (−1

2

,

1

2

)n in ℝn, and we

say that u : ℝn → ℝm is Q-periodic if for all x ∈ ℝn and all z ∈ ℤn,

u(x + z) = u(x).

We will use the following lemmas proved in [15, Lemma 2.14] and [15, Lemma 2.15], respectively.

Lemma 2.1 (Projection ontoA-free �elds in the periodic setting). There exists a linear bounded operator
T : Lp

#

(ℝn;ℝm) → Lp
#

(ℝn;ℝm) that vanishes on constant functions with T(Tu) = Tu for all u ∈ Lp
#

(ℝn;ℝm)
and Tu ∈ kerA. Moreover, for all u ∈ Lp

#

(ℝn;ℝm) with ∫Q u(x)dx = 0, it holds that

‖u − Tu‖Lp
#

(ℝn;ℝm) ≤ C‖Au‖W−1,p
#

(ℝn;ℝd),

where C > 0 is a constant independent of u and W−1,p
#

denotes the dual space of W1,p�
#

( 1

p� +
1

p = 1), the
Q-periodic functions inW1,p�

loc

(ℝn;ℝm) equipped with the norm ofW1,p� (Q;ℝm).

Remark 2.2. For every w ∈ W−1,p
#

(ℝn), we have ‖w‖W−1,p(Q) ≤ ‖w‖W−1,p
#

(ℝn). The converse inequality does not

hold, not even up to a constant. However, Lemma 2.1 is often applied to (a sequence of) functions supported

in a �xed set G ⊂⊂ Q (up to periodicity, of course). One can always �nd a constant C = C(Ω, p, G) such that

‖Au‖W−1,p
#

(ℝn;ℝd) ≤ C‖Au‖W−1,p(Q;ℝd)

for every u ∈ Lp(Q;ℝm) with u = 0 a.e. on Q \ G.
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To achieve this, the Q-periodic test functions used in the de�nition of the norm in W−1,p
#

can be multi-

plied with a �xed cut-o� function η ∈ C∞
0

(Q; [0, 1]) with η = 1 on G to make them admissible (i.e., elements

of W1,p�
0

(Q)) for the supremum de�ning the norm in W−1,p. This enlarges their norm in W1,p�
at most by

a constant factor which only depends on p and ‖∇η‖L∞(Q) (and thus implicitly on the distance of G to ∂Q).

Lemma 2.3 (Decomposition lemma). LetΩ ⊂ ℝn be bounded and open, 1 < p < +∞, and let {uk} ⊂ Lp(Ω;ℝm)
be bounded and such thatAuk → 0 inW−1,p(Ω;ℝd) strongly and uk⇀u in Lp(Ω;ℝm)weakly. Then, there exists
a sequence {zk} ⊂ Lp(Ω;ℝm) ∩ kerA such that {|zk|p} is equiintegrable in L1(Ω) and uk − zk → 0 in measure
in Ω.

We also point out the following simple observation made in the proof of [15, Lemma 2.15], which is useful if

we need to truncateA-free or “asymptotically”A-free sequences.

Lemma 2.4. Let Ω ⊂ ℝn be open and bounded, and let {uk} ⊂ Lp(Ω;ℝm) be a bounded sequence such that
Auk → 0 in W−1,p(Ω;ℝd) strongly and uk⇀0 in Lp(Ω;ℝm) weakly. Then, for every η ∈ C∞(ℝn), A(ηuk) → 0

inW−1,p(Ω;ℝd).

Proof. We have that

A(ηuk) = ηAuk +
n
∑
i=1
ukA(i) ∂η

∂xi
→ 0 inW−1,p,

the second term due to the compact embedding of Lp intoW−1,p.

De�nition 2.5 (cf. [15, De�nitions 3.1 and 3.2]). We say that a continuous function v : ℝm → ℝ, satisfy-

ing |v| ≤ C(1 + | ⋅ |p) for some C > 0, is A-quasiconvex if for all s
0
∈ ℝm and all φ ∈ Lp

#

(Q;ℝm) ∩ kerA with

∫Q φ(x)dx = 0, it holds

v(s
0
) ≤ ∫

Q

v(s
0
+ φ(x))dx.

Here, note that for integrands satisfying a p-growth condition as required above – which holds throughout

this article since we always assume the existence of a p-homogeneous recession function – the class of test

functions φ can be reduced to its subclass in C∞ using a density argument.

Besides curl-free �elds, admissible examples of A-free mappings include solenoidal �elds, where

A = div, and higher-order gradients, where Au = 0 if and only if u = ∇(κ)φ for some φ ∈ Wκ,p(Ω;ℝℓ) and
some κ ∈ ℕ (for more details see Section 5.3, where κ = 2).

2.2 Weak lower semicontinuity

Let I : Lp(Ω;ℝm) → ℝ be de�ned as

I(u) := ∫
Ω

h(x, u(x))dx. (2.3)

Analogously, we de�ne I∞ : Lp(Ω;ℝm) → ℝ

I∞(u) := ∫
Ω

h∞(x, u(x))dx, (2.4)

where h∞(x, ⋅ ) is the recession function of h(x, ⋅ ) for h : Ω ×ℝm → ℝ continuous such that h(x, ⋅ ) ∈ Υp(ℝm)
for all x ∈ Ω.

De�nition 2.6. (i) We say that a sequence {uk} ∈ Lp(Ω;ℝm) is asymptoticallyA-free if ‖Auk‖W−1,p(Ω;ℝm) → 0

as k → ∞.

(ii) A functional I as in (2.3) is calledweakly sequentially lower semicontinuous (wslsc) along asymptotically

A-free sequences in Lp(Ω;ℝm) if lim infk→∞ I(uk) ≥ I(u) for all such sequences {uk} that weakly converge

to some limit u in Lp.
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6 | J. Krämer et al.,A-quasiconvexity at the boundary and weak lower semicontinuity

(iii) Analogously, we say that a functional I is weakly sequentially lower semicontinuous (wslsc) alongA-free

sequences in Lp(Ω;ℝm) if

lim inf

k→∞
I(uk) ≥ I(u) for all {uk} ⊂ Lp(Ω;ℝm) ∩ kerA.

We have the following result which was proved in [12, Theorem 2.4] in a slightly less general version. How-

ever, its original proof directly extends to this setting.

Theorem 2.7. Let h : Ω ×ℝm → ℝbe continuous such that h(x, ⋅ ) ∈ Υp(ℝm) for all x ∈ Ω and h(x, ⋅ ) isA-quasi-
convex for almost every x ∈ Ω, 1 < p < +∞. Then, I is sequentially weakly lower semicontinuous in Lp(Ω;ℝm)∩
kerA if and only if

lim inf

k→∞
I∞(wk) ≥ I∞(0) = 0 (2.5)

for every bounded sequence {wk} ⊂ Lp(Ω;ℝm) ∩ kerA with wk → 0 in measure.

The statement of Theorem 2.7 remains valid if we replace the sequences in kerA with asymptoticallyA-free

sequences.

Theorem 2.8. With h and p as in Theorem 2.7, I is wslsc along asymptotically A-free sequences in Lp(Ω;ℝm)
if and only if (2.5) holds for any bounded, asymptoticallyA-free sequence {wk} ⊂ Lp(Ω;ℝm) such that wk → 0

in measure.

Proof. “If”: Let {uk} ⊂ Lp(Ω;ℝm)beasymptoticallyA-freewith uk ⇀ u in Lp, let {zk}bede�nedbyLemma2.3

and let wk := uk − zk. In particular, {zk} ⊂ Lp(Ω;ℝm) ∩ kerA, wk → 0 in measure, and since {wk} is bounded
in Lp, we infer that wk ⇀ 0 and zk ⇀ u. Consider suitable subsequences so that lim inf = lim. Using [12, for-

mula (A.10)] and the fact that the linear hull of {g ⊗ v/| ⋅ |p : g ∈ C(Ω), v ∈ Υp(ℝm)} is dense in C(Ω × βSℝm)
we have

lim

k→∞
∫
Ω

h(x, uk(x))dx = lim

k→∞
∫
Ω

h(x, zk(x))dx + lim

k→∞
∫
Ω

h∞(x, wk(x))dx. (2.6)

As {|zk|p} aswell as {h(x, zk(x))} are equiintegrable, h isA-quasiconvex and zk⇀u, we get limk→∞ I(zk) ≥ I(u)
in view of [12, Theorem 2.3 (i)] (or one can use [15, Theorem 4.1]). Thus,

lim

k→∞
I(uk) ≥ I(u) + lim

k→∞
I∞(wk).

Therefore, limk→∞ I∞(wk) ≥ 0 = I∞(0) is a su�cient condition for sequential weak lower semicontinuity of I.
“Only if”: (2.6) still holds in the special case zk = 0 for all k ∈ ℕ, where uk = wk and uk⇀0. Consequently,

lim

k→∞
I(uk) = I(0) + lim

k→∞
I∞(wk)

and limk→∞ I(uk) ≥ I(0) only if limk→∞ I∞(wk) ≥ 0 = I∞(0), i.e., the latter condition is also necessary.

Remark 2.9. In fact, since A-quasiconvexity e�ectively prevents negative energy contributions of oscilla-

tions, weak lower semicontinuity for such integrands can only fail due to sequences concentrating large

values on small sets. Essentially for the same reasons, concentrations localized in the interior are unable to

create negative energy contributions. The only sequences that really need to be checked are sequences {uk}
which tend to zero in measure and concentrate at the boundary in the sense that {|uk|p} converges weakly*

to a measure σ ∈ M(Ω) with σ(∂Ω) > 0.

3 Notions ofA-quasiconvexity at the boundary
The two conditions introduced below play a crucial role in our characterization of weak lower semicontinu-

ity of integral functionals. They are typically applied to the recession function h∞ of an integrand h with

p-growth.
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Before we state them, we �x some additional notation frequently used in what follows. Let

Lp
0

(Ω;ℝm) := {u ∈ Lp(Ω;ℝm) : supp u ⊂ Ω},

Cp
hom

(ℝm) := {v ∈ C(ℝm) : v is positively p-homogeneous}.

A norm in Cp
hom

is given by the supremum norm taken on the unit sphere inℝm. Moreover, whenever a larger

domain comes into play, functions in Lp
0

(Ω;ℝm) are understood to be extended by zero to ℝn \ Ω without

changing notation.

Thede�nitions givenbeloware stated in a formwhich is themost natural in theproofs of ourmain results,

and also suitable for rather general domains. For domains with a boundary of class C1, equivalent, simpler

variants more closely resembling the original notion of quasiconvexity at the boundary in the sense of Ball

and Marsden are presented in Propositions 3.10–3.12.

De�nition 3.1. We say that h∞ ∈ C(Ω; Cp
hom

(ℝm)) isA-quasiconvex at the boundary (A-qcb) at x
0
∈ ∂Ω if for

every ε > 0 there are δ > 0 and α > 0 such that

∫
B(x

0
,δ)∩Ω

h∞(x, u(x)) + ε|u(x)|p dx ≥ 0 (3.1)

for every u ∈ Lp
0

(B(x
0
, δ);ℝm) with ‖Au‖W−1,p(ℝn;ℝd) < α‖u‖Lp(B(x0 ,δ)∩Ω;ℝm).

The next notion is intimately related to weak lower semicontinuity along asymptotically A-free sequences.

Notice that the only but crucial di�erence between De�nitions 3.1 and 3.2 is the norm used to measureAu.

De�nition 3.2. Wesay that h∞ ∈ C(Ω; Cp
hom

(ℝm)) is stronglyA-quasiconvexat theboundary (strongly-A-qcb)

at x
0
∈ ∂Ω if for every ε > 0 there are δ > 0 and α > 0 such that

∫
B(x

0
,δ)∩Ω

h∞(x, u(x)) + ε|u(x)|p dx ≥ 0 (3.2)

for every u ∈ Lp
0

(B(x
0
, δ);ℝm) with ‖Au‖W−1,p(Ω;ℝd) < α‖u‖Lp(B(x0 ,δ)∩Ω;ℝm).

As we will show below, strong A-qcb is natural in the characterization for weak lower semicontinuity along

asymptotically A-free sequences, while A-qcb plays the same role for weak lower semicontinuity along pre-

cisely A-free sequences. While strong A-qcb always implies A-qcb, they are not equivalent in general (see

Section 5).

Remark 3.3. Due to the fact that Au in De�nition 3.1 is required to be small (compared to u) on B(x
0
, δ)

(actually even onℝn, but u = 0 outside of B(x
0
, δ)), a set which is not fully contained in Ω,A-qcb as de�ned

above can only be natural if there is an A-free extension operator on Lp(Ω;ℝm), cf. De�nition 4.4 below.

However, the existence of such an extension operator may require su�cient smoothness of ∂Ω and, worse,

it strongly depends onA (it fails for the Cauchy–Riemann system, e.g.). The strong variant ofA-qcb does not

have this unpleasant implicit dependence onA-free extension properties as shown by our results in the next

section.

Remark 3.4. In De�nition 3.1, Au is measured in the norm of W−1,p(ℝn;ℝd), but instead of ℝn, other do-
mains for this space can be used as well. More precisely, ℝn can be replaced by any domain Sδ compactly

containing B(x
0
, δ), because Au is a distribution supported on B(x

0
, δ). For this class of distributions,

the norms of W−1,p(ℝn;ℝd) and W−1,p(Sδ;ℝd) are equivalent (with constants depending on δ that can be

absorbed by α). In particular, A-qcb can also be de�ned using the class of all u ∈ Lp
0

(B(x
0
,

δ
2

);ℝm) with

‖Au‖W−1,p(B(x
0
,δ);ℝd) < α‖u‖Lp(B(x0 ,δ)∩Ω;ℝm). Similarly, the class of test functions in De�nition 3.2 can be re-

placed by the set of all u ∈ Lp
0

(B(x
0
,

δ
2

);ℝm) such that ‖Au‖W−1,p(Ω∩B(x
0
,δ);ℝd) < α‖u‖Lp(Ω∩B(x0 ,δ);ℝm).

Remark 3.5. InDe�nition3.1 aswell as inDe�nition3.2, if for a given ε > 0 the estimateholds for some δ > 0,

then it also holds for any
̃δ < δ in place of δ, provided that u ∈ Lp

0

(B(x
0
,

̃δ);ℝm). Hence, bothA-qcb and strong

A-qcb are local properties of h∞ in the x variable, since it su�ces to study arbitrarily small neighborhoods

of x
0
.
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8 | J. Krämer et al.,A-quasiconvexity at the boundary and weak lower semicontinuity

It is possible to formulate several equivalent variants of the de�nitions ofA-quasiconvexity at the boundary.

In particular, the following proposition shows that the �rst variable of h can be “frozen” in De�nition 3.2.

Proposition 3.6. A function (x, s) Ü→ h∞(x, s), h∞ ∈ C(Ω; Cp
hom

(ℝm)), is stronglyA-qcb at x
0
∈ ∂Ω if and only

if s Ü→ h∞(x
0
, s) is stronglyA-qcb at x

0
∈ ∂Ω.

Comment 3.7. A function h∞ ∈ C(Ω; Cp
hom

(ℝm)) is A-qcb at x
0
∈ ∂Ω if and only if for every ε > 0 there

are δ > 0 and α > 0 such that for all u ∈ Lp
0

(B(x
0
, δ);ℝm) with ‖Au‖W−1,p < α‖u‖Lp (all norms taken on

B(x
0
, δ) ∩ Ω),

∫
B(x

0
,δ)∩Ω

h∞(x
0
, u(x)) + ε|u(x)|p dx ≥ 0. (3.3)

Proof. Let ε > 0 and recall that if (3.1) holds for some δ > 0, then it holds also for any 0 < ̃δ < δ in the place

of δ. We have

!!!!!!!!!
∫

B(x
0
,δ)∩Ω

[h∞(x, u(x)
|u(x)|)

− h∞(x
0
,

u(x)
|u(x)|)]

|u(x)|p dx
!!!!!!!!!

≤ ∫
B(x

0
,δ)∩Ω

µ(|x − x
0
|)|u(x)|p dx ≤ M(δ) ∫

B(x
0
,δ)∩Ω

|u(x)|p dx, (3.4)

where µ : ℝ→ ℝ is a continuous modulus of continuity of the continuous function h∞ restricted to the com-

pact set Ω × Sm−1 and M(δ) := maxx∈B(x
0
,δ)∩Ω µ(|x − x0|). In particular, M(δ) → 0 as δ → 0. Due to (3.4) and

the p-homogeneity of h∞ in its second variable, (3.1) implies that

∫
B(x

0
,δ)∩Ω

h∞(x
0
, u(x)) + (M(δ) + ε)|u(x)|p dx ≥ ∫

B(x
0
,δ)∩Ω

h∞(x, u(x)) + ε|u(x)|p dx ≥ 0.

SinceM(δ) + ε can be made arbitrarily small if δ is small enough, we infer that (x, s) Ü→ h∞(x
0
, s) is strongly

A-qcb at x
0
. The converse implication is proved analogously.

Exactly as in the case of De�nition 3.2, the �rst variable of h∞ can be “frozen” in De�nition 3.1.

Proposition 3.8. A function (x, s) Ü→ h∞(x, s), h∞ ∈ C(Ω; Cp
hom

(ℝm)), is A-qcb at x
0
∈ ∂Ω if and only if

(x, s) Ü→ h(x
0
, s) isA-qcb at x

0
∈ ∂Ω.

Comment 3.9. A function h∞ ∈ C(Ω; Cp
hom

(ℝm)) is A-qcb at x
0
∈ ∂Ω if and only if for every ε > 0 there are

δ > 0 and α > 0 such that for all u ∈ Lp
0

(B(x
0
, δ);ℝm) with ‖Au‖W−1,p(ℝn;ℝd) < α‖u‖Lp(Ω;ℝm),

∫
B(x

0
,δ)∩Ω

h∞(x
0
, u(x)) + ε|u(x)|p dx ≥ 0 . (3.5)

By itself, “freezing” the�rst variable of h doesnot help to really simplify eitherDe�nition3.1 orDe�nition3.2,

because the possibly complicated local shape of the domain can still prevent passing to the limit as δ → 0 in

a meaningful way. However, this is the best we can do without imposing further restrictions on the smooth-

ness of ∂Ω. Even for Lipschitz domains, the general form of the de�nitions typically cannot be avoided (see

[20, Remark 1.8] for a more detailed discussion of this in the gradient case corresponding toA=curl).

So far it is not clear to what extent the notion of (strong)A-qcb depends on the local shape of ∂Ω near the

boundary point x
0
under consideration. The propositions below show that at least for domains with smooth

boundary we can in some sense pass to the limit as δ → 0 in De�nition 3.1 and De�nition 3.2, and the de�-

nitions do not depend on any other properties of the domain apart from the outer normal.

Proposition 3.10. Assume that Ω ⊂ ℝn has a C1-boundary in a neighborhood of x
0
∈ ∂Ω. Let νx

0

be the outer
unit normal to ∂Ω at x

0
and

Dx
0

:= {x ∈ B(0, 1) : x ⋅ νx
0

< 0}.

Then, v ∈ Cp
hom

(ℝm) is strongly-A-qcb at x
0
if and only if for every ε > 0 there exists β > 0 such that

∫
Dx

0

v(φ(x)) + ε|φ(x)|p dx ≥ 0 for all φ ∈ Lp
0

(B(0, 1
2

);ℝm) : ‖Aφ‖W−1,p(Dx
0

;ℝd) ≤ β‖φ‖Lp(Dx
0

;ℝm). (3.6)
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Proof. Without loss of generality let us assume x
0
= 0. We adapt the proof which appeared already in [20] for

the gradient case.

“Only if”: Suppose that v is strongly-A-qcb at 0. Take ε > 0 and get α, δ > 0 such that

∫
B(0,δ)∩Ω

v(u(x)) + ε|u(x)|p dx ≥ 0 (3.7)

for every u ∈ Lp
0

(B(0, δ
2

);ℝm) such that ‖Au‖W−1,p(B(0,δ)∩Ω;ℝd) ≤ α‖u‖Lp(B(0,δ)∩Ω;ℝm). Introducing the scaling

Φδ : B(0, δ) ∋ x Ü→ δ−1x ∈ B(0, 1), the inequality (3.7) can be rewritten as

∫
δ−1(Ω∩B(0,δ))

v(y(x�)) + ε|y(x�)|p dx� ≥ 0, where y := δ
n
p u ∘ Φ−1δ . (3.8)

Due to the smoothness of the boundary near zero, there exists a transformation Ψδ : B(0, 1) → B(0, 1) such
that Ψδ(0) = 0, Ψδ(B(0, 1

2

)) = B(0, 1
2

) and Ψδ(D0
) = δ−1(Ω ∩ B(0, δ)), while both Ψδ and its inverse Ψ

−1
δ

converge to the identity in C1(B(0, 1);ℝn) as δ → 0. We refer to [20, p. 400] or [3, p. 257] for a similar

construction. Hence, (3.8) leads to

∫
D
0

(v(φ(z)) + ε|φ(z)|p)|det DzΨδ(z)|dz ≥ 0, (3.9)

where φ := y ∘ Ψδ and [DzΨδ]ij := ∂Ψδi/∂zj for i, j = 1, . . . , n. Due to the boundedness of v + ε| ⋅ |p and the

(uniform) continuity of the transformation Ψδ on the unit sphere, we have the estimate

!!!!(v(φ(z)) + ε|φ(z)|
p)(|det DzΨδ(z)| − 1)!!!! ≤ ε|φ(z)|

p
, (3.10)

for δ > 0 su�ciently small. Incorporating (3.10) into (3.9), we see that

∫
D
0

(v(φ(z)) + 2ε|φ(z)|p)dz ≥ 0.

It remains to �nd some β = β(ε, δ, α) > 0, such that for any admissible φ in (3.6), the associated function

u = δ−
n
p φ ∘Ψ−1δ ∘Φδ is admissible as a test function in (3.7), i.e., we need that ‖Aφ‖W−1,p(D

0
;ℝd) ≤ β‖φ‖Lp(D0

;ℝm)

implies that ‖Au‖W−1,p(B(0,δ)∩Ω;ℝd) ≤ α‖u‖Lp(B(0,δ)∩Ω;ℝm).
We calculate

‖Aφ‖W−1,p(D
0
;ℝd)

= sup

‖w‖
W1,p�
0

(D
0
;ℝd )
≤1

n
∑
i=1

∫
D
0

A(i)φ(z) ⋅ ∂w(z)
∂zi

dz

= sup

‖w‖≤1

n
∑
i=1

∫
Ψδ(D0

)

A(i)φ(Ψ−1δ (x�)) ⋅ ∂w
∂zi

(Ψ−1δ (x�))|det DΨ−1δ (x�)|dx�

= sup

‖w‖≤1

n
∑
i=1

∫
1

δ (B(0,δ)∩Ω)

d
∑
j=1

(A(i)φ(Ψ−1δ (x�)))j ⋅ (Dx� (w(Ψ
−1
δ (x�))) ⋅ (DΨ−1δ (x�))−1)j,i ⋅ |det DΨ

−1
δ (x�)|dx�.

Denoting wδ := w ∘ Ψ−1δ , using the function y as in (3.8) and the convergence of Ψ

−1
δ to the identity in

C1(B(0, 1);ℝn), we get

‖Aφ‖W−1,p(D
0
;ℝd) ≥

1

2

sup

‖wδ‖
W1,p�
0

(Ψδ (D0);ℝd )
≤1

n
∑
i=1

∫
1

δ (B(0,δ)∩Ω)

A(i)y(x�)∂wδ(x
�)

∂x�i
dx�

=
1

2δn
sup

‖wδ‖≤1

n
∑
i=1

∫
B(0,δ)∩Ω

A(i)y(δ−1x)∂wδ
∂x�i

(δ−1x)dx

=
1

2δn
sup

‖wδ‖≤1

n
∑
i=1

∫
B(0,δ)∩Ω

A(i)(δn/pu(x))δ ∂(wδ(δ
−1x))

∂xi
dx
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10 | J. Krämer et al.,A-quasiconvexity at the boundary and weak lower semicontinuity

for su�ciently small δ. With ηδ(x) := δ
1− n

p� wδ(δ−1x) and due to

‖Dηδ‖Lp� (B(0,δ)∩Ω;ℝd) = ‖Dwδ‖Lp� ( 1δ (B(0,δ)∩Ω;ℝd),

it follows that

‖Aφ‖W−1,p(D
0
;ℝd) ≥

1

2δn
sup

‖ηδ‖
W1,p�
0

(B(0,δ)∩Ω;ℝd )
≤1

n
∑
i=1

∫
B(0,δ)∩Ω

A(i)u(x) ⋅ ∂ηδ(x)
∂xi

δn dx

=
1

2

‖Au‖W−1,p(B(0,δ)∩Ω;ℝd).

By a similar procedure as above, we compute

‖u‖pLp(B(0,δ)∩Ω;ℝm) = ∫
B(0,δ)∩Ω

|u(x)|p dx = ∫
δ−1(B(0,δ)∩Ω)

|u(Φ−1δ (x�)|p|det Dx�Φ−1δ (x�)|dx�

= ∫
δ−1(B(0,δ)∩Ω)

|y(x�)|p dx� = ∫
D
0

|y(Ψδ(z))|p|det DzΨδ(z)|dz

≥
1

2

∫
D
0

|φ(z)|p dz = 1

2

‖φ‖pLp(D
0
;ℝm).

In summary,

‖Au‖W−1,p(B(0,δ)∩Ω;ℝd) ≤ 2‖Aφ‖W−1,p(D
0
;ℝd) ≤ 2β‖φ‖Lp(D

0
;ℝm) ≤ 4β‖u‖Lp(B(0,δ)∩Ω;ℝm),

and we therefore choose β = 1

4

α.
“If”: The su�ciency of (3.6) for v to beA-qcb at 0 can be shown by analogous computations, instead of

the (uniform) convergence of Ψ

−1
δ one uses the (uniform) convergence of Ψδ as δ → 0.

Following the proof of Proposition 3.10, we are also able to give an equivalent variant of A-qcb in the limit

as δ → 0.

Proposition 3.11. Assume that Ω ⊂ ℝn has a boundary of class C1 in a neighborhood of x
0
∈ ∂Ω. Let νx

0

be
the outer unit normal to ∂Ω at x

0
and

Dx
0

:= {x ∈ B(0, 1) : x ⋅ νx
0

< 0}.

Then, v ∈ Cp
hom

(ℝm) isA-qcb at x
0
if and only if for every ε > 0 there exists β > 0 such that

∫
Dx

0

v(φ(x)) + ε|φ(x)|p dx ≥ 0 for all φ ∈ Lp
0

(B(0, 1
2

);ℝm) : ‖Aφ‖W−1,p(B(0,1);ℝd) ≤ β‖φ‖Lp(Dx
0

;ℝm). (3.11)

It is possible to derive another version of A-qcb with periodic, precisely A-free test functions and a much

more obvious relationship toA-quasiconvexity. Instead of admitting test functions that are “almost”A-free,

we now work with a class of A-free functions that “almost” have compact support (since ã can be chosen

arbitrarily small in (3.12) below).

Proposition 3.12. Let x
0
∈ ∂Ω, assume that ∂Ω is of class C1 in a neighborhood of x

0
, and de�ne

Q = Q(x
0
) := {y ∈ ℝn : |y ⋅ ej| < 1 for j = 1, . . . , n}

and Q− := {y ∈ Q : y ⋅ e
1
< 0}, where e

1
, . . . , en of ℝn is an orthonormal basis of ℝn such that e

1
= νx

0

, the
unit outer normal to ∂Ω at x

0
. Then, v ∈ Cp

hom

(ℝm) isA-qcb at x
0
if and only if for every ε > 0, there exists ã > 0

such that

∫
Q−

v(φ(x)) + ε|φ(x)|p dx ≥ 0 for all φ ∈ Lp
#

(Q;ℝm) : Aφ = 0, ‖φ‖Lp(Q\ 1
2

Q;ℝm) ≤ ã‖φ‖Lp(Q;ℝm). (3.12)

Proof. “If”: We claim that (3.12) implies (3.11). By p-homogeneity, it su�ces to show the integral inequality

in (3.11) for every φ ∈ Lp
0

(B(0, 1
2

);ℝm) ⊂ Lp
0

(1
2

Q;ℝm)with ‖φ‖Lp = 1 and ‖Aφ‖W−1,p ≤ β, where β = β(ε) is yet
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to be chosen. Below, the average of φ is denoted by

aφ :=
1

|Q| ∫
Q

φ(x)dx.

By Lemma 2.1 and Remark 2.2, ‖φ − aφ − Tφ‖Lp(Q;ℝm) becomes arbitrarily small (so that, in particular,

‖aφ − Tφ‖Lp(Q\ 1
2

Q;ℝm) ≤ ã‖aφ − Tφ‖Lp(Q;ℝm), using that φ = 0 on Q \ 1

2

Q and ‖φ‖Lp(Q;ℝm) = 1), provided that

‖Aφ‖W−1,p ≤ β is small enough. In view of Lemma A.3 (uniform continuity of u Ü→ v(u) in Lp and u Ü→ |u|p

in L1, on bounded sets in Lp), this means that for every ε > 0, there exists β > 0 such that

∫
Q−

v(φ(x)) + ε|φ(x)|p dx ≥ ∫
Q−

v(aφ + Tφ(x)) + ε
2

|aφ + Tφ(x)|p dx,

and due to the integral inequality in (3.12) with aφ + Tφ instead of φ, the right-hand side above is non-

negative. Hence,

∫
Dx

0

v(φ(x)) + ε|φ(x)|p dx = ∫
Q−

v(φ(x)) + ε|φ(x)|p dx ≥ 0.

“Only if”: Suppose that (3.11) holds. Let ε > 0, and let φ denote an admissible test function for (3.12),

i.e.,φ ∈ Lp
#

(Q;ℝm)withAφ = 0 and ‖φ‖Lp(Q\ 1
2

Q;ℝm) ≤ ã‖φ‖Lp(Q;ℝm),with someãstill to be chosen.Wemayalso

assume that ‖φ‖Lp(Q) = 1. Let η ∈ C∞
0

(Q; [0, 1])be a �xed function such that η = 1 on

1

2

Q and η = 0 onQ \ 3

4

Q.
Observe that ‖φ − ηφ‖Lp(Q;ℝm) ≤ 2‖φ‖Lp(Q\ 1

2

Q;ℝm) ≤ 2ã‖φ‖Lp(Q;ℝm), whence

‖φ − ηφ‖Lp(Q;ℝm) ≤ 2ã‖φ‖Lp(Q;ℝm) ≤
2ã

1 − 2ã‖ηφ‖L
p(Q;ℝm).

In addition, there exists a constant C ≥ 0 depending on η andA such that

‖A(ηφ)‖W−1,p(Q;ℝd) ≤ C‖φ‖Lp( 3
4

Q\ 1
2

Q;ℝm) ≤ Cã‖φ‖Lp(Q;ℝm) ≤
Cã

1 − 2ã‖ηφ‖L
p(Q;ℝm).

Hence, for ã su�ciently small, ηφ is an admissible test function for (3.11) (which we apply with

ε
2

instead

of ε), up to the fact that the support of ηφ, which is contained in

3

4

Q, might be larger than B(0, 1
2

). This,
however, can be easily corrected by a change of variables, rescaling by a �xed factor. Consequently,

∫
Q−

v(η(x)φ(x)) + ε
2

|η(x)φ(x)|p dx ≥ 0,

and due to the uniform continuity shown in Lemma A.3, we conclude that for ã small enough,

∫
Q−

v(φ(x)) + ε|φ(x)|p dx ≥ 0.

Wenow focus on the link between (strong)A-quasiconvexity at the boundary andweak lower semicontinuity

along (asymptotically)A-free sequences.

4 Link to weak lower semicontinuity

4.1 AsymptoticallyA-free sequences

Proposition 4.1. Let h∞ ∈ C(Ω; Cp
hom

(ℝm)). Then I∞(u) := ∫
Ω

h∞(x, u(x))dx is weakly sequentially lower
semicontinuous along asymptoticallyA-free sequences in Lp(Ω;ℝm) if and only if the following hold:
(i) h∞ is strongly-A-qcb at every x

0
∈ ∂Ω,

(ii) h∞(x, ⋅ ) isA-quasiconvex at almost every x ∈ Ω.
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12 | J. Krämer et al.,A-quasiconvexity at the boundary and weak lower semicontinuity

Remark 4.2. The proof below shows that (ii) is necessary even if we have weak lower semicontinuity only

along (asymptoticallyA-free) concentrating sequences in the sense of Theorem 2.8.

Proof. “Only if”: We show that strongly-A-qcb at x
0
∈ ∂Ω is a necessary condition; the necessity of (ii) is well

known. Suppose that h∞ is not strongly-A-qcb at x
0
∈ ∂Ω. This means that there exists ε > 0 such that for

every k ∈ ℕ, there exist uk ∈ L
p
0

(B(x
0
,

1

k );ℝ
m) with ‖Auk‖W−1,p(Ω;ℝd) ≤ 1

k ‖uk‖Lp(Ω;ℝm) and

∫
B(x

0
,

1

k )∩Ω

h∞(x, uk(x)) + ε|uk(x)|p dx < 0.

In particular, uk cannot be the zero function. Denote

ûk := uk/‖uk‖Lp(B(x
0
,

1

k )∩Ω;ℝm)
= uk/‖uk‖Lp(Ω;ℝm).

Then, ûk ∈ L
p
0

(Ω;ℝm)with ‖ûk‖Lp = 1 and ‖Aûk‖W−1,p(Ω;ℝd) ≤ 1

k . In addition, ûk vanishes outside of B(x
0
,

1

k ),
so that ûk → 0 in measure and weakly in Lp(B(x

0
, 1);ℝm). However,

lim inf

k→∞
∫
Ω

h∞(x, ûk(x))dx ≤ −ε < 0 = ∫
Ω

h∞(x, 0)dx.

This means that u Ü→ ∫
Ω

h∞(x, u(x))dx is not lower semicontinuous along {ûk}.
“If”: Let us now prove the su�ciency. By Theorem 2.8 and because of (ii), it is enough to show that I∞ is

lower semicontinuous along asymptoticallyA-free bounded sequences in Lp(Ω;ℝm), which converge to zero

inmeasure. Let {wk} be such sequence and let (π, λ) ∈ DM
p
S(Ω;ℝ

m) be a DiPerna–Majdameasure describing

lim infk→∞ I∞(wk). Take x0 ∈ ∂Ω and δ > 0 small enough such that π(∂B(x
0
, δ) ∩ Ω) = 0. By (A.4),

lim

k→∞
∫

B(x
0
,δ)∩Ω

h∞(x, wk(x))dx = ∫

B(x
0
,δ)∩Ω

∫
βSℝm\ℝm

h∞(x, s)
1 + |s|p

dλx(s)dπ(x). (4.1)

Let {ηℓ} ⊂ C∞
0

(B(x
0
, δ)) such that 0 ≤ ηℓ ≤ 1 and ηℓ → χB(x

0
,δ) as ℓ → ∞. Here, χB(x

0
,δ) is the characteristic

function of B(x
0
, δ) in ℝn. By Lemma 2.4, A(ηℓuk) → 0 in W−1,p(Ω;ℝd) as k → ∞ for �xed ℓ. Take ε > 0,

α, δ > 0 as in De�nition 3.2 and set w̃k := ηℓ(k)wk, where ℓ(k) tends to∞ su�ciently slowly as k → ∞ so that

Aw̃k → 0 inW−1,p(Ω;ℝd). Reasoning as in [12, Appendix], using that π(∂B(x
0
, δ) ∩ Ω) = 0, we see that {w̃k}

also generates (π, λ), at least on B(x
0
, δ) ∩ Ω. If w̃k strongly converges to zero in Lp(Ω;ℝm), we have

0 = lim

k→∞
∫

B(x
0
,δ)∩Ω

h∞(x, w̃k(x)) + ε|w̃k(x)|p dx. (4.2)

Otherwise, a subsequence of {‖w̃k‖Lp } (not relabeled) is bounded away from zero, and since Aw̃k → 0

inW−1,p, this implies that ‖Aw̃k‖W−1,p ≤ α‖w̃k‖Lp , at least for k large enough. Hence, w̃k is admissible as a test

function in (3.2). Therefore, in both cases, the right-hand side of (4.2) is nonnegative due to De�nition 3.2

and can be expressed using (A.4):

0 ≤ lim

k→∞
∫

B(x
0
,δ)∩Ω

h∞(x, w̃k(x)) + ε|w̃k(x)|p dx = ∫

B(x
0
,δ)∩Ω

∫
βRℝm\ℝm

h∞(x, s) + ε|s|p

1 + |s|p
dλx(s)dπ(x).

Hence,

0 ≤ π(B(x
0
, δ) ∩ Ω)−1 ∫

B(x
0
,δ)∩Ω

∫
βRℝm\ℝm

h∞(x, s) + ε|s|p

1 + |s|p
dλx(s)dπ(x).

Therefore, by the Lebesgue–Besicovitch di�erentiation theorem (see [10], for example) and by taking into

account that ε > 0 is arbitrary we get that for π-almost every x
0
∈ ∂Ω,

0 ≤ ∫
βRℝm\ℝm

h∞(x
0
, s)

1 + |s|p
dλx

0

(s).

This together with Theorem A.2 and (A.4) implies that the inner integral on the right-hand side of (4.1) is

nonnegative for π-almost every x
0
∈ Ω. As a consequence, I∞ is lower semicontinuous along {wk}.
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In view of Theorem 2.8, our results obtained so far can be summarized as follows.

Theorem 4.3. Let Ω ⊂ ℝn be a bounded domain with Ln(∂Ω) = 0 and 1 < p < +∞. Let also h : Ω ×ℝm → ℝ
be continuous and such that h(x, ⋅ ) ∈ Υp(ℝm) for all x ∈ Ω, with recession function h∞ ∈ C(Ω; Cp

hom

). Then, I is
weakly lower semicontinuous along asymptoticallyA-free sequences if and only if the following hold:
(i) h(x, ⋅ ) isA-quasiconvex for almost all x ∈ Ω,
(ii) h∞ is stronglyA-quasiconvex at the boundary for all x

0
∈ ∂Ω.

Proof. “If”: This is a immediate consequence of Theorem 2.8 and Proposition 4.1.

“Only if”: The necessity of (i) is well known, cf. [15]. The necessity of (ii) follows from Theorem 2.8 and

Remark 4.2.

4.2 GenuinelyA-free sequences

We now focus on weak lower semicontinuity along sequences {uk} that satisfyAuk = 0 for each k ∈ ℕ. Since
a substantial part of the arguments in this context is analogous to the ones in the preceding subsection, we

do not always give full proofs. The main di�erence is that for the link to A-quasiconvexity at the boundary

(A-qcb) as introduced in De�nition 3.1, more precisely, for its su�ciency, we rely on an extension property.

De�nition 4.4 (A-free extension domain). We say that Ω is anA-free extension domain if there exists a larger

domain Ω

�
with Ω ⊂⊂ Ω�

and an associated A-free extension operator, i.e., a bounded linear operator

E : Lp(Ω;ℝm) ∩ kerA → Lp(Ω�
;ℝm) ∩ kerA such that Eu = u on Ω.

As mentioned before, the existence of an A-free extension operator not only depends on the smoothness of

∂Ω, but also on A itself. On the one hand, if ∂Ω is Lipschitz, extension operators are available for A = curl

andA = div (essentially using a partition of unity and an extension by a suitable re�ection). But on the other

hand, if we chooseA to be the di�erential operator of the Cauchy–Riemann system (n = m = 2, identifyingℂ
withℝ2), no such extension operator exists even for very smooth domains, since holomorphic functions with

singularities at the boundary of Ω can never be extended to holomorphic functions on a larger set including

the singular point¹.

With the help of the extension property and the projection T of Lemma 2.1, Proposition 4.1 can be

adapted to the setting of genuinelyA-free sequences.

Proposition 4.5. Suppose that Ω is an A-free extension domain and let h∞ ∈ C(Ω; Cp
hom

(ℝm)). Then, the
functional I∞(u) := ∫

Ω

h∞(x, u(x))dx is weakly sequentially lower semicontinuous along A-free sequences in
Lp(Ω;ℝm) if and only if the following hold:
(i) h∞ isA-qcb at every x

0
∈ ∂Ω,

(ii) h∞(x, ⋅ ) isA-quasiconvex at almost every x ∈ Ω.

Proof. “Only if”: Again, the necessity of (ii) is well known. If h∞ is not A-qcb at a point x
0
∈ ∂Ω, as in the

proof of Proposition 4.1, we obtain an ε > 0 and a sequence {ûk} ⊂ L
p
0

(B(x
0
,

1

k );ℝ
m) with ‖ûk‖Lp(Ω;ℝm) = 1

such that

lim inf

k→∞
∫
Ω

h∞(x, ûk(x))dx ≤ −ε < 0 = ∫
Ω

h∞(x, 0)dx

and ‖Aûk‖W−1,p(ℝn;ℝd) ≤ 1

k . Each ûk can be interpreted as a Q-periodic function û#k with respect to a cube Q
compactly containing Ω ∪ B(x

0
, 1), by �rst extending ûk by zero to the rest of Q and then periodically to ℝn.

1 In terms of integrability, the weakest possible point singularity of an elsewhere holomorphic function locally behaves like

z Ü→ 1

z (z ∈ ℂ \ {0}), which is not in Lp(Ω) if p ≥ 2, 0 ∈ ∂Ω and ∂Ω is smooth in a neighborhood of 0, but using an appropriately

weighted series of singular terms, each with a singularity slightly outside Ω, accumulating at a boundary point, examples in Lp

are possible for arbitrary 1 ≤ p <∞.
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14 | J. Krämer et al.,A-quasiconvexity at the boundary and weak lower semicontinuity

We denote its cell average by

ak :=
1

|Q| ∫
Q

ûk dx.

By Remark 2.2, we infer that ‖Aû#k‖W−1,p
#

(ℝn;ℝd) ≤
C
k with a constant C ≥ 0 independent of k. The projection

of Lemma2.1 now yields the sequence {Tû#k} ⊂ L
p
#

(Rn;ℝm)∩kerA, which satis�es ‖ak+Tû#k− ûk‖Lp(Q;ℝm) → 0

as k → ∞. Consequently, ak + Tû#k ⇀ 0weakly in Lp just like ûk, and due to Lemma A.3 (uniform continuity

on bounded subsets of Lp, applied on Ω ⊂ Q),

lim inf

k→∞
∫
Ω

h∞(x, ak + Tû#k(x))dx ≤ −ε < 0 = ∫
Ω

h∞(x, 0)dx.

Hence, I∞ is not lower semicontinuous along theA-free sequence {ak + Tû#k}.
“If”: The argument is completely analogous to that of Proposition 4.1, using Theorem 2.7 instead of The-

orem 2.8. Observe that due to the extension operator, any given sequence {uk}, along which we want to show

lower semicontinuity, is de�ned and isA-free on some set Ω

� ⊃⊃ Ω. Hence, after the truncation argument of

Proposition 4.1, we now end upwith an admissible test function for De�nition 3.1 (see also Remark 3.4).

We arrive at the analogous main result.

Theorem 4.6. Suppose that Ω ⊂ ℝn be a boundedA-free extension domain with Ln(∂Ω) = 0. Let 1 < p < +∞,
and let h : Ω ×ℝm → ℝ be continuous and such that h(x, ⋅ ) ∈ Υp(ℝm) for all x ∈ Ω, with recession function
h∞ ∈ C(Ω; Cp

hom

). Then, I is sequentially weakly lower semicontinuous alongA-free sequences if and only if the
following hold:
(i) h(x, ⋅ ) isA-quasiconvex for almost all x ∈ Ω,
(ii) h∞ isA-quasiconvex at the boundary for all x

0
∈ ∂Ω.

Remark 4.7. In general, the continuity of h∞ in x cannot be dropped in Theorem 4.6. For a counterexample

in the gradient case (A =curl) see [20, Section 4].

5 Concluding remarks

5.1 A-free versus asymptoticallyA-free sequences

It is obvious that weak lower semicontinuity along asymptoticallyA-free sequences implies weak sequential

lower semicontinuity for the functional restricted to kerA.We do not knowwhether or not the converse is true

in general. However, it holds at least in some special cases. More precisely, it su�ces to have an extension

property in the following sense.

De�nition 5.1 (AsymptoticallyA-free extensions). We say that Ω has theA-(Lp,W−1,p) extension property if

there exists a domain Λ with Ω ⊂⊂ Λ and a linear operator E : Lp(Ω;ℝm) → Lp(Λ;ℝm) such that for every

u ∈ Lp(Ω;ℝm), Eu = u on Ω,

‖Eu‖Lp(Λ;ℝm) ≤ C‖u‖Lp(Ω;ℝm) and ‖AEu‖W−1,p(Λ;ℝd) ≤ C‖Au‖W−1,p(Ω;ℝd),

where C ≥ 0 is a suitable constant.

If this holds, we can always reduce asymptoticallyA-free sequences to genuinelyA-free sequences with arbi-

trarily small error in Lp. The argument can be sketched as follows: For a given approximatelyA-free sequence

uk ⇀ u along which we want to show lower semicontinuity, it is possible to truncate the extension of uk − u,
multiplying with a cut-o� function which is 1 on Ω andmakes a transition down to zero in Λ \ Ω (this cannot

be done inside, because uk might concentrate a lot of mass near ∂Ω, and cutting o� inside Ω could then sig-

ni�cantly alter the limit of the functional along the sequence). The modi�ed sequence is still asymptotically
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A strongA-qcb ⇔A-qcb Extension property of De�nition 5.1

div (n ∈ ℕ) true true
Cauchy–Riemann (n = 2) false false
curl (n = 2) true true
curl (n > 2) open open

Table 1.A-qcb versus strongA-qcb for some examples ofA.

A-free due to Lemma 2.4, and since it is compactly supported in Λ by construction, we can further extend it

periodically toℝn, with a su�ciently large fundamental cell of periodicity containing the support of the cut-

o� function. We thus end up in the periodic setting where we can project ontoA-free �elds with controllable

error, using Lemma 2.1.

Clearly, the A-(Lp,W−1,p) extension property implies standard A-free extension property introduced in

De�nition 4.4 (but the converse is not clear there, either), and if the former holds, then A-quasiconvexity

at the boundary and strong A-quasiconvexity at the boundary are equivalent. Even for smooth domains,

the A-(Lp,W−1,p) extension property depends on A (and possibly on p). For instance, it holds for A = div

on domains of class C1 using local maps and extension by an appropriate re�ection for �at pieces of the

boundary, but not for allA. In particular, it fails for the Cauchy–Riemann system, just like the weakerA-free

extension property introduced in De�nition 4.4. Interestingly, the case A =curl seems to be nontrivial: The

A-(Lp,W−1,p) extension property for A =curl does hold for n = 2 (the 2d-curl and the 2d-divergence are the

same operators up to a �xed rotation), but if n ≥ 3, we do not know. For a �at piece of the boundary, the

natural extension for almost curl-free �elds would of course also be by re�ection, i.e., the one corresponding

to an even extension of the scalar potential across the boundary (even in direction of the normal), but in this

case the required estimate inW−1,p for the curl seems to be nontrivial, if true at all. The problem appears for

those components of the curl that contain only partial derivatives in the tangential directions, precisely the

ones that “naturally” get extended to even functions, say, ∂
2
u
3
− ∂

3
u
2
, if the normal to the boundary (locally)

is the �rst unit vector.

The situation for smooth domains is summarized in Table 1. Although the second and the third column

in the table coincide we do not know whether the existence of the extension in the sense of De�nition 5.1 is

really equivalent toA-qcb⇒ strongA-qcb. In view of the constant rank condition (2.2), which makes it hard

to characterize the class of the admissible operators A beyond a few examples, a systematic analysis for all

A seems to be out of reach.

5.2 The gradient case and classical quasiconvexity at the boundary

If φ ∈ kerA, then (3.6) as well as (3.11) implies that ∫Dx
0

v(φ(x))dx ≥ 0. For A = curl, the di�erential con-

straint can also be encoded using potentials: If φ ∈ Lp and curlφ = 0 on the simply connected domain Dx
0

,

then there exists a potential vector �eldΦ ∈ W1,p
with φ = ∇Φ, and if φ = 0 on Dx

0

\ B(0, 1
2

), thenΦ inherits

this property up to an appropriate choice of the constants of integration. Hence, we get that

∫
Dx

0

v(∇Φ(x))dx ≥ 0 for every Φ ∈ W1,p
0

(B(0, 1
2

);ℝm). (5.1)

Taking into account that for p-homogeneous v, v(0) = 0 and Dv(0) = 0, the latter condition is the so-called

quasiconvexity at the boundary [3] (at the zero matrix).

The converse, that is, going back from (5.1) to either (3.6) or (3.11), is not so obvious, however, because

(5.1) does not admit test �elds with small but non-zero curl. Nevertheless, in case of (3.11) and for quasi-

convex v, this is true as a consequence of known characterizations of weak lower semicontinuity, on the one

hand our Proposition 4.5 and on the other [20, Theorem 1.6]. (A proof directly working with (5.1) and (3.11),

projection and error estimates is also possible, although slightly more technical.)
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16 | J. Krämer et al.,A-quasiconvexity at the boundary and weak lower semicontinuity

5.3 Examples for the case of higher order derivatives

The following example shows that I(u) := ∫
Ω

det∇2u(x)dx is not weakly lower semicontinuous on W2,2(Ω).
Consequently, the determinant is not A-qcb for suitably de�ned A. As to the de�nition of A, we recall [15]:

The functional I �ts into our framework, if instead of ∇2u, we de�ne I on �elds v = (v)ij, 1 ≤ i ≤ j ≤ n, in L2,
satisfyingAv := curl v = 0, with the understanding that for each x, v(x) (the upper triangular part of amatrix)

is identi�ed with a symmetric matrix in ℝn×n still denoted v, both for the application of the (row-wise) curl

and the evaluation of I, where ∇2u is replaced by v. One can check that Av = 0 if and only if there exists

a scalar-valued u ∈ W2,2

with v = ∇2u, at least as long as the domain is simply connected.

Example 5.2. Consider Ω := (0, 1) × (−1, 1) and for F ∈ ℝ2×2 the function v∞(F) := det F and the opera-

tor A such that Aw = 0 if and only if for some u ∈ W2,2(Ω), w is the upper (or lower) triangular part of ∇2u,
which takes values in the symmetric matrices, cf. [15, Example 3.10 (d)]. Here ∇2u denotes the Hessian

matrix of u. Then, v∞ is notA-qcb. Indeed, take u ∈ W2,2

0

((−1, 1)2) extended by zero to the wholeℝ2. De�ne
uk(x) := k−1u(kx). Then, uk ⇀ 0 inW2,2(Ω). In addition, we have that

lim

k→∞
∫

(0,1)×(−1,1)

det∇2uk(x)dx = ∫
(0,1)×(−1,1)

det∇2u(y)dy.

Hence, it remains to�nd u forwhich the integral on the right-hand side is negative,which is certainly possible.

In the next example, we present a nontrivial function which isA-quasiconvex at the boundary.

Example 5.3. ConsiderΩ := B(0, 1) ⊂ℝ3 andA such thatAw = 0 if and only ifw = ∇2u for some u ∈W2,2(Ω),
and the mapping h(x, F) := a(x) ⋅ (cof F)ν(x), where a ∈ C(Ω;ℝ3) is arbitrary and ν(x) ∈ C(Ω) coincides with

the outer unit normal to ∂Ω for x ∈ ∂Ω. Notice that by de�nition of the cofactormatrix ((cof F)ij is (−1)i+j times

the determinant of the 2 × 2 submatrix of F obtained by erasing the i-th row and j-th column), (cof ∇u(x))ν(x)
e�ectively only depends on directional derivatives of u in directions perpendicular to ν(x).

For this h,

∫
Ω

h(x, ∇2uk(x))dx → ∫
Ω

h(x, ∇2u
0
(x))dx,

whenever uk ⇀ u
0
inW2,2(Ω).

To see that consider zk := ∇uk for k ∈ ℕ ∪ {0}. Then, {zk} ∈ W1,2(Ω;ℝ3) and the result follows from [17].

A Appendix

A.1 DiPerna–Majda measures

DiPerna–Majda measures are generalizations of Young measures; see [13, 23, 26, 27] for their modern treat-

ment and applications. Inwhat follows,M(Ω)denotes the space of Radonmeasures onΩ. LetRbe a complete

(i.e. containing constants, separating points from closed subsets and closed with respect to the supremum

norm), separable (i.e. containing a dense countable subset) ring of continuous bounded functions from ℝm

intoℝ. It is known that there is a one-to-one correspondenceR Ü→ βRℝm between such rings and (metrizable)

compacti�cations βRℝm ofℝm [9]. We only need the special case R = S with

S := {v
0
∈ C(ℝm) : there exist c ∈ ℝ, v

0,0
∈ C

0
(ℝm), v

0,1
∈ C(Sm−1) such that

v
0
(s) = c + v

0,0
(s) + v

0,1
(
s
|s|)

|s|p

1 + |s|p
if s ̸= 0 and v

0
(0) = c + v

0,0
(0)}, (A.1)

where Sm−1 denotes the (m − 1)-dimensional unit sphere in ℝm. In this case, βSℝm is obtained by adding

a sphere to ℝm at in�nity. More precisely, βSℝm is homeomorphic to the closed unit ball B(0, 1) ⊂ ℝm via
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the mapping f : ℝm → B(0, 1) with f(s) := s/(1 + |s|) for all s ∈ ℝm. Note that f(ℝm) is dense in B(0, 1). For
simplicity, we will not distinguish betweenℝm and its image in βSℝm.

DiPerna and Majda [8] proved the following theorem:

Theorem A.1. Let Ω be an open domain inℝn withLn(∂Ω) = 0, and let {yk} ⊂ Lp(Ω;ℝm), with 1 ≤ p < +∞, be
bounded. Then, there exists a subsequence (not relabeled), a positive Radon measure π ∈ M(Ω) and a family
λ := {λx}x∈Ω of probability measures on βSℝm such that for all h

0
∈ C(Ω × βSℝm) it holds that

lim

k→∞
∫
Ω

h
0
(x, yk(x))(1 + |yk(x)|p)dx = ∫

Ω

∫
βSℝm

h
0
(x, s)dλx(s)dπ(x). (A.2)

If (A.2) holds we say that {yk} generates (π, λ) and we denote the set of all such pairs of measures generated

by some sequence in Lp(Ω;ℝm) byDM
p
S(Ω;ℝ

m).
For any h(x, s) := h

0
(x, s)(1 + |s|p) with h

0
∈ C(Ω × βSℝm) there exists a continuous and positively

p-homogeneous function h∞ : Ω ×ℝm → ℝ, i.e., h∞(x, ts) = tph∞(x, s) for all t ≥ 0, all x ∈ Ω, and s ∈ ℝm,
such that

lim

|s|→∞

h(x, s) − h∞(x, s)
|s|p

= 0 for all x ∈ Ω. (A.3)

It is already mentioned in [12, formula (A.13)] that if {yk} ⊂ Lp(Ω;ℝm) is bounded and we have that

Ln({x ∈ Ω; yk(x) ̸= 0}) → 0 as k → ∞, then it is enough to test (A.2) with recession functions only, i.e., is

then equivalent to

lim

k→∞
∫
Ω

h∞(x, yk(x))dx = ∫

Ω

∫
βSℝm\ℝm

h∞(x, s)
1 + |s|p

dλx(s)dπ(x), (A.4)

where (x, s) Ü→ h
0
(x, s) := h∞(x, s)/(1 + |s|p) belongs to C(Ω × βSℝm), which is the closure (in the maximum

norm) of the linear hull of {g ⊗ v/| ⋅ |p : g ∈ C(Ω), v ∈ Υp(ℝm)}.
The following theorem is a direct consequence of [12, Theorem 2.2].

Theorem A.2. Let h ∈ C(Ω; Cp
hom

(ℝm)) such that h(x, ⋅ ) isA-quasiconvex for all x ∈ Ω (whence h coincideswith
itsA-quasiconvex envelopeQAh, and in particular,QAh(0) = h(0) = 0). Suppose that {yk} ⊂ Lp(Ω;ℝm) ∩ kerA

generates (π, λ) ∈ DM
p
S(Ω;ℝ

m). Then, for π-almost every x ∈ Ω,

0 ≤ ∫
βSℝm\ℝm

h(x, s)
1 + |s|p

dλx(s) . (A.5)

A.2 Uniform continuity properties of the functional

The following lemma essentially allows us to modify sequences inside I as long as the modi�ed sequences

approaches the original one in the norm of Lp.

Lemma A.3. Let h∞ ∈ C(Ω; Cp
hom

(ℝm)). Then, for any pair {uk}, {vk} of bounded sequences in Lp(Ω;ℝm) such
that uk − vk → 0 strongly in Lp, we have that h∞( ⋅ , uk( ⋅ )) − h∞( ⋅ , vk( ⋅ )) → 0 strongly in L1.

Proof. For δ > 0, let

Ak(δ) := {x ∈ Ω : |uk(x) − vk(x)| ≥ δ(|uk(x)| + |vk(x)| + 1)}.

Since uk − vk → 0 in Lp, we see that

∫
Ak(δ)

(|uk(x)| + |vk(x)| + 1)p dx → 0 as k → ∞, for every δ. (A.6)

In addition, h∞ is uniformly continuous on the compact set Ω × B(0, 1) ⊂ ℝn ×ℝm, with a modulus of
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continuity µ, whence

∫
Ω\Ak(δ)

|h∞(x, uk) − h∞(x, vk)|dx

= ∫
Ω\Ak(δ)

!!!!!!!
h∞(x, uk

|uk| + |vk| + 1

) − h∞(x, vk
|uk| + |vk| + 1

)
!!!!!!!
(|uk(x)| + |vk(x)| + 1)p dx

≤ ∫
Ω\Ak(δ)

µ(δ)(|uk(x)| + |vk(x)| + 1)p dx

≤ µ(δ)C Ú→
δ→0

0 uniformly in k, (A.7)

where we also used that {uk} and {vk} are bounded in Lp. Combining (A.6) and (A.7), we can verify that

‖h∞( ⋅ , uk( ⋅ )) − h∞( ⋅ , vk( ⋅ ))‖L1 canbemade arbitrarily small, �rst choosing δ small enough and then k large,
depending on δ.
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