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Abstract

We study computational behavior of a mesoscopic model describing temperature/external magnetic field-driven evolution of
magnetization. Due to nonconvex anisotropy energy describing magnetic properties of a body, magnetization can develop fast
spatial oscillations creating complicated microstructures. These microstructures are encoded in Young measures, their first moments
then identify macroscopic magnetization. Our model assumes that changes of magnetization can contribute to dissipation and,
consequently, to variations of the body temperature affecting the length of magnetization vectors. In the ferromagnetic state,
minima of the anisotropic energy density depend on temperature and they tend to zero as we approach the so-called Curie
temperature. This brings the specimen to a paramagnetic state. Such a thermo-magnetic model is fully discretized and tested
on two-dimensional examples. Computational results qualitatively agree with experimental observations. The own MATLAB code
used in our simulations is available for download.
c⃝ 2017 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

In the isothermal situation, the configuration of a rigid ferromagnetic body occupying a bounded domain Ω ⊂ Rd

is usually described by a magnetization m : Ω → Rd which denotes density of magnetic spins and which vanishes if
the temperature θ is above the so-called Curie temperature θc. Brown [5] developed a theory called “micromagnetics”
relying on the assumption that equilibrium states of saturated ferromagnets are minima of an energy functional. This
variational theory is also capable of predictions of formation of domain microstructures. We refer e.g. to [15] for a
survey on the topic. Starting from a microscopic description of the magnetic energy we will continue to a mesoscopic
level which is convenient for analysis of magnetic microstructures.

On microscopic level, the magnetic Gibbs energy consists of several contributions, namely an anisotropy energy
Ω ψ(m, θ) dx , where ψ is the-so called anisotropy energy density describing crystallographic properties of the

material, an exchange energy 1
2


Ω ε|∇m(x)|2dx penalizing spatial changes of the magnetization, the non-local
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magnetostatic energy 1
2


Rd µ0|∇um(x)|2dx , work done by an external magnetic field h which reads −


Ω h(x) ·

m(x) dx , and a calorimetric term

Ω ψ0 dx . The anisotropic energy density depends on the material properties and

defines the so-called easy axes of the material, i.e., lines along which the smallest external field is needed to magnetize
fully the specimen. There are three types of anisotropy: uniaxial, triaxial, and cubic. Furthermore,ψ is supposed to be a
nonnegative function, even in its first variable, i.e., ±m are assigned the same anisotropic energy. In the magnetostatic
energy, um is the magnetostatic potential related to m by the Poisson problem div(µ0∇um − χΩm) = 0 arising from
Maxwell equations. Here χΩ : Rd

→ {0, 1} denotes the characteristic function of Ω and µ0 = 4π × 10−7 N/A2 is
the permeability of vacuum.

A widely used model describing steady-state isothermal configurations is due to Landau and Lifshitz [18,19]
(see also e.g. Brown [5] or Hubert and Schäfer [11]), relying on minimization of Gibbs’ energy with θ as a fixed
parameter, i.e.,

minimize Gε(m) :=


Ω


ψ(m, θ)+

1
2

m · ∇um +
ε

2
|∇m|

2
− h · m dx


dx

subject to div(µ0∇um − χΩm) = 0 in Rd ,

m ∈ H1(Ω; Rd), um ∈ H1(Rd),

 (1)

where the anisotropy energy ψ is considered in the form

ψ(m, θ) := φ(m)+ a0(θ − θc)|m|
2
− ψ0(θ), (2)

where a0 determines the intensity of the thermo-magnetic coupling. To see a paramagnetic state above Curie
temperature θc, one should consider a0 > 0. The isothermal part of the anisotropy energy density φ : Rd

→ [0,∞)

typically consists of two components φ(m) = φpoles(m) + b0|m|
4, where φpoles(m) is chosen in such a way to attain

its minimum value (typically zero) precisely on lines {tsα; t ∈ R}, where each sα ∈ Rd , |sα| = 1 determines an axis
of easy magnetization. Typical examples are α = 1 for uniaxial, 1 ≤ α ≤ 3 for triaxial, and 1 ≤ α ≤ 4 for cubic
magnets. We can consider a uniaxial magnet with φpoles(m) =

d−1
i=1 m2

i , for instance. Here, the easy axis coincides
with the dth axis of the Cartesian coordinate system, i.e., sα := (0, . . . , 1). On the other hand, b0|m|

4 is used to ensure
that, for θ < θc, ψ(·, θ) is minimized at tsα for |t |2 = (θc − θ)a0/(2b0) and that ψ(·, θ) is coercive. Such energy has
already been used in [25,30]. For ε > 0, the exchange energy ε|∇m|

2 guarantees that the problem (1) has a solution
mε. Zero-temperature limits of this model consider, in addition, that the minimizers to (1) are constrained to be valued
on the sphere with the radius

√
a0θc/(2b0) and were investigated, e.g., by Choksi and Kohn [8], DeSimone [9], James

and Kinderlehrer [12], James and Müller [13], Pedregal [22,23], Pedregal and Yan [24] and many others.
In [3], the authors first consider a mesoscopic micromagnetic energy arising for setting ε := 0 in (1). Moreover,

it is assumed that changes of magnetization cause dissipation which is transformed into heat. Increasing temperature
of the specimen influences its magnetic properties. Therefore, they analyze an evolutionary anisothermal mesoscopic
model of a magnetic material. The aim of this paper is to discretize this model in space and time, and to perform
numerical experiments. The plan of our work is as follows. In Section 2 we describe the stationary mesoscopic model.
The evolutionary problem is introduced in Section 3. Section 4 provides us with a numerical approximation and some
computational experiments. We finally conclude with a few remarks in Section 5. Appendix then briefly introduces an
important tool for the analysis as well as for numerics, namely Young measures.

2. Mesoscopic description of magnetization

For ε small, minimizers mε of (1) typically exhibit fast spatial oscillations, usually called microstructure. Indeed,
the anisotropy energy, which forces magnetization vectors to be aligned with the easy axis (axes), competes with the
magnetostatic energy preferring divergence-free magnetization fields. It was shown in [9] by a scaling argument that
for large domains Ω the exchange energy contributions become less and less significant in comparison with other
terms and thus the so-called ”no-exchange” formulation is a justified approximation. This generically leads, however,
to nonexistence of a minimum for uniaxial ferromagnets as shown in [12] without an external field h. Hence, various
ways to extend the notion of a solution were developed. The idea is to capture the limiting behavior of minimizing
sequences of Gε(m) as ε → 0. This leads to a “relaxed problem” (3) involving possibly so-called Young measures
ν’s [32] which describe fast spatial changes of the magnetization and can capture limit patterns.
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It can be proved [9,22] that this limit configuration (ν, um) solves the following minimization problem involving
temperature as a parameter and a “mesoscopic” Gibbs’ energy G:

minimize G(ν,m) :=


Ω


ψ • ν +

1
2

m · ∇um − h · m


dx

subject to div

µ0∇um − χΩm


= 0 on Rd ,

m = id • ν on Ω ,
ν ∈ Y p(Ω; Rd), m ∈ L p(Ω; Rd), um ∈ H1(Rd),

 (3)

where the “momentum” operator “ • ” is defined by [ψ • ν](x) :=


Rd ψ(s, θ)νx (ds) and similarly for id : Rd
→ Rd

which denotes the identity and ν ∈ Y p(Ω; Rd). Here, the set of Young measures Y p(Ω; Rd) can be viewed as a
collection of probability measures ν = {νx }x∈Ω such that νx is a probability measure on Rd for almost every x ∈ Ω .
It means that νx is a positive Radon measure such that νx (Rd) = 1. We refer to Appendix for more details on Young
measures.

In [3], the authors built and analyzed a mesoscopic model in anisothermal situations. A closely related
thermodynamically consistent model on the microscopic level was previously introduced in [25] to model a ferro/para
magnetic transition. Another related microscopic model with a prescribed temperature field was investigated in [2].
The goal of this contribution is to discretize the model from [3] and test it on computational examples. In order to
make our exposition reasonably self-content, we closely follow the derivation of the model presented in [3]. We also
point out that computationally efficient numerical implementation of isothermal models can be found in [6,14,16,17],
where such a model was used in the isothermal variant.

In what follows we use a standard notation for Sobolev, Lebesgue spaces and the space of continuous functions.
We denote by C0(Rd) the space of continuous functions Rd

→ R vanishing at infinity. Further, C p(Rd) := { f ∈

C(Rd); f/(1 + | · |
p) ∈ C0(Rd)}, and C p(Rd) := { f ∈ C(Rd); | f |/(1 + | · |

p) ≤ C, C > 0}.

3. Evolution problem and dissipation

If the external magnetic field h varies during a time interval [0, T ] with a horizon T > 0, the energy of the
system and magnetic states evolve, as well. Changes of the magnetization may cause energy dissipation [4]. As the
magnetization is the first moment of the Young measure, ν, we relate the dissipation on the mesoscopic level to
temporal variations of some moments of ν and consider these moments as separate variables. This approach was
already used in micromagnetics in [28,29] and proved to be useful also in modeling of dissipation in shape memory
materials, see e.g. [21]. In view of (2), we restrict ourselves to the first two moments defining λ = (λ1, λ2) ⊂ Rd

×R =

Rd+1 giving rise to the constraint

λ = L • ν, where L(m) := (m, |m|
2) (4)

and consider the specific dissipation potential depending on a “yield set” S ⊂ Rd+1

ζ(
•

λ) := δ∗S(
•

λ)+
ϵ

q
|

•

λ |
q , q ≥ 2. (5)

The set S determines activation threshold for the evolution of λ. It is a convex compact set containing zero in its
interior. The function δ∗S ≥ 0 is the Fenchel conjugate of the indicator function of S. Consequently, it is convex and
degree-1 positively homogeneous with δ∗S(0) = 0. In fact, the first term describes purely hysteretic losses, which are
rate-independent and which we consider dominant, and the second term models rate-dependent dissipation.

In view of (2)–(3), the specific mesoscopic Gibbs free energy, expressed in terms of ν, λ and θ , reads as

g(t, ν, λ, θ) := φ • ν + (θ − θc)a⃗ · λ− ψ0(θ)+
1
2

m · ∇um − h(t) · m (6a)

with m = id • ν (6b)

where we denoted a⃗ := (0, . . . , 0, a0) with a0 from (2) and, of course, um again from (1), which makes g non-local.
As done already in [3], we relax the constraint (4) by augmenting the total Gibbs free energy (i.e., ψ integrated

over Ω ) by the term ~
2 ∥λ− L • ν∥2

H−1(Ω;Rd+1)
with (presumably large) ~ ∈ R+ and with H−1(Ω) ∼= H1

0 (Ω)
∗. Thus,
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λ’s no longer exactly represent the “macroscopic” momenta of the magnetization but rather are in a position of a phase
field or an internal parameter of the model. We define the mesoscopic Gibbs free energy G as

G (t, ν, λ, θ) :=


Ω


g(t, ν, λ, θ)+

~

2
|∇∆−1(λ− L • ν)|2


dx (7)

with ∆−1 meaning the inverse of the homogeneous Dirichlet boundary-value problem for the Laplacian defined as a
map ∆ : H1

0 (Ω; Rd+1) → H−1(Ω; Rd+1).
The value of the internal parameter may influence the magnetization of the system and vice versa and, on the other

hand, dissipated energy influences the temperature of the system, which, in turn, may affect the internal parameters. In
order to capture all these effects, we employ the concept of generalized standard materials [10] known from continuum
mechanics and couple our micromagnetic model with the entropy balance with the rate of dissipation on the right-hand
side; cf. (9). Then the Young measure ν is considered to evolve quasistatically according to the minimization principle
of the Gibbs energy G (t, ·, λ, θ) while the dissipative variable λ is governed by the flow rule:

∂ζ(
•

λ) = ∂λg(t, ν, λ, θ) (8)

with ∂ζ denoting the subdifferential of the convex functional ζ(·) and similarly ∂λg is the subdifferential of the convex

functional g(t, ν, ·, θ). In our specific choice, (8) takes the form ∂δ∗S(
•

λ)+ ϵ|
•

λ |
q−2 •

λ+(θ − θc)a⃗ ∋ ~∆−1(λ− L • ν).
Furthermore, we define the specific entropy s by the standard Gibbs relation for entropy, i.e. s = −g′

θ (t, ν, λ, θ), and
write the entropy equation

θ
•
s +div j = ξ(

•

λ) = heat production rate, (9)

where j is the heat flux governed by the Fourier law

j = −K∇θ (10)

with a heat-conductivity tensor K = K(λ, θ). In view of (5),

ξ(
•

λ) = ∂ζ(
•

λ) ·
•

λ = δ∗S(
•

λ)+ ϵ|
•

λ |
q . (11)

Now, since s = −g′
θ (t, ν, λ, θ) = −g′

θ (λ, θ), it holds θ
•
s = −θg′′

θ (λ, θ)
•

θ −θg′′
θλ

•

λ. Using also g′′
θλ = a⃗, we may

reformulate the entropy equation (9) as the heat equation

cv(θ)
•

θ −div(K(λ, θ)∇θ) = δ∗S(
•

λ)+ ϵ|
•

λ |
q

+ a⃗ · θ
•

λ with cv(θ) = −θg′′
θ (θ), (12)

where cv is the specific heat capacity.
Altogether, we can formulate our problem for unknowns θ, ν, and λ which was first set and analyzed in [3] as

minimize

Ω


φ • ν + (θ − θc)a⃗ · λ(t)− ψ0(θ(t))+

1
2

m · ∇um

− h(t) · m +
~

2

∇∆−1(λ(t)− L • ν)
2 dx

subject to m = id • ν on Ω ,
div

µ0∇um − χΩm


= 0 on Rd ,

ν ∈ Y p(Ω; Rd), m ∈ L p(Ω; Rd), um ∈ H1(Rd),


for t ∈ [0, T ], (13a)

∂δ∗S(
•

λ)+ ϵ|
•

λ |
q−2 •

λ+(θ − θc)a⃗ ∋ ~∆−1(div λ− L • ν) in Q := [0, T ] × Ω , (13b)

cv(θ)
•

θ −div(K(λ, θ)∇θ) = δ∗S(
•

λ)+ ϵ|
•

λ |
q

+ a⃗ · θ
•

λ in Q, (13c)
K(λ, θ)∇θ


· n + bθ = bθext on Σ := [0, T ] × Γ , (13d)

where we accompanied the heat equation (9) by the Robin-type boundary conditions with n denoting the outward unit
normal to the boundary Γ , with b ∈ L∞(Γ ) a phenomenological heat-transfer coefficient, and with θext an external
temperature, both assumed non-negative. Eventually, we equip this system with initial conditions

λ(0, ·) = λ0, θ(0, ·) = θ0 on Ω . (14)
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Transforming (9) by the so-called enthalpy transformation, we obtain a different form of (13) simpler for the
analysis. For this, let us introduce a new variable w, called enthalpy, by

w =cv(θ) =

 θ

0
cv(r)dr. (15)

It is natural to assume cv positive, hencecv is, for w ≥ 0 increasing and thus invertible. Therefore, denote

Θ(w) :=

c−1
v (w) if w ≥ 0

0 if w < 0

and notice that, in the physically relevant case when θ ≥ 0, θ = Θ(w). Thus writing the heat flux in terms of w gives

K(λ, θ)∇θ = K

λ,Θ(w)


∇Θ(w) = K(λ,w)∇w, where K(λ,w) :=

K(λ,Θ(w))
cv(Θ(w))

. (16)

Moreover, the terms (Θ(w(t)) − θc)a⃗ · λ(t) and ψ0(θ(t)) obviously do not play any role in the minimization (13a)
and can be omitted. Thus we may rewrite (13) in terms of w as follows:

minimize

Ω


φ • ν +

1
2

m · ∇um − h(t) · m +
~

2

∇∆−1(λ(t)− L • ν)
2 dx

subject to m = id • ν, on Ω ,
div

µ0∇um − χΩm


= 0 on Rd ,

ν ∈ Y p(Ω; Rd), m ∈ L p(Ω; Rd), um ∈ H1(Rd),

 for t ∈ [0, T ], (17a)

∂δ∗S(
•

λ)+ ϵ|
•

λ |
q−2 •

λ+

Θ(w)− θc


a⃗ ∋ ~∆−1(λ− L • ν) in Q, (17b)

•
w−div(K(λ,w)∇w) = δ∗S(

•

λ)+ ϵ|
•

λ |
q

+ a⃗ · Θ(w)
•

λ in Q, (17c)
K(λ,w)∇w


· n + bΘ(w) = bθext on Σ . (17d)

Eventually, we complete this transformed system by the initial conditions

λ(0, ·) = λ0, w(0, ·) = w0 :=cv(θ0) on Ω , (18)

where λ0 is the initial phase field value, and θ0 is the initial temperature.
Now we are ready to define a weak solution to our problem. We denote by Y p(Ω; Rd)[0,T ] the set of time-

dependent Young measures, i.e., the set of maps [0, T ] → Y p(Ω; Rd). We again refer to Appendix for details on
Young measures.

Definition 3.1 (Weak Solution [3]). The triple (ν, λ,w) ∈ (Y p(Ω; Rd))[0,T ]
× W 1,q([0, T ]; Lq(Ω; Rd+1)) ×

L1([0, T ]; W 1,1(Ω)) such that m = id • ν ∈ L2(Q; Rd) and L • ν ∈ L2(Q; Rd+1) is called a weak solution
to (17) if it satisfies:

1. The minimization principle: For all ν̃ in Y p(Ω; Rd) and all t ∈ [0, T ]

G (t, ν, λ,Θ(w)) ≤ G (t, ν̃, λ,Θ(w)). (19)

2. The magnetostatic equation: For a.a. t ∈ [0, T ] and all ϕ ∈ H1(Rd)

µ0


Rd

∇um · ∇ϕ dx =


Ω

m · ∇ϕ dx . (20)

3. The flow rule: For any ϕ ∈ Lq(Q; Rd+1)
Q


Θ(w)− θc


a⃗ ·

ϕ −

•

λ

+ δ∗S(ϕ)+

ϵ

q
|ϕ|

q
+ ~∇∆−1(λ− L • ν) · ∇∆−1(ϕ −

•

λ)


dxdt

≥


Q


δ∗S(

•

λ)+
ϵ

q
|

•

λ |
q


dxdt. (21)
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4. The enthalpy equation: For any ϕ ∈ C1(Q̄), ϕ(T ) = 0
Q


K(λ,w)∇w · ∇ϕ − w

•
ϕ


dxdt +


Σ

bΘ(w)ϕ dSdt =


Ω
w0ϕ(0) dx

+


Q


δ∗S(

•

λ)+ ϵ|
•

λ |
q

+ Θ(w)a⃗ ·
•

λ


ϕ dxdt +


Σ

bθextϕ dSdt. (22)

5. The initial conditions in (18): ν(0, ·) = ν0 and λ(0, ·) = λ0.

Data qualifications:
The following the data qualification are needed in [3] to prove the existence of weak solutions; cf. [3]:

isothermal part of the anisotropy energy: φ ∈ C(Rd) and

∃cA
1 , cA

2 > 0, p > 4 : cA
1 (1 + | · |

p) ≤ φ(·) ≤ cA
2 (1 + | · |

p), (23a)

dissipation function: δ∗S ∈ C(Rd+1) positively homogeneous, and

∃c1,D, c2,D > 0 : c1,D(| · |) ≤ δ∗S(·) ≤ c2,D(| · |), (23b)

external magnetic field:

h ∈ C1([0, T ]; L2(Ω; Rd)), (23c)

specific heat capacity: cv ∈ C(R) and, with q from (5),

∃c1,θ , c2,θ > 0, ω1 ≥ ω ≥ q ′, c1,θ (1 + θ)ω−1
≤ cv(θ) ≤ c2,θ (1 + θ)ω1−1, (23d)

heat conduction tensor: K ∈ C(Rd+1
× R; Rd×d) and

∃CK , κ0 > 0 ∀χ ∈ Rd
: K(·, ·) ≤ CK , χT K(·, ·)χ ≥ κ0|χ |

2, (23e)

external temperature:

θext ∈ L1(Σ ), θext ≥ 0, and b ∈ L∞(Σ ), b ≥ 0, (23f)

initial conditions:

ν0 ∈ Y p(Ω; Rd) solving (19), λ0 ∈ Lq(Ω; Rd+1), w0 =cv(θ0) ∈ L1(Ω) with θ0 ≥ 0. (23g)

The following theorem is proved in [3].

Theorem 3.1. Let (23) hold. Then at least one weak solution (ν, λ,w) to the problem (17) in accord with Defini-
tion 3.1 does exist. Moreover, some of these solutions satisfy also

w ∈ Lr ([0, T ]; W 1,r (Ω)) ∩ W 1,1(I ; W 1,∞(Ω)∗) with 1 ≤ r <
d + 2
d + 1

. (24)

The proof of Theorem 3.1 in [3] exploits the following time-discrete approximations which also create basis for our
fully discrete solution. Given T > 0 and T/τ ∈ N we call the triple (νk

τ , λ
k
τ , w

k
τ ) ∈ Y p(Ω; Rd) × L2q(Ω; Rd+1) ×

H1(Ω) the discrete weak solution of (17) subject to boundary condition (17d) at time-level k, k = 1 . . . , T/τ , if it
satisfies:

1. The time-incremental minimization problem with given λk−1
τ and wk−1

τ :

Minimize G (kτ, ν, λ,Θ(wk−1
τ ))+ τ


Ω


|λ|2q

+ δ∗S

λ− λk−1
τ

τ


+
ϵ

q

λ− λk−1
τ

τ

q dx

subject to (ν, λ) ∈ Y p(Ω; Rd)× L2q(Ω; Rd+1).

 (25a)

with G from (7).
The Poisson problem: For all ϕ ∈ H1(Rd)

Rd
∇umk

τ
· ∇ϕ dx =


Ω

mk
τ · ∇ϕ dx with mk

τ = id • νk
τ . (25b)
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The enthalpy equation: For all ϕ ∈ H1(Ω)
Ω


wk
τ − wk−1

τ

τ
ϕ + K(λk

τ , w
k
τ )∇w

k
τ · ∇ϕ


dx +


Γ

bk
τΘ(w

k
τ )ϕ dS =


Γ

bk
τ θ

k
ext,τϕ dS

+


Ω


δ∗S

λk
τ − λk−1

τ

τ


+ ϵ

λk
τ − λk−1

τ

τ

qΘ(wk
τ )a⃗ ·

λk
− λk−1

τ


ϕ dx . (25c)

For k = 0 the initial conditions in the following sense

ν0
τ = ν0, λ0

τ = λ0,τ , w0
τ = w0,τ on Ω . (25d)

In (25d), we denoted by λ0,τ ∈ L2q(Ω; Rd+1) and w0,τ ∈ L2(Ω) respectively suitable approximation of the
original initial conditions λ0 ∈ Lq(Ω; Rd+1) and w0 ∈ L1(Ω) such that

λ0,τ → λ0 strongly in Lq(Ω; Rd+1), and ∥λ0,τ∥L2q (Ω;Rd+1) ≤ Cτ−1/(2q+1), (26a)

w0,τ → w0 strongly in L1(Ω), and w0,τ ∈ L2(Ω). (26b)

Moreover θk
ext,τ ∈ L2(Γ ) and bk

τ ∈ L∞(Γ ) are defined in such a way that their piecewise constant interpolants
θ̄ext,τ , b̄τ


(t) :=


θk

ext,τ , bk
τ ,


for (k − 1)τ < t ≤ kτ , k = 1, . . . , Kτ

satisfy

θ̄ext,τ → θext strongly in L1(Σ ) and b̄τ
∗

⇀ b weakly* in L∞(Σ ). (27)

We introduce the notion of piecewise affine interpolants λτ and wτ defined by
λτ , wτ


(t) :=

t − (k − 1)τ
τ


λk
τ , w

k
τ


+

kτ − t

τ


λk−1
τ , wk−1

τ


for t ∈ [(k − 1)τ, kτ ]

with k = 1, . . . , T/τ . In addition, we define the backward piecewise constant interpolants ν̄τ , λ̄τ , and w̄τ by
ν̄τ , λ̄τ , w̄τ


(t) :=


νk
τ , λ

k
τ , w

k
τ


for (k − 1)τ < t ≤ kτ , k = 1, . . . , T/τ. (28)

Finally, we also need the piecewise constant interpolants of delayed enthalpy and magnetization wτ , mτ defined by

[wτ (t),mτ (t)] := [wk−1
τ , id • νk−1

τ ] for (k − 1)τ < t ≤ kτ , k = 1, . . . , T/τ. (29)

3.1. Energetics

In this section we summarize some basic energetic estimates available for our model. First we define the purely
magnetic part of the Gibbs free energy G as

G(t, ν, λ) :=


Ω
φ • ν − h(t) · m dx +


Rd

1
2
|∇um |

2 dx +
~

2

λ− L • ν
2

H−1(Ω;Rd+1)
. (30)

The purely magnetic part of the Gibbs energy satisfies (see [3, Formula (4.19)]) the following energy inequality

G(tℓ, ν̄τ (tℓ), λ̄τ (tℓ)) ≤ G(0, ν̄τ (0), λ̄τ (0))+

 tℓ

0


Ω

•

hτ · m̄τdx + ~⟨⟨λ̄τ − L • ν̄τ ,
•

λτ ⟩⟩


dt (31)

with tℓ = ℓτ .
As (νk

τ , λ
k
τ ) is a minimizer of (25a), the partial sub-differential of the cost functional with respect to λ has to be

zero at λk
τ . This condition holds at each time level and, thus, summing up for k = 0, . . . , ℓ gives tℓ

0


Ω


δ∗S(

•

λτ )+
ϵ

q
|
•

λτ |
q


dxdt ≤

 tℓ

0


~⟨⟨λ̄τ − L • ν̄τ , vτ −

•

λτ ⟩⟩

+


Ω


Θ(wτ )− θc


a⃗ · (vτ −

•

λτ )+ 2qτ |λ̄τ |
2q−2λ̄τ (vτ −

•

λτ )+ δ∗S(vτ )+
ϵ

q
|vτ |

q


dx


dt, (32)
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where vτ is an arbitrary test function such that vτ (·, x) is piecewise constant on the intervals (t j−1, t j ] and vτ (t j , ·) ∈

L2q(Ω; Rd+1) for every j .
Hence, for vτ = 0 we get the energy balance of the thermal part of the Gibbs energy, namely tℓ

0


Ω


δ∗S(

•

λτ )+
ϵ

q
|
•

λτ |
q


dxdt

≤

 tℓ

0


−~⟨⟨λ̄τ − L • ν̄τ ,

•

λτ ⟩⟩ −


Ω


Θ(wτ )− θc


a⃗ ·

•

λτ + 2qτ |λ̄τ |
2q−2λ̄τ

•

λτ


dt. (33)

This inequality couples the dissipated energy and temperature evolution.

4. Numerical approximations and computational examples

Dealing with a numerical solution, we have to find suitable spatial approximations for ν, um , w, and λ in each time
step. In our numerical method, we require that (4) is satisfied which means that knowing the Young measure ν we can
easily calculate the momenta λ. We present a spatial discretization of involved quantities in each time step.

The domain Ω of the ferromagnetic body is discretized by a regular triangulation Tℓ in triangles (in 2D) or in
tetrahedra (in 3D) for ℓ ∈ N which will be called elements. The triangulations are nested, i.e., that Tℓ ⊂ Tℓ+1, so that
the discretizations are finer as ℓ increases. Let us now describe the approximation.

Young measure. Young measures are parametrized (by x ∈ Ω ) probability measures supported on Rd . Hence, we
need to handle their discretization in Ω as well as in Rd . Our aim is to approximate a general Young measure by a
convex combination of a finite number of Dirac measures (atoms) supported on Rd such that this convex combination
is elementwise constant. Let us now describe a rigorous procedure how to achieve this goal. We first omit the time
discretization parameter τ and discuss the discretization of the Young measure in Ω . In order to approximate a Young
measure ν, we follow [7,20] and define for z ∈ L∞(Ω)⊗ C p(Rd) the following projection operator (Ld denotes the
d-dimensional Lebesgue measure)

[Π 1
ℓ z](x, s) =

1
Ld(△)


△

z(x̃, s) dx̃ if x ∈ △ ∈ Tℓ.

Notice that Π 1
ℓ is elementwise constant in the x-variable. We now turn to a discretization of Rd in terms of large

cubes in Rd , i.e., for α ∈ N we consider a cube Bα := [−α, α]
d (i.e. we call it “a cube” even if d = 2) which is

discretized into (2α/n)d smaller cubes with the edge length 2α/n for some n ∈ N. Corners of small cubes are called
nodal points. We define Q1 elements on the cube Bα ∈ Rd which consist of tensorial products of affine functions
in each spatial variable of Rd . In this way, we find basis functions fi : Bα → R for i = 1, . . . , (n + 1)d such that

fi ≥ 0 and
(n+1)d

i=1 fi (s) = 1 for all s ∈ Rd . Moreover, if s j is the j th nodal point then fi (s j ) = δi j , where δi j is the
Kronecker symbol. Further, each fi can be continuously extended to Rd

\ Bα and such an extended function can even
vanish at infinity, i.e., it belongs to C0(Rd). This construction defines a projector L∞(Ω) ⊗ C p(Rd) → L∞(Ω) ⊗

C p(Rd) as

[Π 2
α,nz](x, s) :=

(n+1)d
i=1

z(x, si ) fi (s).

Finally, we define Πℓ,α,n := Π 1
ℓ ◦ Π 2

α,n , so that

[Πℓ,α,nz](x, s) :=
1

Ln(△)

(n+1)d
i=1


△

z(x̃, si )vi (s) dx̃ if x ∈ △ ∈ Tℓ.

If we now take ν ∈ Y p(Ω; Rd) and denote l := (ℓ, α, n) we calculate
Ω


Rd

[Πl z](x, s)νx (ds) dx =


Ω


Rd

z(x, s)[νl ]x (ds) dx, (34)
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Fig. 1. Example of the outer triangulation T̂ containing the magnet body triangulation T (in gray) is shown in the left. The right part displays an
example of the magnetostatic potential um approximated as the scalar nodal and elementwise linear function (P1 elements function) satisfying zero
Dirichlet condition in the boundary nodes of T̂ .

where for x ∈ Ω

[νl ]x :=

(n+1)d
i=1

ξi,l(x)δsi , (35)

with

ξi,l(x) :=
1

Ld(△)


△


Rd

fi (s)νx (ds) dx, x ∈ △ ∈ Tℓ.

Let us denote the subset of Young measures from Y p(Ω; Rd) which are in the form of (35) by Y
p

l (Ω; Rd). Notice

that ξi,l ≥ 0 and that
(n+1)d

i=1 ξi,l = 1. Hence, the projector Πl corresponds to approximation of ν by a spatially
piecewise constant Young measure which can be written as a convex combination of Dirac measures (atoms). We
refer to [27] for a thorough description of various kinds of Young measure approximations. In order to indicate that
the measure is time-dependent we write in the kth time-step

[νk
l,τ ]x :=

(n+1)d
i=1

ξ k
i,l,τ (x)δsi .

Magnetostatic potential. Following [6], we simplify the calculation of the reduced Maxwell system in
magnetostatics by assuming that the magnetostatic potential u vanishes outside a large bounded domain Ω̂ ⊃ Ω .
Hence, given m ∈ L p(Ω; Rd), we solve the Poisson problem div(µ0∇um) = div(χΩm) on Ω̂ with homogeneous
Dirichlet boundary condition um = 0 on ∂Ω̂ . The set Ω̂ is discretized by an outer triangulation T̂ℓ that contains the
triangulation Tℓ of the ferromagnetic magnetic body. Then, the magnetostatic potential

umk
l,τ

∈ P1
0 (T̂ℓ) (36)

in the kth time-step is approximated in the space P1
0 (T̂ℓ) of scalar nodal and elementwise linear functions defined

on the triangulation T̂ℓ and satisfying zero Dirichlet boundary conditions on the triangulation boundary ∂T̂ℓ. For
illustration, see Fig. 1. The magnetization vector

mk
l,τ ∈ P0(Tℓ)d (37)

in the kth time-step is approximated in the space P0(Tℓ)d of vector and elementwise constant functions. Another
numerical approaches to solutions of magnetostatics using e.g. BEM are also available [1].

Enthalpy. The enthalpy

wk
ℓ,τ ∈ P1(Tℓ) (38)

in the kth time-step is approximated in the space P1(Tℓ) of scalar nodal and elementwise linear functions.
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Having time and spatial discretizations we can set up an algorithm to solve the problem which is just (25)
with additional spatial discretization. Finally, we apply the spatial discretization just described and we arrive at the
following problem.

Given spatially discretized boundary condition (17d) and k = 1, . . . , T/τ we solve:

1. The minimization problem with given wk−1
ℓ,τ ∈ P1(Tℓ)d with λk−1

l,τ := L • νk−1
l,τ :

Minimize G (kτ, ν, λ,Θ(wk−1
ℓ,τ ))+ τ


Ω


|λ|2q

+ δ∗S

λ− λk−1
l,τ

τ


+
ϵ

q

λ− λk−1
l,τ

τ

q dx

subject to ν ∈ Y
p

l (Ω; Rd), λ := L • ν

 (39a)

with G from (7).
The Poisson problem: For all v ∈ P1

0 (T̂ℓ)

µ0


Rd

∇umk
l,τ

· ∇ϕ dx =


Ω

mk
l,τ · ∇ϕ dx with mk

l,τ = id • νk
l,τ . (39b)

The enthalpy equation: For all ϕ ∈ P1(Tℓ)
Ω


wk
ℓ,τ − wk−1

ℓ,τ

τ
ϕ + K(λk

l,τ , w
k
ℓ,τ )∇w

k
ℓ,τ · ∇ϕ


dx +


Γ

bΘ(wk
ℓ,τ )ϕ dS =


Γ

bθk
ext,τϕ dS

+


Ω


δ∗S

λk
l,τ − λk−1

l,τ

τ


+ ϵ

λk
l,τ − λk−1

l,τ

τ

q + Θ(wk
ℓ,τ )a⃗ ·

λk
l,τ − λk−1

l,τ

τ


ϕ dx . (39c)

For k = 0 the initial conditions:

λ0
l,τ = λ0,l , w0

ℓ,τ = w0,ℓ on Ω , (39d)

where λ0,ℓ = L • ν0,ℓ is calculated via (34) and w0,ℓ is a piecewise affine approximation of w0. There is no initial
condition for λ0

ℓ,τ as it is now fully determined by ν0,ℓ.
In computations, several simplifications were taken to account. First of all, we assume

d = 2, q = 2. (40)

In view of (4), the macroscopic magnetization m is elementwise constant and it is the first moment of νl . As the
anisotropy energy density is minimized for a given temperature on a sphere in Rd we put the support of the Young
measure νl on this sphere and its vicinity to decrease the number of variables in our problem. In what follows, the
number of Dirac atoms in νl is denoted by N ∈ N. It is then convenient to work in polar coordinates where ri is the
radius and ϕi the corresponding angle of the i th atom. Hence, we have

mk
l,τ = λk

1,l,τ = pk
τ

N
i=1

ξ k
i,l,τ ri (cos(ϕi ), sin(ϕi )), λk

2,l,τ = (pk
τ )

2
N

i=1

ξ k
i,l,τ r2

i ,

N
i=1

ξ k
i,l,τ = 1, (41)

where coefficients ξ k
i,l,τ ∈ [0, 1], i = 1, . . . , N , and pk

τ depends on temperature in the following way:

pk
τ (θ) :=


(θc − θ)a0/(2b0) if θc > θ,

ppar otherwise.

A small parameter ppar > 0 is introduced which allows for nonzero magnetization and increase of the temperature
due to the change of magnetization even in the paramagnetic mode. The number N and values of radii ri and angles
ϕi are given a priori and influence possible directions of magnetization, see Fig. 2. The coefficients of the convex
combinations and pk

τ in the kth time-step

ξ k
i,l,τ , pk

τ ∈ P0(Tℓ) (42)
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Fig. 2. An example of uniformly distributed Dirac atoms on the left: Each atom is specified by its angle ϕi and radius ri for i = 1, . . . , N . Here,
N = 36 and Dirac atoms are placed on “the main sphere” with radius 1 (blue colored atoms in the color scale or dark colored atoms in the gray
scale) and additional two spheres with radii 1

1.1 and 1.1 (yellow colored atoms in the color scale or light colored atoms in the gray scale). An
example of magnetization m is displayed on the right. Each vector (arrow) corresponds to value of m in one element and its orientation is given as
a convex combination of Dirac atoms multiplied by the value of pk

τ , see (41). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

for all i = 1, . . . , N are approximated in the space P0(Tℓ) of scalar and elementwise constant functions. We assume
that for Hc, hc > 0

S := {λ = (λ1, λ2) ∈ R2
× R : |λ1| ≤ Hc & |λ2| ≤ hc}.

Then for η ∈ R2
× R

δ∗S(η) = max
λ∈S

η · λ = Hc|η1| + hc|η2| (43)

where Hc represents the coercive force of the magnetic material. Then the minimization problem (39a) can be
expressed in unknown coefficients ξ k

i,l,τ , i = 1, . . . , N only. The functional in (39a) contains a nondifferentiable
norm term (43), and its evaluation requires to solve the magnetostatic potential umk

l,τ
from the Poisson problem (39b)

with zero boundary conditions. The size of the matrix in the discretized Poisson problem equals the number of free
nodes in the triangulation T̂ℓ. After coefficients ξ k

i,l,τ for i = 1, . . . , N are computed, the enthalpy wk
ℓ,τ is solved from

the enthalpy equation (39c). We consider the case

K(λ, θ) = const., cv(θ) = const. (44)

of the constant heat-conductivity K and the constant heat capacity cv . Therefore, the enthalpy equation (39c) can
be discretized as a linear system of equations combining stiffness and mass matrices from the discretization of a
second order elliptic partial differential equation using P1 elements. Therefore, the size of both matrices is equal to
the number of all nodes in the triangulation Tℓ.
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As an example of computation, we consider a large domain Ω̂ and a magnet domain Ω , where

Ω̂ = (−1, 1)×


−

1
2
,

1
2


, Ω =


−

1
9
,

1
9


×


−

1
4
,

1
4


with a triangulation shown in Fig. 1 (left). A Young measure was discretized using 36 Dirac measures grouped in
three spherical layers as shown in Fig. 2 (left).

Physical parameters were chosen to show qualitative results only and they obviously do not correspond to any
realistic material. We consider

• φpoles(m) = m2
1, where m = (m1,m2) and m is measured in A/m,

• the coercive force Hc = 100 T—this value provides a hysteresis width visible in all figures,
• hc = 1 T m/A
• ppar = 0.1
• the parameter1 ϵ = 10−6

• the initial temperature inside magnet θ0 = 1300 K, the Curie temperature θc = 1388 K and the constant external
temperature around the magnet body is θext = 1100 K,

• the coefficient b = 0.001 W/(m K) in the Robin-type boundary condition, the heat conductivity coefficient
(I stands for the identity matrix in R2×2) K = 100 I W/m K and the heat capacity cv = 420 J/(m3 K),

• the coefficients in the thermo-magnetic coupling a0 = 1 J/(K m A2), b0 = 1 J m/A4,
• the uniaxial cyclic magnetic field h(t) = 3Hc(hx (t), 0)T, where t = 0, . . . , 80 and hx is a cyclic periodic function

with the period 10 and the amplitude 1.

As the result of the change of magnetic field inside the magnet, the magnet is heated and inside temperature
increases with the boundary temperature θext held constant over time. An increase of the temperature decreases the
measure support p, and amplitudes of magnetization become smaller over time. Figs. 3–5 describe average values of
magnetization in x-direction and the temperature after one, two or eight cycles of external forces. With each cycle, the
average temperature increases and approaches the Curie temperature. Since θext < θc, the temperature inside magnet
never exceeds the Curie temperature and no paramagnetic effects are observed. A similar computation can be run
with two modified physical parameters, θext = 1500 K, b0 = 0.1 W/(m K). Then, the external temperature θext > θc
allows for heating up the magnet after the Curie temperature and a higher value of b0 speeds up the heating process,
see Fig. 6 for details. It should be mentioned that choosing only N = 12 Dirac atoms placed on “the middle sphere”
does not visibly change the shapes of Figs. 3–5.

The own MATLAB code is available as a package “Thermo-magnetic solver” at MATLAB Central and it can
be downloaded for testing at http://www.mathworks.com/matlabcentral/fileexchange/47878. It utilizes the codes for
an assembly of stiffness and mass matrices described in [26]. The assembly is vectorized and works very fast even
for fine mesh triangulations. The inbuilt MATLAB function fmincon (it is a part of the Optimization Toolbox that
must be available) was exploited for the minimization of (25a). The function fmincon was run with an automatic
differentiation option, which is very time consuming even on coarse mesh triangulations. In order to speed up
calculations of the magnetostatic potential umk

l,τ
from the Poisson problem (25b), an explicit inverse of the stiffness

matrix was precomputed and stored for considered coarse mesh triangulations. Geometrical and material parameters
can be adjusted for own testing in the functions start.m and start magnet.m.

5. Concluding remarks

We tested computational performance of the model from [3] on two-dimensional examples. In spite of a few
simplifications (in particular, setting ~ := +∞), computational results are in qualitative agreement with physically
observed phenomena. Interested readers are invited to perform their own numerical tests with a MATLAB code
available on the web-page mentioned above. Adaptive approaches similar to the one in [7,14] could be used to
allow for much finer discretizations of Young measure support and, as a consequence, for more accurate numerical
approximations. Investigations of a convergence of the above scheme as well as verification of discrete energy
inequalities from (31) and (33) are left for our future work.

1 ϵ stands in front of λ whose units depend on a particular component. Hence, to avoid constants of value one which only carry SI units we do
not specify the unit of ϵ.

http://www.mathworks.com/matlabcentral/fileexchange/47878
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Fig. 3. Average values of fields after one cycle of external forces: magnetization in x-direction versus external field (left), magnetization in
x-direction versus time (middle), temperature versus time (right) never reaching the Curie temperature indicated by the red horizontal line. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Average values of fields after two cycles of external forces: magnetization in x-direction versus external field (left), magnetization in
x-direction versus time (middle), temperature versus time (right) never reaching the Curie temperature indicated by the red horizontal line. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Average values of fields after eight cycles of external forces: magnetization in x-direction versus external field (left), magnetization in
x-direction versus time (middle), temperature versus time (right) never reaching the Curie temperature indicated by the red horizontal line. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Average values of fields after eight cycles of external forces: magnetization in x-direction versus external field (left), magnetization in
x-direction versus time (middle), temperature versus time (right) reaching and exceeding the Curie temperature indicated by the red horizontal line.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Appendix. Young measures

The Young measures on a bounded domain Ω ⊂ Rn are weakly* measurable mappings x → νx : Ω → rca(Rd)

with values in probability measures; and the adjective “weakly* measurable” means that, for any v ∈ C0(Rd), the
mapping Ω → R : x → ⟨νx , v⟩ =


Rd v(λ)νx (dλ) is measurable in the usual sense. Let us remind that, by the Riesz

theorem, rca(Rd), normed by the total variation, is a Banach space which is isometrically isomorphic with C0(Rd)∗,
where C0(Rd) stands for the space of all continuous functions Rd

→ R vanishing at infinity. Let us denote the set of all
Young measures by Y (Ω; Rd). It is known that Y (Ω; Rd) is a convex subset of L∞

w (Ω; rca(Rd)) ∼= L1(Ω; C0(Rd))∗,
where the subscript “w” indicates the property “weakly* measurable”. A classical result [32] is that, for every sequence
{yk}k∈N bounded in L∞(Ω; Rd), there exists its subsequence (denoted by the same indices for notational simplicity)
and a Young measure ν = {νx }x∈Ω ∈ Y (Ω; Rd) such that

∀ f ∈ C0(Rd) : lim
k→∞

f ◦ yk = fν weakly* in L∞(Ω), (45)

where [ f ◦ yk](x) = f (yk(x)) and

fν(x) =


Rd

f (s)νx (ds). (46)

Let us denote by Y ∞(Ω; Rd) the set of all Young measures which are created by this way, i.e. by taking all bounded
sequences in L∞(Ω; Rd). Note that (45) actually holds for any f : Rd

→ R continuous.
A generalization of this result was formulated by Schonbek [31] (cf. also [27]): if 1 ≤ p < +∞: for every

sequence {yk}k∈N bounded in L p(Ω; Rd) there exists its subsequence (denoted by the same indices) and a Young
measure ν = {νx }x∈Ω ∈ Y (Ω; Rd) such that

∀ f ∈ C p(Rd) : lim
k→∞

f ◦ yk = fν weakly in L1(Ω). (47)

We say that {yk} generates ν if (47) holds. Here for p ≥ 1, we recall that C p(Rd) = { f ∈ C(Rd); f/(1 + | · |
p) ∈

C0(Rd)}.
Let us denote by Y p(Ω; Rd) the set of all Young measures which are created by this way, i.e. by taking all bounded

sequences in L p(Ω; Rd). It is well-known, however, that for any ν ∈ Y p(Ω; Rd) there exists a special generating
sequence {yk} such that (47) holds even for f ∈ C p(Rd) = {y ∈ C(Rd); |y|/(1 + | · |

p) ≤ C, C > 0}.
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