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We design an algorithm for computations of quasiconvex hulls of isotropic compact sets in in
the space of 2×2 real matrices. Our approach uses a recent result by the first author [17] on
quasiconvex hulls of isotropic compact sets in the space of 2× 2 real matrices. We show that
our algorithm has the time complexity of O(N logN) where N is the number of orbits of
the set. Finally, we outline some applications of our results to relaxation of L∞ variational
problems.

1. Introduction

Generalized convexity notions play an important role in the modern calculus of
variations as conditions ensuring sequential weak lower semicontinuity (swlsc)
of integral functionals J : W 1,p(Ω;Rn)→ R

J(u) :=

∫

Ω

f(∇u(x)) dx ,

where f : Rn×n → R is a continuous function satisfying 0 ≤ f(A) ≤ C(1+ |A|p)
for some 1 < p < +∞ and Ω is a bounded Lipschitz domain in R

n. It is well
known [13] that swlsc of I is equivalent to (Morrey’s) quasiconvexity of f . We
say that f is quasiconvex if for all A ∈ R

n×n and all ϕ ∈W 1,∞
0 ([0, 1]n;Rn)

f(A) ≤
∫

[0,1]n
f(A+∇ϕ(x)) dx .

Quasiconvex functions are necessarily rank-one convex which means that

f(λA+ (1− λ)B) ≤ λf(A) + (1− λ)f(B)
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for all 0 ≤ λ ≤ 1 and all A,B ∈ R
n×n with rank(A−B) = 1. It is well-known,

that rank-one convexity does not imply quasiconvexity at least if n > 2; [27].
Finite rank-one convex functions are continuous. A stronger condition than
quasiconvexity is polyconvexity [3]. We say that f is polyconvex if there is a
convex function h such that for all A ∈ R

n×n f(A) = h(T (A)) where T (A)
is a vector of all subdeterminants of A. Quasiconvexity, rank-one convexity,
and polyconvexity are implied by convexity and are equivalent to it for n = 1.
It is, however, very difficult to decide whether a given function is quasicon-
vex. Moreover, in many applications to mathematical elasticity we know that
a given integrand f is not quasiconvex. A prominent example are mathematical
models of shape memory materials. Then we search for the largest quasiconvex
minorant of f which is generically extremely difficult. Therefore its upper and
lower bounds represented by the largest rank-one convex and polyconvex mino-
rants bring an important piece of information and there is extensive literature
on the subject [6, 7, 8, 9, 14, 15, 21, 22, 25, 26].

Analogously to the convex hull of a compact set we can define quasiconvex,
rank-one convex and polyconvex hulls.

If K ⊂ R
n×n is compact we define its quasiconvex hull Kqc as follows:

Kqc := {A ∈ R
n×n; f(A) ≤ sup

X∈K
f(X), ∀f : Rn×n → R quasiconvex} .

Analogously, one defines the rank-one convex (polyconvex) hull of K denoted
Krc (Kpc) by replacing quasiconvex functions by rank-one convex (polyconvex)
ones. We have Krc ⊂ Kqc ⊂ Kpc ⊂ Kc where Kc denotes the convex hull of
K.

Rank-one convex and quasiconvex hulls are generically very difficult (if not
impossible) to compute for a particular choice ofK. The subset ofKrc, easier to
calculate, is the so-called lamination convex hullK lc which is defined recursively
as follows:

K lc := ∪∞i=0K
lc,i ,

where K lc,0 := K and for i ≥ 0

K lc,i+1 := {X ∈ R
n×n; X = λA+(1−λ)B;

rank(A−B) = 1, 0 ≤ λ ≤ 1, A,B ∈ K lc,i} .
If K lc,i = K lc,i+1 for some i then the lamination hull is of the order i.

We say that K ⊂ R
n×n is lamination convex if K = K lc, i.e., if K contains

every line segment [A,B] with A,B ∈ K and rank(A − B) = 1. In fact, it
is not difficult to see that allowing rank-one convex functions to take also the
value +∞ we have

K lc = {A ∈ R
n×n; f(A) ≤ sup

X∈K
f(X) ,

∀f : Rn×n → R ∪ {+∞} rank-one convex} .
(1)
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Contrary to quasiconvex and rank-one convex hulls which are always compact
for compact sets, the lamination convex hull of K can be non-compact even if
K is compact; cf. [20]. One can, however, make it compact if we allow only for
lower semicontinuous functions in (1).

Denoting by SO(n) rotation matrices in R
n×n, i.e., orthogonal matrices with

unit determinants, we call a set K ⊂ R
n×n isotropic if A ∈ K implies that

the orbit QAR ∈ K for all Q,R ∈ SO(n). We will often write SO(n)ASO(n)
instead of {QAR | Q,R ∈ SO(n)}. Accordingly, we call a function f : Rn×n →
R∪{+∞} isotropic if f(A) = f(QAR) for every A ∈ R

n×n and Q,R ∈ SO(n).

Finally, we denote by cc(K) the set of all connected components (meaning
maximal connected subsets with respect to “⊂�) of K.

Knowing the quasiconvex hull of a set is useful in many situations. For ex-
ample, if f ≥ 0 denotes strain energy density of a hyperelastic material and
K := {A| f(A) = 0} denotes the set of microscopically stress-free states then
Kqc is the set of macroscopically stress-free states [4]. Another application is
(sequential) weak* lower semicontinuity of the functional I : W 1,∞(Ω;Rn)→ R

I(u) := esssupx∈Ω f(∇u) ,

for f ≥ 0 continuous. As it is proved in [5] quasiconvexity of sublevel sets
of f (called weak Morrey quasiconvexity of f in [5, Def. 2.2] is a necessary
condition for weak* lower semicontinuity of I. In other words, if c ∈ R and
Ec := {A ∈ R

n×n| f(A) ≤ c} and I is weak* lower semicontinuous then for
all c ∈ R we have Eqc

c = Ec. A sufficient and also necessary condition is the
so-called strong Morrey quasiconvexity of f [5, Def. 2.1].

If I above is not weak* lower semicontinuous, we can search for the largest
weak* lower semicontinuous envelope of I called the relaxation of I and defined
as

Irlx(u) := inf{lim inf
k→∞

I(uk)|uk
∗
⇀ u in W 1,∞(Ω;Rn)} .

To our best knowledge [24], however, an explicit formula for Irlx is not known.

The aim of the present work is to exploit our knowledge of the structure of
the quasiconvex hull of isotropic sets if n = 2. First we propose an algo-
rithm (see Thm. 4.1, Cor. 4.2) for computing the quasiconvex hull with the
comlexity O(N logN) where N is the number of orbits. This means that
lim supN→∞ (number of operations)/(N logN) < +∞. Secondly, assuming
that the strong Morrey quasiconvexity coincides with the weak one, we give
an explicit formula for Irlx(u) as long as f is isotropic and u ∈W 1,∞(Ω;Rn) is
piecewise affine. This is done in Corollary 5.3 giving thus a partial answer to the
open problem. Namely, we show that in this case Irlx(u) = esssupx∈Ω fqqc(∇u),
where fqqc(A) := infc{A ∈ Eqc

c }. Therefore our algorithm can be used to
approximate fqqc.

In what follows, we focus on the case where n = 2 and, thus, we work with
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2×2 matrices only. Our starting point is the following result, which was proved
in [17].

Proposition 1.1. Let K ⊂ R
2×2 be compact and isotropic. Then its quasicon-

vex hull coincides with its lamination convex hull of order 2, that is Kqc = K lc,2.

The plan of the paper is as follows. We first start with some description of the
notation and the description of isotropic sets in Section 2. Useful facts about
hulls of isotropic sets are collected in Section 3. Our algorithm is stated in
Section 4 and the relaxation results in Section 5. If f ∈ R

n×n → R and α ∈ R

then we use the notation {f≤α} := {X ∈ R
n×n| f(X)≤α}. Otherwise, we use

a standard notation W 1,p(Ω;Rn) or W 1,p
0 (Ω;Rn), 1 < p ≤ +∞, for Sobolev

spaces.

2. Coordinates

Let A ∈ R
2×2 be a matrix. We denote by σ(A) = (σ1(A), σ2(A)) ∈ R

2 the
ordered vector of singular values of A, meaning the eigen values of the matrix√
AtA such that 0 ≤ σ1(A) ≤ σ2(A). In addition, we consider the vector

(λ1(A), λ2(A)) ∈ R
2 (sometimes called the signed singular values) where we

set λ1(A) = σ1(A) if det(A) ≥ 0 and λ1(A) = −σ1(A) if det(A) < 0 as well
as λ2(A) = σ2(A). Note that there exist rotations Q1, Q2 ∈ SO(2) such that
Q1AQ2 is nothing but the diagonal matrix diag(λ1(A), λ2(A)). We consider
the coordinate transformation (λ1, λ2) 7→ (γ, δ) given by

γ = sign(λ1)
√

|λ1|λ2, δ = λ2 − |λ1|. (2)

Consequently, the inverse transformation reads

λ1 = sign(γ)
(

− δ/2 +
√

δ2/4+γ2
)

, λ2 = δ/2 +
√

δ2/4+γ2, (3)

where we always dropped the dependence on A. This is related to the transfor-
mations Φ and Ψ introduced by [10, 11]. We will use the coordinates (λ1, λ2)
as well as (γ, δ) within the paper.

3. Quasiconvex hull

We recall known results and begin with some remarks on isotropic sets in R
2×2.

Remark 3.1 (Proposition 3.1 in [26]). For given matricesA,B ∈ R
2×2 the

isotropic sets SO(2)ASO(2) and SO(2)BSO(2) are rank-one connected if and
only if both |λ1(A)| ≤ λ2(B) and |λ1(B)| ≤ λ2(A) hold.

Remark 3.2 (Lemma 3.2 in [17]). Let α, β ≥ 0 be non-negative numbers.
Then the following three sets are closed, isotropic and lamination convex:

{A∈R2×2 | α≤± λ1(A)}, {A∈R2×2 | λ2(A)≤β}.
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Remark 3.3 (Remark 2 in [12]). LetA∈R2×2 be given. ConsiderA+, A− ∈
R

2×2 defined via

A± =

(

| det(A)|1/2 ±
√

|A|2 − 2| det(A)|
0 | det(A)|−1/2 det(A)

)

.

Then every matrix B ∈ R
2×2 with det(A) = det(B) and λ2(B) ≤ λ2(A) lies in

the set (SO(2)ASO(2))lc,1.

We are going to introduce additional notation. Let K ⊆ R
2×2 be compact. We

consider the compact sets

F± =
{(

det(B), y
)

∈ R
2 | B∈K ∧ λ2(B)±λ1(B)≥y

}

. (4)

With the help of the convex hulls F c
+ and F c

−, we define the sets

K± =
{

B ∈ R
2×2 |

(

det(B), λ2(B)±λ1(B)
)

∈ F c
±

}

. (5)

The following two propositions give a characterization of the quasiconvex hull.
In Section 4, we will use this characterization to analyze the time-complexity
of an algorithm that computes the quasiconvex hull. The first result is in the
spirit of [10, 11], where the polyconvex hull was given in a similar form. The
second result is contained in [17].

Proposition 3.4. Let K ⊆ R
2×2 be isotropic and compact. Assume that Kpc

is connected. Then the polyconvex hull is given by Kpc = K+∩K−.

Proof. We know that A 6∈ Kpc holds if and only if there exists a polyconvex
function ϕ : R → R such that ϕ(A) > max{ϕ(B) | B∈K}. In order to prove
[12, Theorem 2.1], Conti et al. show that it is sufficient to consider polyconvex
ϕ which are given by ϕ(X) = ±det(X) or

ϕ(X) = λ2(X)±λ1(X)−det(X)/c for some c ∈ R \ {0}. (6)

They assume that K is connected, while we just assume it for Kpc. Never-
theless, we can use their arguments in view of Kpc = (Kpc)pc. Since the set
K is compact, we just have to deal with ϕ like in (6), where |c| 6= 0 may be
very small. Hence, A 6∈ Kpc holds if and only if there exists an affine function
h : R→ R such that

∀B ∈ K h(det(B)) > λ2(B)±λ1(B) ∧ h(det(A)) = λ2(A)±λ1(A) (7)

where we have to read (7) as an alternative: it is true if it holds for + or −.
In fact, h and ϕ are linked by h(x) = ϕ(A)+x/c for x ∈ R. Note that the
part on the left-hand side of (7) means nothing but F± ⊆ H where we set
H = {(x, y)∈R2 | h(x)>y}. Since H is an open half plane and F+ as well as
F− are compact, we also have F c

± ⊆ H. As a consequence, we conclude that
A 6∈ Kpc holds if and only if A 6∈ K+ or A 6∈ K−.



6 S. Heinz, M. Kruž́ık / Computations of Quasiconvex Hulls of Isotropic ...

Proposition 3.5. Let K ⊆ R
2×2 be isotropic and compact. Then the quasi-

convex hull is given by

Kqc =
⋃

{(Z∩K)pc | Z∈cc(K lc,1)}.

Proof. A similar characterization of Kqc is given in [17]. In particular, it
is shown that Kqc equals

⋃{Zpc | Z∈cc(K lc,1)}. In addition, for every Z ∈
cc(K lc,1) we have that Z is equal to (Z∩K)lc,1 and, hence, Zpc = (Z∩K)pc.

4. Computation of the quasiconvex hull

Proposition 3.5 characterizes the quasiconvex hull of an isotropic and compact
set in R

2×2 with the help of the polyconvex hull and the lamination hull of order
1. This indicates that the computation of the quasiconvex hull is possible. The
aim of this section is to show that there is an efficient way to do that. Let
N > 0 be a nonnegative integer and A1, . . . , AN ∈ R

2×2 be matrices ordered
such that det(Ai) ≤ det(Ai+1) holds for every i = 1, . . . , N−1. In what follows,
we consider the isotropic and compact set

K = SO(2)A1SO(2) ∪ · · · ∪ SO(2)ANSO(2). (8)

Sets of the form SO(2)AiSO(2) are sometimes called wells. In the remainder
of this section, we will prove

Theorem 4.1. Let K be as above. Then the quasiconvex hull Kqc can be

computed with a time-complexity that lies in O(N).

Proof. We are going to show that there is an algorithm of the time-complexity
class O(N) which computes the following objects:

(i) partition K = K<∪K> such that K< ⊆ {det < 0} and K> ⊆ {det ≥ 0},
(ii) connected components of (K<)lc,1 and (K>)lc,1,

(iii) connected components of K lc,1,

(iv) polyconvex hull for each connected component of K lc,1.

In view of Proposition 3.5, the steps (i) to (iv) suffice to compute the quasicon-
vex hull of K. The step (i) is trivial, since the matrices A1, . . . , AN are ordered
by the determinant. The time-complexities of (ii), (iii) as well as (iv) are linear
in N , which is shown in Lemma 4.4, Lemma 4.6 and Lemma 4.9 below.

Now assume that the matrices A1, . . . , AN may not be ordered by the deter-
minant. Recall that the time necessary to sort N elements grows like N logN .
As a direct consequence of Theorem 4.1, we get

Corollary 4.2. Let K be as above, but the matrices A1, . . . , AN may not be

ordered by the determinant. Then the quasiconvex hull Kqc can be computed

with a time-complexity that lies in O(N logN).
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The time-complexity classes given in Theorem 4.1 and Corollary 4.2 are both
optimal.

4.1. Step (ii) - The case of nonnegative determinant

Before we come to the first ingredient of the proof for Theorem 4.1, we make
a simplifying observation. Let us use the coordinates (λ1, λ2) which are given
in Section 2. Assume that K is such that λ1(A1) ≥ 0 for every A ∈ K. This
means that we are in the case of nonnegative determinant. We consider the set
Λ ⊆ R given by the union of closed intervals

Λ = [|λ1(A1)|, λ2(A1)] ∪ · · · ∪ [λ1(AN), λ2(AN)]. (9)

Lemma 4.3. Let A,B ∈ K be two matrices. Then the following conditions

are equivalent: (i) A and B belong to the same connected component of K lc,1

and (ii) the intervals [|λ1(A)|, λ2(A)] and [|λ1(B)|, λ2(B)] belong to the same

connected component of Λ.

Proof. We assume detA ≤ detB, otherwise we exchange A and B. First,
assume that (ii) holds. Then there are matrices X1, . . . , XM ∈ K with X1 = A
and XM = B such that for every i = 1, . . . ,M−1 the intervals [|λ1(Xi)|, λ2(Xi)]
and [|λ1(Xi+1)|, λ2(Xi+1)] overlap. In particular, SO(2)XiSO(2) and
SO(2)Xi+1SO(2) are rank-one connected by Remark 3.1. Since SO(2) is con-
nected, we have (i). Second, assume that (ii) fails. Then we find real numbers
α > β ≥ 0 such that for every i = 1, . . . , N either λ2(Ai) ≤ β or λ1(Ai) ≥ α
holds and, at the same time, λ2(A) ≤ β and λ1(B) ≥ α. Here we have also
used the assumption λ1(Xi), λ1(Xi+1) ≥ 0. The sets {X∈R2×2 | λ2(X) ≤ β}
and {X∈R2×2 | λ1(X) ≥ α} are disjoint and, in view of Remark 3.2, both
lamination convex. Hence, (i) must fail.

Lemma 4.4. The connected components of (K<)lc,1 and the connected compo-

nents of (K>)lc,1 can be computed with a time-complexity that lies in O(N).

Proof. We concentrate on (K<)lc,1. Note that the connected components of
(K>)lc,1 can be handled in a similar way exploiting the isomorphism on R

2×2

which is given by A 7→ diag(1,−1)A. As an application of Lemma 4.3 with
K< instead of K, it is sufficient to compute the connected components of Λ in
order to get the connected components of (K<)lc,1. This is done with the help
of

Algorithm 4.5.

1: i← 1;
2: t← 0;
3: while i ≤ N do
4: begin
5: t← t+1;
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6: (Λt, It)← ([|λ1(Ai)|, λ2(Ai)], {i});
7: while t ≥ 2 and Λt−1∩Λt 6= ∅ do
8: begin
9: (Λt−1, It−1)← (Λt−1∪Λt, It−1∪It);
10: t← t−1;
11: end;
12: i← i+1;
13: end;

After Algorithm 4.5 halts, the sets Λ1, . . . ,Λt are the connected components of
Λ. Clearly, these sets are of the form Λ1 = [α1, β1], . . . ,Λt = [αt, βt]. Recall
that det(Ai) ≤ det(Ai+1) holds for every i = 1, . . . , N−1. As a consequence of
this ordering, the condition Λt−1∩Λt = ∅ in the line 7 implies that βt−1 < αt

holds (βt < αt−1 being impossible). By induction, we get βτ−1 < ατ for every
τ = 2, . . . , t. Hence, the sets Λ1, . . . ,Λt are pairwise disjoint. The rest directly
follows from the design of Algorithm 4.5. The time-complexity of Algorithm 4.5
is linear in N . In particular, we enter the inner loop (lines 9 and 10) less than
N times during the whole computation.

4.2. Step (iii) - Connected components of K lc,1

Assume that for some integer M ∈ {1, . . . , N−1} we have det(A1) ≤ · · · ≤
det(AM) < 0 as well as 0 ≤ det(AM+1) ≤ · · · ≤ det(AN). Let us consider the
sets

K< =
⋃

{SO(2)AiSO(2) | 1≤i≤M},

K> =
⋃

{SO(2)AiSO(2) |M<i≤N}

and, accordingly, Λ< as well as Λ>, see (9). Let Λ<
1 , . . . ,Λ

<
s be the connected

components of Λ< and let K<
1 , . . . , K

<
s be the corresponding subsets of K<.

More precisely, for every matrix A ∈ K< and every index σ ∈ {1, . . . , s} we
have that A ∈ K<

σ holds if and only if [|λ1(A)|, λ2(A)] ⊆ Λ<
σ . In a similar

way, we introduce Λ>
1 , . . . ,Λ

>
t and K>

1 , . . . , K
>
t for Λ> and K>. Assume that

the ordering is exactly the one coming from Algorithm 4.5: β<
σ−1 < α<

σ holds
for every σ = 2, . . . , s and β>

τ−1 < α>
τ for every τ = 2, . . . , t. Here we set

[α<
σ , β

<
σ ] = Λ<

σ and [α>
τ , β

>
τ ] = Λ>

τ .

Lemma 4.6. The connected components of K lc,1 can be computed with a time-

complexity that lies in O(N).

Proof. Using the above notation, we consider

Algorithm 4.7.

1: σ ← s;
2: τ ← t;
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λ1

λ2

K<

σ

K>

τα

Figure 4.1: The black dots form K. In this example, the subsets K<
σ and

K>
τ are rank-one connected. Components of K which completely lie below the

dashed line (λ2 = α) can be dropped without changing the hull Kqc.

3: while σ ≥ 1 and τ ≥ 1 and Λ<
σ∩Λ>

τ = ∅ do
4: begin
5: if α<

σ > β>
τ then σ ← σ−1;

6: if α>
τ > β<

σ then τ ← τ−1;
7: end;

After Algorithm 4.7 halts, we distinguish two cases. First, assume that σ = 0 or
τ = 0 holds. Then for every σ̃ = 1, . . . , s and every τ̃ = 1, . . . , t the intersection
Λ<

σ̃∩Λ>
τ̃ is empty. This is guaranteed by the tests made in line 3 and the ordering

of the intervals coming from Algorithm 4.5. In view of Remark 3.1, K< and
K> cannot be rank-one connected. The connected components of K lc,1 are,
thus, characterized by

{Z∩K | Z∈cc(K lc,1)} = {K<
s , . . . , K

<
1 , K

>
1 , . . . , K

>
t }.

Second, assume that σ and τ are both greater than 0. Then σ and τ are the
largest indices such that Λ<

σ∩Λ>
τ is non-empty and, in particular, the sets K<

σ

and K>
τ are rank-one connected. In this case, we consider the set K∗ ⊆ K

given by
K∗ = K<

s ∪ · · · ∪K<
σ ∪K>

τ ∪ · · · ∪K>
t .

As a consequence of Lemma 4.8 below, we can replace K by K∗, meaning, we
drop the whole setK\K∗, without changing the quasiconvex hull (K∗)

qc = Kqc.
By the design of Algorithm 4.7, the connected components are characterized
by

{Z∩K∗ | Z∈cc(K lc,1
∗ )} = {K<

s , . . . , K
<
σ+1, K

<
σ ∪K>

τ , K
>
τ+1 . . . , K

>
t }.

Clearly, the time-complexity of Algorithm 4.7 is linear in N .

Lemma 4.8. Let the sets K and K∗ be as in the proof of Lemma 4.6. Then

(K∗)
qc = Kqc holds.
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Proof. Set α = max{α<
σ , α

>
τ }, see Figure 4.1. Then there exist matrices

A< ∈ K<
σ and A> ∈ K>

τ such that α lies in [|λ1(A
<)|, λ2(A

<)] as well as
in [|λ1(A

>)|, λ2(A
>)] and, in addition, A< and A> are rank-one connected. Fix

a matrix A ∈ K \ K∗. It is not hard to see that λ2(A) < α holds as well
as det(A<) < det(A) < det(A>). There is a matrix B on the rank-one line
between A< and A> such that det(B) and det(A) are the same. We can as-
sume that α = α>

τ = |λ1(A
>)|, otherwise the argument is similar. Since A>

and B are rank-one connected, we conclude that λ2(B) ≥ |λ1(A
>)| = α, see

Remark 3.1. This means that λ2(B) > λ2(A), which implies that A lies in
(SO(2)BSO(2))lc,1, see Remark 3.3. But then A lies in (K∗)

lc,2. We conclude
that K is a subset of (K∗)

lc,2 and, hence, (K∗)
lc,2 = K lc,2 because of Proposi-

tion 1.1.

4.3. Step (iv) - Polyconvex hull

Recall that K ⊆ R
2×2 is defined by

K = SO(2)A1SO(2) ∪ · · · ∪ SO(2)ANSO(2)

where the matrices A1, . . . , AN are ordered by the determinant. LetK1, . . . , KL

⊆ K be the output of Algorithm 4.5 and Algorithm 4.7, which characterizes
the connected components of (K∗)

lc,1 such that

{Z∩K∗ | Z∈cc(K lc,1
∗ )} = {K1, . . . , KL}.

Lemma 4.9. The polyconvex hulls of the sets K1, . . . , KL can be computed with

a total time-complexity that lies in O(N).

Proof. Fix an index 1 ≤ i ≤ L. Determine the numbers 1 ≤ i0 < i1 ≤ N such
that

Ki = SO(2)Ai0SO(2) ∪ · · · ∪ SO(2)Ai1SO(2)

for matrices Ai0 , . . . , Ai1 ∈ {A1, . . . , AN}. Proposition 3.4 gives us the poly-
convex hull of Ki once we have computed (Ki)+ and (Ki)−. Following (5),
we have to compute the convex hulls of (Fi)+ and (Fi)−. The computation
of the (poly-)convex hull, basically, means sorting out points which lie in the
interior and, hence, are superfluous for the hull, see Figure 4.2. The matrices
Ai0 , . . . , Ai1 , which define (Fi)+ and (Fi)−, are ordered by the determinant.
They form a so-called simple polyline. Therefore, the computation of (Fi)

c
+

and (Fi)
c
− can be done, for example, using the algorithm proposed in [23] with

a time-complexity linear in i1− i0+1. As a result, we have access to (Ki)+ and
(Ki)− and, in particular, to the boundaries ∂[(Ki)+] and ∂[(Ki)−]. Following
Proposition 3.4, we can effectively characterize the boundary of (Ki)

pc (and,
hence, (Ki)

pc itself) with the help of the matrices Ai,1, . . . , Ai,N(i) given by

{Ai,1, . . . , Ai,Ni
} = {A1, . . . , AN}∩∂[(Ki)+]∩∂[(Ki)−]. (10)

Now if i varies between 1 and L, we end up with a total time-complexity that
is linear in N .
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(b) Quasiconvex hull

Figure 4.2: The example is drawn in the λ1-λ2-plane: (a) a set of the form
(8) with eight wells and (b) the boundary of its quasiconvex hull, showing two
connected components. The two wells near the origin lie in the interior and,
hence, can be seen as “superfluous�.

The sets in (10) are considered to be the output of the whole algorithm, once
the matrices Ai,1, . . . , Ai,N(i) have been collected for every i = 1, . . . , L. Note
that these matrices inherit the ordering from A1 . . . , AN , meaning,

(i1<i2) ∨ (i1=i2 ∧ j1≤j2)⇒ det(Ai1,j1)≤det(Ai2,j2). (11)

In view of Proposition 3.5, we get a simple characterization for the quasiconvex
hull

Kqc =
L
⋃

i=1

(

SO(2)Ai,1SO(2)∪ · · · ∪SO(2)Ai,N(i)SO(2)
)pc

. (12)

The following remark indicates that this characterization can be used to com-
pute Kqc. It works with the coordinates (γ, δ), see (2) in Section 2.

Remark 4.10. Let K as well as the matrices Ai,j with i = 1, . . . , L and j =
1, . . . , N(i) be as above. In addition, let γ̃1 ≤ · · · ≤ γ̃M be real numbers. Then
the time-complexity to compute the M values

δk = sup{δ(B) | B∈Kqc ∧ γ(B)=γ̃k} for k = 1, . . . ,M

lies in O(max{N,M}). Note that δk is equal to −∞ if the supremum is taken
over the empty set and that a matrix B ∈ R

2×2 with γ(B) = γ̃k lies in Kqc if
and only if δ(B) ≤ δk.

Proof. For every index k ∈ {1, . . . ,M} find, if possible, ik ∈ {1, . . . , L} and
jk ∈ {1, . . . , N(i)−1} such that γ(Aik,jk) ≤ γ̃k ≤ γ(Aik,jk+1) holds. This can be
done with a time-complexity that lies in O(max{N,M}) because the matrices
are ordered by the determinant, see (11). If such indices i(k) and j(k) do not
exist, then the characterization (12) implies that δk has to be equal to −∞.
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If such indices exist, set γ1 = γ(Aik,jk), γ2 = γ̃k and γ3 = γ(Aik,jk+1). We
use Proposition 3.4 in order to compute δk. Let B ∈ Kqc be any matrix such
that γ(B) lies between γ1 and γ3. Then the largest possible value of δ(B) is
given by convex interpolation. In fact, choose matrices B+, B− ∈ B such that
γ(B±) = γ2 holds and, simultaneously,

(λ2±λ1)(B±) =
γ3−γ2
γ3−γ1

(λ2±λ1)(Aik,jk)+
γ2−γ1
γ3−γ1

(λ2±λ1)(Aik,jk+1).

Then we have δk = min{δ(B+), δ(B−)}.

following way. Start with K and cut out every subset K∩Z1 where we find
the conditions above fulfilled. Then [17, Lemma 6.1] holds if K is replaced by
K∗, see Lemma 4.8. By construction, the sets K lc,2 and (K∗)

lc,2 are the same.
Hence, the rest of the arguments in [17] remain unaltered.

5. Relaxation

Before we present our relaxation result, we prove a nice property for first order
laminates which is of independent interest and might not be well-known. The
lemma holds in any matrix space R

n×d with n, d ≥ 1. Yet, we deal with the
case R

2×2 only.

Lemma 5.1. Let K ⊆ R
2×2 be a compact set and δ0 > 0 a real number.

Moreover, let Ω ⊆ R
2 be an open and bounded set. Then for every matrix

A ∈ R
2×2 with dist(A,K lc,1) ≤ δ0 and every δ > 0 there exists a function

w ∈W1,∞(Ω,R2) vanishing at the boundary of Ω such that

dist(A+∇w(x), K) ≤ δ0+δ for a.e. x ∈ Ω.

Proof. Fix A ∈ R
2×2 with dist(A,K lc,1) ≤ δ0 and fix a real number δ > 0. If

even dist(A,K) ≤ δ0 holds, we can choose w = 0 and are done. Otherwise, there
exist a scalar λ ∈ (0, 1) and matrices B1, C1 ∈ R

2×2 such that all the following
conditions are fulfilled: rank(B1−C1) = 1, dist(B1, K) ≤ δ0, dist(C1, K) ≤ δ0
as well as A = λB1 + (1−λ)C1. Choose vectors a, ν ∈ R

2 such that B1 − C1 =
a⊗ν holds. We are going to construct functions w1, w2, . . . ∈ W1,∞(Ω,R2)
which vanish at the boundary of Ω.

For every 1 > σ1 > 0 we consider a rectangle ω1 ⊆ R
2 with one edge parallel to

ν and of length σ1 and the other edge orthogonal to ν and of length 1. There
is a function v1 ∈ W1,∞(ω1,R

2) vanishing at the boundary of ω1 such that
the quantity A +∇v1 takes only four values: B1, C1, A

+
1 or A−

1 . In addition,
we force the width of the boundary layer (where A +∇v1 ∈ {A+

1 , A
−
1 }) to be√

σ1, see Figure 5.1(a). The set Ω can be written as a union of countably
many scaled and translated copies of ω1, see Figure 5.1(b). As a result, we
end up with a function w1 ∈W1,∞(Ω,R2) vanishing at the boundary of Ω such
that A +∇w1 ∈ {B1, C1, A

+, A−} holds almost everywhere. Consider the set
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Ω1 = {A + ∇w1 ∈ {B1, C1}}. By construction, there exists a constant c > 0
independent of σ1 such that the norms |A+

1 − A| and |A−
1 − A| as well as the

volume of the set Ω \ Ω1 are smaller than c
√
σ1. Choose σ1 = δ2/(2c)2, then

we have
|A+

1 −A|, |A−
1 −A| ≤ δ

2
.

In addition, the volume of the set Ω \ Ω1 is smaller than δ/2.

We choose the function w2 equal to w1 on Ω1, but different on Ω \ Ω1. Let
us focus on the case where A + ∇w1 = A+

1 holds. The construction is like
above. Set B+

2 = B1 − A + A+
1 as well as C+

2 = C1 − A + A+
1 . Then all the

following conditions are fulfilled: B+
2 − C+

2 = a⊗ν, dist(B+
2 , K) ≤ δ0 + δ/2,

dist(C+
2 , K) ≤ δ0+ δ/2 as well as A+

1 = λB+
2 +(1−λ)C+

2 . For every 1 > σ2 > 0
we consider a rectangle ω2 ⊆ R

2 with one edge parallel to ν and of length
σ2 and the other edge orthogonal to ν and of length 1. There is a function
v+2 ∈ W1,∞(ω2,R

2) vanishing at the boundary of ω2 such that the quantity
A+

1 + ∇v+2 takes only four values: B+
2 , C+

2 , A++
2 or A+−

2 . The set where
A+∇w1 = A+

1 holds can be written as a union of countably many scaled and
translated copies of ω2. The case where A +∇w1 = A−

1 holds can be handled
in a similar way. We end up with a function w2 ∈ W1,∞(Ω,R2). Consider the
set Ω2 = {A+∇w2 ∈ {B1, C1, B

+
2 , C

+
2 , B

−
2 , C

−
2 }}. Choose σ2 = δ2/(22c)2, then

we have

|A++
2 −A|, |A+−

2 −A|, |A−+
2 −A|, |A−−

2 −A|
≤ δ

4
+max{|A+

1 −A|, |A−
1 −A|} ≤ δ

2
+ δ

4
.

In addition, the volume of the set Ω \ Ω2 is smaller than δ2/8.

In this spirit, we construct the functions w1, w2, . . . ∈ W1,∞(Ω,R2). There
is a function w ∈ W1,∞(Ω,R2) such that wk → w holds pointwise almost
everywhere in Ω. The values of the quantity A +∇w are contained in the set
{B1, C1, B

+
2 , C

+
2 , B

−
2 , C

−
2 , . . .} almost everywhere, since the volume of Ω \ Ωk

tends to zero. We compute

dist(A+∇w(x), K) ≤ δ0+
δ
2
+ δ

4
+ · · · = δ0+δ for a.e. x ∈ Ω.

As a consequence, w has the desired property.

Let f : R2×2 → R be isotropic, continuous and coercive, meaning, we have
f(A) → ∞ whenever |A| → ∞. In addition, let Ω ⊆ R

2×2 be a domain. We
study the weak* lower semicontinuity of the functional I : W1,∞(Ω,R2) → R

given by
I(u) = esssup f(∇u).

In particular, we want to find the weak* lower semicontinuous envelope Irlx

(sometimes called relaxation) whenever I fails to be weak* lower semicon-
tinuous. Strongly connected to this is quasi-quasiconvexity and the quasi-
quasiconvex envelope. For every continuous and coercive function g : R2×2 → R
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√
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+

1
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1

ν

(a) Basic structure (b) Filled domain

Figure 5.1: The construction of w1 is sketched. Scaled copies of the basic
structure are used to fill an arbitrary domain.

the quasi-quasiconvex envelope gqqc : R2×2 → R is defined via

gqqc(A) = min
{

α∈R | A∈{g≤α}qc
}

.

Here {g≤α}qc denotes the quasiconvex hull of the set {g≤α}. Moreover, g is
called quasi-quasiconvex if g = gqqc holds. Clearly, we have always gqqc ≤ g.
We obtain the lower estimate

Irlx(u) ≥ esssup fqqc(∇u) for every u ∈W1,∞(Ω,R2) .

If u 7→ esssupfqqc(∇u) is weak* lower semicontinuous we have the following
two result.

Lemma 5.2. Let u ∈W1,∞(Ω,R2) be affine and u 7→ esssupfqqc(∇u) be weak*
lower semicontinuous. Then Irlx(u) = esssupfqqc(∇u).

Proof. Fix a matrix A ∈ R
2×2. It is sufficient to show that for every ǫ > 0

there exists a function w ∈ W1,∞(Ω,R2) vanishing at the boundary of Ω such
that

esssup f(A+∇w) ≤ fqqc(A)+ǫ.

Since f is continuous, there exists a number δ = δ(ǫ) > 0 such that the above
condition is implied by

dist
(

A+∇w(x), {f≤fqqc(A)}
)

≤ δ for a.e. x ∈ Ω. (13)

By definition, we must have A ∈ {f≤fqqc(A)}qc and, in view of Proposition 1.1,
A ∈ {f≤fqqc(A)}lc,2 follows. Now two iterations of Lemma 5.1 imply that for
every δ > 0 there is a function w ∈W1,∞(Ω,R2) vanishing at the boundary of
Ω such that (13) holds.
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A function u ∈W1,∞(Ω,R2) is called piecewise affine if for almost every x ∈ Ω
there exists a nonempty open subset O ⊆ Ω containing x, a matrix A ∈ R

2×2

and a vector b ∈ R
2 such that for almost every y ∈ O we have u(y) = Ay+b.

As an immediate consequence of Lemma 5.2 we get the following corollary.

Corollary 5.3. Let u 7→ esssupfqqc(∇u) be weak* lower semicontinuous and

let Aff ⊆W1,∞(Ω,R2) be the closure of the set of all piecewise affine functions

with respect to strong convergence in W1,∞(Ω,R2). Then for every function

u ∈ Aff we have equality Irlx(u) = esssupfqqc(∇u).
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[6] S. Bartels: Linear convergence in the approximation of rank-one convex en-
velopes, M2AN, Math. Model. Numer. Anal. 38 (2004) 811–820.

[7] S. Bartels: Reliable and efficient approximation of polyconvex envelopes, SIAM
J. Numer. Anal. 43 (2005) 363–385.
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