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BINARY INTEGER PROGRAMMING SOLUTION
FOR TROUBLESHOOTING WITH DEPENDENT ACTIONS

Václav Ĺın

We deal with a sequencing problem that arises when there are multiple repair actions avail-
able to fix a broken man-made system and the true cause of the system failure is uncertain. The
system is formally described by a probabilistic model, and it is to be repaired by a sequence of
troubleshooting actions designed to identify the cause of the malfunction and fix the system.
The task is to find a course of repair with minimal expected cost. We propose a binary integer
programming formulation for the problem. This can be used to solve the problem directly or
to compute lower bounds of the minimal expected cost using linear programming relaxation.
We also present three greedy algorithms for computing initial feasible solutions.
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1. INTRODUCTION

We study a combinatorial problem known as single-fault troubleshooting with dependent
actions [4, 5]. The problem is NP-hard [12], and it is a straightforward generalization of
problems known as min-sum set cover [3] and pipelined-set cover [9]. It is a sequencing
problem arising when there are multiple repair actions available to fix a malfunctioning
man-made system and the true cause of the system failure is uncertain. We assume that
we have a probabilistic description of the system. The goal is to find a sequence of repair
actions with minimal expected cost. A more precise formulation of the problem is given
below in Section 2.

To find optimal solutions, the traditional approach is to use dynamic programming
or the A? algorithm [12]. We propose an alternative method using integer programming.
The advantage of using integer programming is that one can solve the troubleshooting
problem directly with any general purpose integer programming solver, without the need
to design and implement proprietary algorithm. The performance of integer program-
ming solvers is steadily increasing [2]. Therefore, one can solve realistic troubleshooting
problems using integer programming, and it can be expected that the size of problems
solvable by integer programming will continue to rise. If the problem at hand is too dif-
ficult to solve to optimality, we may use linear programming relaxation [10] to compute
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lower bounds of optima. The lower bounds obtained by linear programming relaxation
are at least as tight as those used by Vomlelová and Vomlel [12].

Organization of the paper. We define the single-fault troubleshooting with dependent
actions problem in Section 2. In Section 2.2 we describe its relation to min-sum set cover
problem and pipelined-set cover problem. The core of the paper is in Section 3, where
we develop binary integer programming formulation for the problem. In Section 3.3.1,
we introduce several classes of valid inequalities that can be used to improve the basic
formulation. In Section 4, we record few straightforward preprocessing rules for reducing
the size of problem instances. In Section 5, we describe simple greedy algorithms that
can be used to provide initial feasible solutions for branch & bound algorithms [10].
A brief discussion of computational experience is in Section 6.

2. PROBLEM SPECIFICATION

We consider a situation where a man-made system is faulty and the task is to construct
a repair strategy with the minimal expected cost. The following is assumed:

Single-fault assumption. The system failure is caused by exactly one of m mutually
exclusive possible causes of the failure. The causes are called faults. We do not
know which fault causes the system failure, but each fault Fi has a prior probability
of occurrence

P(fault Fi is present) > 0 ,

abbreviated ‘P(Fi)’, and
∑m
i=1 P(Fi) = 1 .

Imperfect actions with costs. There are n repair steps available, called actions, that
can possibly remedy the system failure. When performed, each action Aj can either
succeed or fail to fix the failure. Each action has a fixed nonnegative cost c(Aj)
and a conditional probability of success

P(action Aj succeeds | fault Fi is present) ≥ 0

for each fault Fi. This probability is abbreviated ‘P(Aj | Fi)’. Action Aj has a
prior probability of success P(Aj) =

∑m
i=1 P(Aj | Fi) · P(Fi).

Conditional independence of actions given faults. For an action A, we denote by
symbol ‘A’ also the event ‘action A succeeds’, and by ‘¬A’ the event ‘action Aj
fails’. Let Ã be either the event A or ¬A, and let

P(Ã | Fi) =

{
P(A | Fi) if Ã is A
1− P(A | Fi) if Ã is ¬A

.

We assume that the actions are conditionally independent given the faults, which
means that for every fault Fi and all combinations of Ã1, . . . , Ãn, the joint proba-
bility is

P(Fi ∧ Ã1 ∧ · · · ∧ Ãn) = P(Fi) ·
n∏
j=1

P(Ãj | Fi) .
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Sequencing actions to minimize expected cost of repair. The goal is to find a
permutation 〈Aπ(1), . . . , Aπ(n)〉 of actions that minimizes the expected cost of re-
pair, which is a function of π (it will be defined in Section 2.1).

Evidence. When we perform an action A and the action fails, we naturally obtain
some information. We call this information evidence. In particular, the prior probabili-
ties of faults change from P(F ) to P(F | ¬A). For a fixed permutation π of actions and
for 1 ≤ j ≤ n, we denote

ej =
j∧

k=1

¬Aπ(k) , (1)

the evidence that first j actions in permutation π have failed. For consistency, we define
void initial evidence e0 with P(e0) = 1. We denote the set of actions involved in evidence
ej as S(ej), that is

S(ej) =
{
Aπ(k) : 1 ≤ k ≤ j

}
. (2)

Statements (1) and (2) depend on the permutation π, but we omit π in the notation
since the permutation will always be clear from the context. We drop the index j and
write simply e instead of ej when there is no risk of confusion.

2.1. The expected cost of repair

Any permutation of actions π may be used as repair strategy as follows. The actions are
performed in the order prescribed by the permutation π until one of the actions succeeds
or all the actions with nonzero probability of success were used and failed. Each action
is performed once at most. We skip any action that has zero probability of success given
the failure of the preceding actions. This leads to definition

EC (π) =
∑

i=1,...,n

c(Aπ(i)) · P(ei−1) (3)

ECR(π) =
∑

i=1,...,n
P(Aπ(i)|ei−1) 6=0

c(Aπ(i)) · P(ei−1) (4)

where EC is the expected cost of π, and ECR is the expected cost of repair of π, which
is the expected cost of π where the actions with zero probability of success are skipped.
Our goal is to find a permutation of actions minimizing the ECR.

Additional notation. The set of all faults is denoted F . The set of all actions is
denoted A. For an action A, the set of all faults that can be repaired by action A is
denoted F(A); similarly, A(F ) denotes the set of actions that may repair fault F :

F(A) = {F ∈ F : P(A | F ) > 0} ,
A(F ) = {A ∈ A : P(A | F ) > 0} .



496 V. LÍN

We write π(A) to denote the position of action A in permutation π. For distinct actions A
and B, π(B) < π(A) means that action B precedes action A in permutation π. Using
the assumptions of mutual exclusivity of faults and conditional independence of actions
given faults, we may write

EC (π) =
∑
A∈A

c(A) ·
∑
F∈F

P(F ) ·
∏

B∈A(F )
π(B)<π(A)

P(¬B | F ) . (5)

To be able to talk concisely about the sets of faults and actions that are still to be
considered after we have obtained evidence e, we introduce additional notation:

A(e) = {A ∈ A : A /∈ S(e), and P(A | e) > 0} ,
F(e) = {F ∈ F : P(F | e) > 0} .

In Table 1, we provide the survey of the principal symbols used in the paper.

Symbol Meaning
P(F ) prior probability of occurence of fault F
P(A | F ) probability of success of action A in presence of fault F
F = {F1, . . . , Fm} the set of all faults
A = {A1, . . . , An} the set of all actions
F(A) the set of faults addressed by action A
A(F ) the set of actions addressing fault F
π(A) rank of action A in permutation π
π(F ) rank of the first action in π addressing fault F
S(e) the set of actions involved in evidence e
A(e) the set of available actions given evidence e
F(e) the set of possible faults given evidence e

Tab. 1. Summary of notation for troubleshooting problems.

Position of actions with zero probability of success. With respect to ECR,
the position of actions with zero probability of success is irrelevant. When minimizing
EC, an action with zero probability of success cannot precede an action with nonzero
probability of success. We record this observation formally as Proposition 2.1.

Proposition 2.1. Let π be a permutation minimizing EC , and let P(Aπ(j) | ej−1) = 0
for some j < n. Then P(Aπ(k) | ek−1) = 0 for all k ∈ {j + 1, . . . , n}.

P r o o f . We prove the proposition by contradiction and use ‘adjacent pairwise inter-
change’ argument [1]. We assume that there is an action Aπ(k), j < k ≤ n, with
nonzero probability of action success, P(Aπ(k) | ek−1) > 0. This implies that there
are two adjacent actions Aπ(`) and Aπ(`+1), j ≤ ` < k, with probabilities of success
P(Aπ(`) | e`−1) = 0 and P(Aπ(`+1) | e`) > 0. Let π′ be a permutation of actions ob-
tained from π by swapping the positions of actions Aπ(`) and Aπ(`+1). It can be shown
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by elementary algebraic manipulation that EC (π′)− EC (π) < 0 and hence π does not
minimize EC. �

Relation of functions EC and ECR. From equations (3) and (4), it is obvious that
generally EC ≥ ECR. Functions EC and ECR are not always minimized by the same
permutation of actions, as demonstrated by Example 2.2.

Example 2.2. Let us consider two faults and two actions with action costs c(A1) = 4
and c(A2) = 7 and prior probabilities of faults P(F1) = P(F2) = 0.5. The conditional
probabilities of action success are

F1 F2

P(A1 | F ) 1 0
P(A2 | F ) 1 0.5

The two possible permutations are π1 = 〈A2, A1〉 and π2 = 〈A1, A2〉. Their expected
costs are:

π2 = 〈A1, A2〉 π1 = 〈A2, A1〉
EC = 4 + 0.5 · 7 = 7.5 = 7 + 0.25 · 4 = 8
ECR = 4 + 0.5 · 7 = 7.5 = 7, action A1 is skipped

We see that EC is minimized by π2 whereas ECR is minimized by π1.

2.1.1. Problems where EC equals ECR

For a permutation π, equality EC (π) = ECR(π) holds if there is no index i such that

P(Aπ(i) | ei−1) = 0 and P(ei−1) > 0 . (6)

For some instances of the problem, EC (π) = ECR(π) for every optimal permutation π.
We will discuss this situation in more detail.

First, we say that an action Ai is dominated in permutation π if its success probability
P(Aπ(i) | ei−1) is zero. In principle, action A can be dominated if for every fault
F ∈ F(A) there is an action B ∈ A(F ) \ {A} such that P(B | F ) = 1. If none of the
actions in A can be dominated, then P(Aπ(i) | ei−1) > 0 for every permutation π and
every index i. Hence EC (π) = ECR(π) for every permutation π.

Second, we say that an action A is perfect if P(A | F ) ∈ {0, 1} for every fault F .
We consider problems where all actions are perfect. We argue that for such problems,
the condition (6) can never be satisfied in optimal permutations. We can assume that
every fault F has a nonempty set A(F ) of actions that can eliminate it since any fault F
with A(F ) = ∅ can be removed (as discussed in Section 4). Hence, in problems with all
actions perfect, P(ei−1) > 0 implies that there is still some fault F not addressed by the
actions in S(ei−1). Consequently, there is an action A /∈ S(ei−1) addressing the fault F
with P(A | ei−1) > 0. We see that in permutations optimal with respect to EC:

• whenever P(ei−1) > 0, there is an action A with P(A | ei−1) > 0, and

• by Proposition 2.1 the action A cannot be preceded by any action B with zero
probability P(B | ei−1).
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Therefore, P(ei−1) > 0 implies P(Aπ(i) | ei−1) > 0 in permutations optimal with respect
to EC and the condition (6) can never be satisfied. We conclude that

min
π

EC(π) = min
π

ECR(π) (7)

in problems where all actions are perfect.

2.2. Special case with all actions perfect

We will show how single fault troubleshooting where all actions are perfect encompasses
two other combinatorial problems from the literature. Since (7) holds, we consider only
the function EC in the rest of this section. Given a permutation π, we denote

π(F ) = min{π(A) : A ∈ A(F )} ,

the rank of the first action that will fix fault F . The product in formula (5) equals 1 if
π(j) < π(F ) and it equals 0 otherwise. After rearrangement, formula (5) becomes

EC(π) =
∑
F∈F

P(F ) ·
π(F )∑
j=1

c(Aπ(j)) (8)

The problem of minimizing (8) is equivalent to solving the pipelined set cover problem [9].
When we further assume that all the action costs and fault probabilities are uniform,
then finding a minimizing permutation for function (8) is equivalent to minimizing

EC(π) =
∑
F∈F

1
|F|
·
π(F )∑
j=1

1 =
1
|F|

∑
F∈F

π(F ) . (9)

The problem of minimizing (9) is equivalent to solving the min-sum set cover problem [3].

3. BINARY INTEGER PROGRAMS

In this section, we develop a binary integer programming formulation for the general
single-fault troubleshooting problem (Section 3.3) and two formulations for the special
case with all actions perfect discussed in Section 2.2 (Section 3.2).

3.1. Basic concepts and terminology

Here we review basic concepts and terminology of integer programming. For more
information, we refer to Nemhauser and Wolsey [10].

In linear programming, one has vectors c ∈ Rr, b ∈ Rs and a matrix A ∈ Rr×s, and
the task is to solve the minimization problem

zLP = min
{
cTx : x ∈ P

}
, (10)

where P is a polyhedron in Rr,

P =
{
x ∈ Rr : Ax ≥ b, x ≥ 0

}
.
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Any optimization problem given by (10) is called a linear program with objective function
f(x) = cTx and with system of linear constraints Ax ≥ b. The entries of vector x are
the variables of the problem. It is known that we might also maximize the objective
function, the constraints may be equalities etc.. In either case, the problem can always
be reformulated to conform to the form given above.

In binary integer programming, we are looking for a solution of

zBIP = min
{
cTx : x ∈ P ∩ {0, 1}r

}
, (11)

where P is a polyhedron in Rr as above. Any optimization problem given by (11) is called
a binary integer program (henceforth sometimes referred to simply as ‘program’). Binary
integer programs can be used to express a great variety of combinatorial problems.

Given input data A, b, c, the problems (10) and (11) are clearly related as they share
the objective function cTx and the linear constraints Ax ≥ b. The linear program (10)
is called linear programming relaxation of (11), and zLP ≤ zBIP since P ⊇ P ∩ {0, 1}r.
Linear programming relaxation is a useful tool for obtaining lower bounds of optima
of binary integer programs, since a linear program can be solved in polynomial time,
whereas solving binary integer programs is an NP-hard problem.

Suppose we are given a polyhedron P ⊆ Rr and an inequality

aTx ≥ b (12)

for a vector a and a real number b. The inequality (12) is said to be valid for the set
X = P ∩ {0, 1}r if it is satisfied by all the vectors x ∈ X. Suppose there is a vector
x′ ∈ P that does not satisfy (12). Then for a polyhedron P ′ = {x ∈ P : aTx ≥ b} we
have X ⊆ P ′ ( P since x′ /∈ P ′. Consequently,

min{cTx : x ∈ X} ≥ min{cTx : x ∈ P ′} ≥ min{cTx : x ∈ P} .

This shows that finding suitable valid inequalities (like that in (12)) may result in tighter
linear programming relaxations.

3.2. Single-fault troubleshooting with all actions perfect

We devise two alternative formulations for the problem with perfect actions discussed in
Section 2.2. We will see later (in Section 3.3) how the following observations generalize
in the case with imperfect actions.

Encoding permutations by precedence variables. To encode permutations of
actions, we use binary variables dA,B for every pair of distinct actions A,B ∈ A. Given
a permutation π of the actions, we put dA,B = 1 if action A precedes action B in
the permutation π, otherwise we put dA,B = 0. These variables are called precedence
variables [1]. Variables dA,B should encode a linear order on A, that is an asymmetric
and transitive relation. To enforce asymmetry, we introduce equation (13) for each pair
of distinct actions A,B:

dA,B = 1− dB,A . (13)
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Transitivity is enforced by adding the inequality (14) for every ordered triple of pairwise
distinct actions A,B,C:

dA,B + dB,C ≤ dA,C + 1 . (14)

To reduce the size of linear integer programs with precedence variables, we can get
drop half of the variables dA,B by using (13) to substitute (1− dB,A) for dA,B wherever
appropriate. Constraints (14) are also known as 3-dicycle constraints. For much more
information about precedence variables and associated valid inequalities, we refer to
Reinelt [11].

The objective function. Given a fixed permutation π of actions, we define a binary
variable xF,A for each fault F and action A. We require that xF,A = 1 if and only if the
fault F is not addressed by any action scheduled before the action A. That is, xF,A = 1
if and only if dA,B = 1 for all actions B ∈ A(F ) \ {A}. Now, we can write the objective
function (8) as a linear function∑

F∈F

∑
A∈A

P(F ) · c(A) · xF,A . (15)

Minimizing the objective function (9) is equivalent to minimizing
∑
F∈F

∑
A∈A xF,A .

Formulation 1. We need to devise a system of linear inequalities constraining all
the variables xF,A. Since all the coefficients in (15) are always nonnegative and we
are minimizing the function, we do not need to bound the variables xF,A from above.
Therefore, we only need to bound these variables from below. This can be achieved by
including inequality (16)

xF,A ≥ 1−
∑

B∈A(F )\{A}

dB,A, (16)

for every combination of F and A. The integer programming formulation then has the
objective function (15) to be minimized subject to constraints (16) and (13) and (14).
Example 3.1 below illustrates the use of this type of formulation.

We may use additional valid equalities that are not necessary to constrain feasible in-
teger solutions, but nonetheless lead to a tighter linear programming relaxation. Observe
that ∑

A∈A(F )

xF,A = 1 (17)

for all faults F with nonempty set A(F ). In other words, of all relevant actions
A ∈ A(F ), exactly one will fix the fault F in permutation π.

Example 3.1. Let us construct integer program for simple troubleshooting problem
with two faults and two perfect actions. Action costs are c(A1) = c1 and c(A2) = c2,
prior probabilities of faults are P(F1) = p and P(F2) = (1− p), and conditional proba-
bilities of action success are
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F1 F2

P(A1 | F ) 1 0
P(A2 | F ) 0 1

To construct a binary integer program, we introduce binary variables

x1,1, x1,2, x2,1, x2,2, d1,2, d2,1 ∈ {0, 1} .

The objective function (15) to be minimized is

EC = p · c1 · x1,1 + p · c2 · x1,2 + (1− p) · c1 · x2,1 + (1− p) · c2 · x2,2 .

There is just one constraint (13):

d1,2 + d2,1 = 1 ,

and constraints (16) are

x1,1 ≥ 1, x1,2 ≥ 1− d1,2,
x2,2 ≥ 1, x2,1 ≥ 1− d2,1.

A simple inspection shows that the problem can be solved by finding a value of d1,2

minimizing d1,2

[
c1(1− p)− pc2

]
.

Formulation 2. An alternative integer programming formulation is based on this
observation: if both xF,A = 1 (fault F is not addressed by any action preceding A) and
dB,A = 1 (action B precedes A), then also xF,B = 1 (fault F is not addressed by any
action preceding action B). This translates into a linear constraint

xF,A + dB,A ≤ xF,B + 1 (18)

defined for all combinations of fault F and distinct actions A and B.
We will now show that constraints (17) and (18) are sufficient to bound the x-

variables. We assume that there are no faults F with empty set A(F ), since such
faults can always be removed as discussed in Section 4. Let a permutation of actions
be fixed and let the d-variables be set to their appropriate values. Let us consider any
fault F and all the variables xF,· associated to it. By constraint (17), there is exactly
one action A ∈ A(F ) such that xF,A = 1. For all the actions B preceding action A, the
value of xF,B equals 1 due to the fact that xF,B ∈ {0, 1} and constraint (18) reduces to
1 ≤ xF,B because xF,A + dB,A = 2. For any action B preceded by A, we have dB,A = 0
and the constraint (18) reduces to 1 + 0 ≤ xF,B + 1, and hence it is trivially satisfied
regardless of the value of xF,B . Since we are minimizing (15), the variable xF,B will be
set to 0 for all actions B that are preceded by A.

To summarize, in this formulation we are minimizing objective function (15) subject
to constraints (17), (18), (13), (14).

Example 3.2. Let us consider the troubleshooting problem from Example 3.1. In this
case, constraints (17) are

x1,1 = 1 , x2,2 = 1 ,
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and constraints (18) are

x1,1 + d2,1 ≤ x1,2 + 1, x1,2 + d1,2 ≤ x1,1 + 1,

x2,1 + d2,1 ≤ x2,2 + 1, x2,2 + d1,2 ≤ x2,1 + 1.

3.3. Single-fault troubleshooting with imperfect actions

We will now generalize the observations from the previous section to single fault trou-
bleshooting with imperfect actions. The first step is to formulate the expected cost of
a permutation of actions as a linear function. For simplicity, we begin with EC and
turn to ECR later. Assuming that a fixed permutation π is encoded by variables dA,B
introduced above, we can write (5) as:

EC(π) =
∑
A∈A

c(A) ·
∑
F∈F

P(F ) ·
∏

B∈A(F )
B 6=A
dB,A=1

P(¬B | F ) . (19)

(Whenever the product in (19) is taken over an empty set of factors, we assume that
the product equals 1.) Minimizing (5) is equivalent to minimizing (19) subject to the
constraints (13) and (14). To express (19) as a linear function, we introduce a binary
variable xF,A,B for each fixed combination of fault F , action A and a set of actions
B ⊆ A(F ) \ {A}. Variable xF,A,B equals 1 if and only if all the actions B ∈ B precede
action A, and all the remaining actions from A(F ) are preceded by action A. To each
variable xF,A,B we associate a coefficient

QF,A,B = c(A) · P(F ) ·
∏
B∈B

P(¬B | F ) .

When B = ∅, that is when the action A is not preceded by any B ∈ A(F ), we have

QF,A,∅ = c(A) · P(F ) .

We observe that for any fixed fault F and action A, exactly one of the variables xF,A,B
equals 1. Thus, we may replace the nonlinear objective function (19) by a linear function

EC =
∑
A∈A

∑
F∈F

∑
B⊆A(F )
B63A

QF,A,B · xF,A,B . (20)

The number of x-variables depends exponentially on the size of sets A(F ). However, we
can assume that in practical applications the sets A(F ) are reasonably small. To bound
the values of the x-variables from below, we introduce an inequality

xF,A,B ≥ 1−
∑
B∈B

dA,B −
∑

B∈A(F )\B
B 6=A

dB,A (21)

for each fixed combination of F , A and B. In case that A(F ) \ {A} is an empty set,
we have xF,A,∅ = 1. Upper bounds of the x-variables are not necessary since we are



Binary integer programming solution for troubleshooting with dependent actions 503

minimizing function (20) and all the coefficients are nonnegative. Now, we have a
minimization binary integer program with the objective function (20) subject to con-
straints (21), (13), (14).

Example 3.3. Let us construct a program for the problem from Example 2.2. We
introduce precedence variables d1,2 and d2,1 and all the x-variables and their coeffi-
cients. For instance, variable x2,1,{2} has coefficient Q2,1,{2} = 4 · 1

2 ·
1
2 = 1. Some

of the x-variables have a zero coefficient, for instance variable x1,1,{2} has coefficient
Q1,1,{2} = 4 · 1

2 · 0 = 0. Such variables are discarded. The objective function is

EC = 2 · x1,1,∅ + 3.5 · x1,2,∅ + x2,1,{2} + 2 · x2,1,∅ + 3.5 · x2,2,∅

and it is to be minimized subject to constraint (13):

d1,2 + d2,1 = 1,

and constraints (21):

x1,1,∅ ≥ 1− d2,1

x1,2,∅ ≥ 1− d1,2

x2,1,∅ ≥ 1− d2,1

x2,1,{2} ≥ 1− d1,2

x2,2,∅ ≥ 1 .

Perfect actions. As mentioned in Example 3.3, we may exclude any variable xF,A,B
and associated constraints if the associated coefficientQF,A,B is zero. We haveQF,A,B = 0
if there is an action B ∈ B with P(¬B | F ) = 0. In the special case when all the proba-
bilities P(A | F ) are either 0 or 1, we obtain the Formulation 1 described in Section 3.2
because the coefficientsQF,A,B are zero for all sets B 6= ∅, and hence all the corresponding
variables xF,A,B are excluded, and constraints (21) reduced to (16).

Minimizing ECR. As introduced in Section 2.1.1, we say that an action Ai is domi-
nated in permutation π if its success probability P(Aπ(i) | ei−1) is zero. To minimize ECR
rather than EC, we need to extend the binary integer program by additional variables
and constraints to deal with dominated actions. For every variable xF,A,B, we include a
‘correction’ variable wF,A,B with coefficient ‘−QF,A,B’ and with intended meaning that
wF,A,B = 1 if and only if xF,A,B = 1 and the action A is dominated. The linear objective
function then is

ECR =
∑
xF,A,B

QF,A,B · xF,A,B −
∑

wF,A,B

QF,A,B · wF,A,B (22)

where the sums extend over all the x- and w-variables present in the program. We need
to include linear inequalities constraining the w-variables. Since we are minimizing (22),
only upper bounds are necessary. The desired inequalities are

wF,A,B ≤ xF,A,B (23)
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(
∀G ∈ F(A)

)
wF,A,B ≤

∑
B∈A(G)\{A}

P(B|G)=1

dB,A. (24)

Inequalities (24) express the fact that action A is dominated only if for every fault
G ∈ F(A) there is an action B ∈ A(F ) \ {A} that precedes A and P(B | G) = 1.

As mentioned above, we do not add any x-variable with zero coefficient to the pro-
gram. Likewise, we do not add any w-variables that either cannot ever equal 1 or have
zero coefficient Q. For a variable wF,A,B to be included in the program, the following
conditions must be satisfied:

1. Action A can be dominated. That means that for every fault G ∈ F(A) there is
an action B ∈ A(G) \ {A} that can solve fault G perfectly, that is, P(B | G) = 1.

2. The coefficient QF,A,B is nonzero. That means that for every action B ∈ B, the
probability P(¬B | F ) is nonzero.

3. Action A does not belong to the set A(F ).

To see validity of the third condition, consider a variable wF,A,B with A ∈ A(F ). If such
a variable has nonzero coefficient QF,A,B, then it means that action A is not dominated,
as it is not preceded by any action B with P(B | F ) = 1. Consequently, wF,A,B = 0 and
thus it does not affect the objective value.

Example 3.4. Let us continue where we stopped in Example 3.3. To minimize ECR
we include w-variables. It turns out that we only need to include variables w2,1,∅ and
w2,1,{2}. This is because action A1 can be dominated by action A2, and action A1 does
not solve fault F2. The objective function becomes

ECR = 2 · x1,1,∅ + 3.5 · x1,2,∅ + x2,1,{2} − w2,1,{2} + 2 · x2,1,∅ − 2 · w2,1,∅ + 3.5 · x2,2,∅

and we introduce additional constraints (24) and (23):

w2,1,{2} ≤ d2,1

w2,1,∅ ≤ d2,1

w2,1,{2} ≤ x2,1,{2}

w2,1,∅ ≤ x2,1,∅ .

3.3.1. Classes of additional valid inequalities

We introduce several classes of additional valid inequalities that may be used to obtain
tighter linear programming relaxation. The first class of valid inequalities is based on
the observation that for any fixed combination of a fault F and an action A, exactly one
of the variables xF,A,B equals 1, that is∑

B⊆A(F )
B63A

xF,A,B = 1 . (25)
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Another class of valid inequalities is based on observing that for any given fault F
and a fixed permutation of actions, there is exactly one action A ∈ A(F ) that is not
preceded by any other action B ∈ A(F ). That is,∑

A∈A(F )

xF,A,∅ = 1 . (26)

for every fault F . This is a generalization of constraints (17).
We observe that if an action B precedes an action A, and A precedes all the actions

from A(F ), then also B precedes all the actions from A(F ). Hence,

xF,A,∅ + dB,A ≤ xF,B,∅ + 1 . (27)

for any fixed combination of fault F and distinct actions A and B. This is a generaliza-
tion of constraints (18).

Another class of valid inequalities that we introduce is based on a heuristic function
of Vomlelová and Vomlel [12]. For any given fault F , let us define the minimum

ECF = min
π

∑
A∈A

c(A) ·
∏
B∈A

π(B)<π(A)

P(¬B | F ) . (28)

One can show by a pairwise interchange argument [1] that a minimizing permutation at
the right side of (28) is found by sequencing the actions in the order of non-increasing
ratios

P(A | F )
c(A)

.

We can construct constraints (29) for each fault F :∑
A∈A

∑
B⊆A(F )
B63A

QF,A,B · xF,A,B ≥ P(F ) · ECF . (29)

The heuristic function of Vomlelová and Vomlel [12] can be expressed by a single
inequality:∑

xF,A,B

QF,A,B · xF,A,B −
∑

wF,A,B

QF,A,B · wF,A,B ≥
∑
F∈F

P(F ) · ECRF , (30)

where at the left side we have ECR as expressed by function (22) and at the right side
we have

ECRF = min
π

∑
A∈A

P(A|F )>0

c(A) ·
∏
B∈A

π(B)<π(A)

P(¬B | F )

for every fault F . The only difference between ECF and ECRF is that in ECRF only
actions with P(A | F ) > 0 are used. A minimizing permutation for each ECRF is found
by sequencing the actions in the order of non-increasing ratios

P(A | F )
c(A)

.
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The valid inequality (30) is significant because when we use it, we always obtain a linear
programming relaxation that is at least as tight as the heuristic function of Vomlelová
and Vomlel [12].

Fixing some precedence variables in advance. An action A is called independent
if for all actions B ∈ A\{A}, the sets of faults F(A) and F(B) are disjoint. The relative
order of independent actions can be determined using Proposition 3.5 below, and the
appropriate d-variables can be fixed accordingly in advance.

Theorem 3.5. Let π be an optimal permutation of actions. Then for any pair of
distinct independent actions A and B such that

P(B)
c(B)

>
P(A)
c(A)

,

action B precedes action A in permutation π.

Theorem 3.5 is not very surprising in view of similar but weaker results [4, 5]. The
author is not aware of a published full proof of the theorem, and therefore it is included
here. To prove Theorem 3.5, several observations are needed.

For independent actions,

P(A | e) =
P(A)
P(e)

. (31)

Equality (31) follows from the Bayes’ rule and the fact that P(e | A) = 1 due to the
single fault assumption and independence of A.

A set of consecutive actions in permutation π is called a segment of permutation π.
We say that segment σ succeeds if some action A ∈ σ succeeds to fix the system failure.
Given evidence e, the probability of success of segment σ is P(‘segment σ succeeds’ | e),
abbreviated P(σ | e). Given two disjoint segments σ1 and σ2 of the same permutation
and evidence e not involving any action from segments σ1 and σ2, we say that segments
σ1 and σ2 are mutually independent given evidence e if the intersection( ⋃

A∈σ1

F(A)
)
∩
( ⋃
A∈σ2

F(A)
)
∩ F(e)

is empty. The evidence that segment σ has failed to fix the system failure is denoted ¬σ.
For any two segments σ1 and σ2 that are mutually independent givent evidence e,

P(σ1 | ¬σ2, e) =
P(σ1 | e)

P(¬σ2 | e)
. (32)

Equality (32) is derived using Bayes’ rule and the observation that P(¬σ2 | σ1, e) = 1.
Relative order of mutually exclusive segments has a property stated in the next lemma.

Lemma 3.6. Let an optimal permutation π contain two adjacent segments σ1 and σ2,
with σ1 preceding σ2. Let e be the evidence that all actions preceding σ1 have failed,
and let the segments σ1 and σ2 be mutually independent given the evidence e. Then

P(σ1 | e)∑
A∈σ1

c(A)
≥ P(σ2 | e)∑

A∈σ2
c(A)

. (33)
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P r o o f . Let π′ be a permutation obtained from π by interchanging the segments σ1

and σ2. That is, σ2 precedes σ1 in π′. Permutation π is optimal and hence

EC(π) ≤ EC(π′) . (34)

Inequality (34) can be simplified to (33) by an elementary algebraic manipulation using
the definition of EC, basic properties of probability and equality (32). �

We are now in position to prove Theorem 3.5.

P r o o f o f T h e o r e m 3.5. The proof is by contradiction. We assume that the
permutation π is optimal, but that it contains a pair of distinct independent actions A
and B such that

P(B)
c(B)

>
P(A)
c(A)

and A precedes B. We consider two cases. First, we consider the case when A and B
are adjacent. Since both A and B are independent actions, they constitute two single-
element segments of π that are mutually independent given any preceding evidence e.
By Lemma 3.6, this implies

P(B | e)
c(B)

≤ P(A | e)
c(A)

.

An application of (31) yields a contradiction:

P(B)
c(B)

≤ P(A)
c(A)

. (35)

Second, we consider the case when A and B are not adjacent and there is a segment of
actions σ between them. By Lemma 3.6 and equality (32) this implies

P(B | e)
c(B)

≤ P(σ | e)∑
A′∈σ c(A′)

≤ P(A | e)
c(A)

.

From this, (35) is obtained again using (31). �

4. PREPROCESSING RULES

The size of the proposed binary integer programs and the computational effort needed
to solve them depends on the sizes of sets A and F , and on the input probabilities
P(A | F ). We survey simple preprocessing rules that can be used to reduce the size of
sets A and F . These rules also apply to subproblems given by sets A(e) and F(e).

Excluding irrelevant actions and faults. Actions with zero probability of success
and faults with zero probability of occurrence are excluded from A and F .
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Removing barren faults. A fault F ∈ F is barren if A(F ) = ∅. In presence of barren
faults, we proceed as follows:

1. Let a proper subset F ′ ( F be the set of all barren faults with total proba-
bility PB =

∑
F∈F ′ P(F ). Remove the barren faults. For each remaining fault

F ∈ F \ F ′, update the fault probability to
P(F )

(1− PB)
so that the fault probabili-

ties sum to one.

2. Solve the modified problem. Let EC?M be the resulting expected cost. Then the
optimal expected cost of the original problem is EC? = (1− PB)EC?M .

Merging faults addressed by single action. If there are some faults in F , say
F1, . . . , F`, that are only addressed by a single action A ∈ A, then we may remove faults
F1, . . . , F` from F and replace them by a single fault F ′ with probability of occurrence
P(F ′) =

∑`
i=1 P(Fi). The conditional probability of success of action A is defined as

P(A | F ′) =
∑`
i=1 P(A | Fi) · P(Fi)

P(F ′)
.

Removing redundant perfect actions. Consider two distinct actions A and B.
Let c(A) ≤ c(B) and F(B) ⊆ F(A), and let P(A | F ) = 1 for all faults F ∈ F(A), and
P(B | F ) = 1 for all faults F ∈ F(B). Under these conditions, the action B will never
be used in an optimal repair strategy and can be removed.

5. GREEDY ALGORITHMS

Experience shows that fast greedy algorithms may be used to construct permutations of
actions that are very often optimal or ‘nearly optimal’. These algorithms are useful be-
cause solving integer programs by branch & bound algorithms is often greatly facilitated
by having a good initial feasible solution. We will describe three such greedy algorithms.
Their performance is then asessed by experiments in Section 6.

Algorithm Updating P/C. Jensen et al. [5] describe an algorithm called Updating
P/C. On ith step, 1 ≤ i ≤ n, the algorithm selects an action A ∈ A(ei−1) maximizing
the ratio

P(A | ei−1)
c(A)

.

Algorithm DP-greedy. Let us consider an instance of the troubleshooting problem
given by sets A and F . Any evidence e induces a subproblem given by sets A(e) and
F(e), with updated fault probabilities P(F | e). Vomlelová and Vomlel [12] observed
that the expected cost ECR?(e) of optimal permutation of actions from set A(e) can be
computed by the dynamic programming recurrence

ECR?(e) = min
A∈A(e)

[
c(A) + P(¬A | e) · ECR?(¬A ∧ e)

]
. (36)
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The recurrence (36) motivates a greedy algorithm that we call DP-greedy. On ith step,
1 ≤ i ≤ n, the algorithm selects an action A ∈ A(ei−1) minimizing

c(A) + P(¬A | ei−1) · ẼC(¬A ∧ ei−1) ,

where ẼC(¬A∧ei−1) denotes the estimate of the expected cost of an optimal permutation
of the remaining actions from A(¬A∧ei−1). The estimate is computed by the Updating
P/C algorithm. Langseth and Jensen [7] propose a seemingly different greedy algorithm
that always selects an action A ∈ A(ei−1) maximizing the ratio

P(A | ei−1)
c(A)− P(¬A | ei−1) ·VOI(¬A | ei−1)

. (37)

Here

VOI(¬A | ei−1) =
[
c(A) + P(¬A | ei−1) · ẼC(¬A ∧ ei−1)

]
− ẼC(¬A ∧ ei−1)

is interpreted as the “value of information” of performing action A. This algorithm
selects the same permutation of actions as DP-greedy, because by elementary algebraic
manipulation we obtain equality

P(A | ei−1)
c(Ai)− P(¬A | ei−1) ·VOI(¬A | ei−1)

=
1

c(A) + P(¬A | ei−1) · ẼC(¬A ∧ ei−1)
.

Algorithm I-greedy. The last greedy algorithm uses an information-theoretic cri-
terion for selection of the hopefully best action given current evidence. We call it
I-greedy. The motivation of this algorithm is that we want to always select an ac-
tion that reduces the uncertainty on faults the most, even if the action itself fails.1 Let
H(F | e) = −

∑
F∈F P(F | e) · log2 P(F | e) be the Shannon entropy. On each step of

the algorithm, we select an action A maximizing the ratio

H(F | e)− P(¬A | e) ·H(F | e ∧ ¬A)
c(A)

, (38)

we update the evidence e, and remove A from the list of available actions.

6. COMPUTATIONAL EXPERIENCE

In this last section we collect results of a small computational study. Nine problem
instances were solved. One of the instances was generated, the other were extracted
from real world troubleshooting problems. Basic characteristics of the problem instances
are given in Table 2.

1The idea of greedy decision maximizing the ‘entropy reduction’ can be traced at least to 1960s [6].
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c(A) P(F ) P(A | F ) 6= 0
|A| µ ς |F| µ ς % µ ς

1 25 6,840 3,923 26 0,038 0,037 8,800 0,886 0,125
2 13 24,231 30,868 12 0,083 0,055 9,600 0,941 0,066
3 7 10,429 11,588 6 0,167 0,158 23,800 0,898 0,175
4 13 28,154 31,945 13 0,077 0,093 15,380 0,950 0,050
5 10 1,000 0,000 10 0,100 0,000 27,000 0,929 0,051
6 14 83,000 264,406 13 0,077 0,056 24,720 0,931 0,092
7 20 10,900 7,840 26 0,039 0,033 6,920 0,930 0,200
8 13 34,690 40,400 12 0,083 0,078 20,510 0,963 0,092
9 11 26,450 35,708 11 0,091 0,118 15,700 0,935 0,068

Tab. 2. For each problem instance, we give the number of actions |A|
and number of faults |F|. Symbols µ and ς denote mean and standard

deviation. For probability distribution P(A | F) we give the

percentage (%), µ and ς of nonzero entries.

We investigate tightness of the upper bounds computed by greedy algorithms DP-
greedy, Updating P/C and I-greedy. The tightness is measured by ratio of the
upper bound to the optimal ECR. The results are in Table 3. In the same table
are ratios of lower bounds to optimal ECR. The lower bounds are computed by the
heuristic function of Vomlelová and Vomlel [12] (column ‘heur.’), by linear programming
relaxation without the valid inequalities from Section 3.3.1 (column ‘LP’), and by linear
programming relaxation using the additional valid inequalities (column ‘LP+cuts’). The
rightmost column indicates which additional valid inequalities were used. In Table 4 we
give similar results for the lower bounds when EC is optimized.

DP-g. Up. P/C I-g. heur. LP LP+cuts cuts used
1 1,000 1,000 1,003 0,419 0,470 0,687 (29)
2 1,005 1,006 1,018 0,225 0,973 0,973 —
3 1,000 1,000 1,000 0,779 0,797 0,920 (26), (27)
4 1,000 1,000 1,024 0,303 0,742 0,861 (26), (27), (25)
5 1,000 1,047 1,047 0,415 0,379 0,562 (29)
6 1,000 1,000 1,022 0,856 0,883 0,936 (26), (27)
7 1,001 1,010 1,014 0,134 0,913 0,926 (27)
8 1,000 1,000 1,000 0,606 0,417 0,750 (26), (27)
9 1,000 1,000 1,019 0,392 0,861 0,892 (29)

Tab. 3. Tightness of bounds of ECR. Best results are boldfaced.

We see that the greedy algorithms provide solutions that are always either optimal or
very close to optimal. Algorithm DP-greedy performs very well and finds an optimal
solution in most cases (without providing a proof that the solution found is in fact
optimal). We also see that linear programming relaxation provides tighter bounds when
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LP LP+cuts
1 0,564 0,822
2 0,973 0,973
3 0,787 0,942
4 0,742 0,861
5 0,379 0,562
6 0,918 0,956
7 0,983 0,983
8 0,539 0,827
9 0,861 0,892

Tab. 4. Tightness of lower bounds of the EC. Best results are

boldfaced.

optimizing EC rather than ECR. This is natural, since the w-variables in (22) generally
decrease the objective value of the relaxation. Lower bounds utilizing additional valid
inequalities are the strongest. In one case, however, they are no better than the bounds
provided by the heuristic function proposed by Vomlelová and Vomlel [12].

Lessons learned. We conclude with some heuristic observations. The classes of in-
equalities that appear most useful are (26), (27), (29), (30). Experience gained from the
experiments is that it is useful to start by adding (30) to the integer program and then
follow with (29). That way we bound the variables appearing in the objective function
by using relatively few inequalities. After this initial bounding, we look for violated
inequalities from the class (26) and finally from the class (27). In the process, some of
the inequalities added earlier may cease to be satisfied with equality and can be removed
from the integer program.
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