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Abstract. Two gaps were found in the proof of the main theorems (Theorems 21 and 26) of the
paper “On the Aubin property of critical points to perturbed second-order cone programs” [SIAM
J. Optim. 21 (2011), 3, pp. 798–823] by J. V. Outrata and H. Ramı́rez C. In this note both these
gaps will be filled. As to the second one, a new technical result will be employed which may possibly
be used also in other situations.
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1. Introduction. In [1], the authors consider the following nonlinear second-
order cone programming problem (SOCP):

(SOCP) Min
x∈Rn,sj∈Rmj+1

f(x) ; gj(x) = sj , (sj)0 ≥ ‖s̄j‖, j = 1, . . . , J,

where f and gj , j = 1, . . . , J , are twice continuously differentiable mappings from
Rn into R and Rmj+1, respectively. Here we use the standard convention of indexing
components of vectors of Rmj+1 from 0 to mj , and given s ∈ Rmj+1, s̄ denotes the
subvector (s1, . . . , smj

)>. The vectors in Rn are indexed in the standard way from 1
to n, and by ‖ · ‖ we denote the Euclidean norm. The second-order cone (or ice-cream
cone, or Lorentz cone) of dimension m+ 1 is defined to be

Qm+1 := {s ∈ Rm+1 | s0 ≥ ‖s̄‖}.

The following definitions and results appear in [1] and are relevant for the purpose
of this note.

Definition 1.1. We say that y is a Lagrange multiplier for x (denoted y ∈ Λ(x))
if it satisfies the standard KKT system associated to (SOCP):

(1.1)
0 = DxL(x, y),
0 ∈ g(x) +NQ(y),

where L(x, y) := f(x) + g(x)>y is the Lagrangian and Q :=
∏J

j=1Qmj+1.

∗Received by the editors September 28, 2016; accepted for publication (in revised form) April 28,
2017; published electronically September 28, 2017.

http://www.siam.org/journals/siopt/27-3/M109617.html
Funding: The first and third authors were supported by CONICYT (Chile) via BASAL project
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Under the assumptions posed in [1] this KKT system can be cast as the generalized
equation (GE)

(1.2) 0 ∈ Df(x) + (Dg(x))>NQ(g(x)).

Consequently, we define the associated solution map as follows:

(1.3) S(η) := {x|η ∈ Df(x) + (Dg(x))>NQ(g(x))}.

Definition 1.2. Let x∗ be a feasible point of SOCP. We say that x∗ is nonde-
generate if

(1.4) Dg(x∗)Rn + lin(TQ(g(x∗))) = ΠJ
j=1Rmj+1,

where lin(·) denotes the greatest linear subspace contained in the respective set.

To introduce the following conditions, we define first H(x, y) :=
∑J

j=1Hj(x, yj),
where we set

(1.5) Hj(x, yj) :=

 − yj
0

(gj(x))0
Dgj(x)>Rmj

Dgj(x) if sj ∈ ∂Qmj+1 r {0},
0 otherwise

and

Rmj
:=
(

1 0>

0 −Imj

)
.

Definition 1.3. Let x∗ be a critical point of SOCP and y∗ ∈ Λ(x∗). We say that
the second-order necessary condition (SONC) holds at (x∗, y∗), provided

(1.6) Q0(h) := h>D2
xxL(x∗, y∗)h+ h>H(x∗, y∗)h ≥ 0 ∀h ∈ C(x∗).

We say that the strong second-order sufficient condition (SSOSC) holds at (x∗, y∗),
provided

(1.7) Q0(h) > 0 ∀h ∈ Sp(C(x∗)) \ {0}.

Here, C(x∗) := Df(x∗)⊥∩Dg(x∗)−1TQ(g(x∗)) is the cone of critical directions at x∗,
and Sp(C) denotes the smallest linear space which contains the set C.

The next relations are relevant for the main theorem:

0 = D2
xxL(x∗, y∗)v + (Dg(x∗))>(b−Dg(x∗)v)(1.8a)

−Dg(x∗)v ∈ D∗P (g(x∗)− y∗, g(x∗))(−b),(1.8b)

where P (·) denotes the projection operator onto Q.
The main results in [1] are stated below.

Theorem 1.4. Consider SOCP with J = 1. Let x∗ be a local solution of the
problem and y∗ be a corresponding Lagrange multiplier. Then the following assertions
are equivalent:

(i) x∗ is nondegenerate (Definition 1.2) and SOCP fulfills the strong second-order
sufficient condition (1.7) at (x∗, y∗).

(ii) The GE (1.2) (KKT conditions) is strongly regular at (x∗, y∗).
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(iii) x∗ is nondegenerate, and S has the Aubin property around (0, x∗).
(iv) x∗ is nondegenerate, and in any solution pair (v∗, b∗) of (1.8) one has v∗ = 0.

The proof of this theorem reduces to showing the implication (iv)⇒ (i) via a cont-
raposition, which is done separately in six cases specified by the position of the con-
sidered pair (g(x∗), y∗). In case 1 (g(x∗) = 0, y∗ ∈ intQm+1) the authors claim that,
since (1.6) ((2.44) in [1]) is fulfilled, condition (1.7) ((2.41) in [1]) is violated if and
only if there is a nonzero vector h ∈ Rn such that

Dg(x)∗h = 0 and D∗xxL(x∗, y∗)h = 0.

However, from the comparison of second-order necessary and sufficient conditions
we get only the existence of a nonzero h such that

h>D2
xxL(x∗, y∗)h = 0, Dg(x∗)h = 0.

It follows that this h is a (global) minimum in the optimization problem

minimize h>D2
xxL(x∗, y∗)h

subject to Dg(x∗)h = 0.

Hence, there is a Lagrange multiplier µ such that

D2
xxL(x∗, y∗)h+Dg(x∗)>µ = 0.

We can now put v = h and b = µ. Then (1.8a) ((3.3a) in [1]) holds true, and it
remains to verify that

0 ∈ D∗P (−y∗, 0)(−b).
This is, however, fulfilled because in this case one has

D∗P (−y∗, 0)(−b) = DP (−y∗)(−b) = 0 ∀b.

This completes the proof of Theorem 1.4, case 1.
Before we fill the second gap in the case 6 we will now explain, for the sake of

completeness, the derivation of relation

(1.9) D2
xxL(x∗, y∗)h =

y∗0
s0
Dg(x∗)>RmDg(x∗)h

(cf.(3.4) in [1]) in case 3 (g(x∗), y∗ ∈ ∂ Qm+1 \ {0}) in more detail. For this case,
since second-order necessary condition (1.6) ((2.44) in [1]) is fulfilled, second-order
sufficient condition (1.7) ((2.41) in [1]) is violated if and only if there exists a nonzero
direction h such that 〈d(h), y∗〉 = (y∗)>Dg(x∗)h = 0 and Q0(h) = 0, with d(h) :=
Dg(x∗)h. For the sake of simplicity, let us denote by P the symmetric matrix such
that Q0(h) = h>Ph. Thus, in order to proceed, it is enough to find a nonnegative
value γ ≥ 0 for which the matrix

Q := P + γDg(x∗)>y∗(y∗)>Dg(x∗)

is positive semidefinite. Indeed, since it holds that

h>Qh = h>Ph+ γ[(y∗)>Dg(x∗)h]2 = h>Ph = 0,
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we obtain Qh = 0, which implies that Ph = 0. The latter coincides with (1.9). Note
that if P is positive semidefinite, our assertion is trivially true with γ = 0. We thus
suppose that the smallest eigenvalue of P , denoted by λ, is negative.

Then, since second-order necessary condition (1.6) says that Q0(h) = h>Ph ≥ 0
over the linear space defined by directions h such that 〈d(h), y∗〉 = h>Dg(x∗)>y∗ =
0, the eigenvector(s) corresponding to λ (which is negative) should belong to the
orthogonal space to this one, that is, to the space generated by Dg(x∗)>y∗. The latter
space has of course dimension 1. So, Dg(x∗)>y∗ generates the eigenspace associated
with λ. Consequently, it is an eigenvector; that is,

(1.10) PDg(x∗)>y∗ = λDg(x∗)>y∗.

Notice that Dg(x∗)>y∗ 6= 0 because otherwise (1.6) is equivalent to saying that P is
positive semidefinite.

Finally, fix γ = −λ. Then, for any x ∈ Rn, we decompose it as x = u+ v with u
such that 〈u,Dg(x∗)>y∗〉 = 0 and v = αDg(x∗)>y∗ for some α ∈ R. It follows from
second-order necessary condition (1.6) and from (1.10) that

x>Qx = x>Px+ γ[(y∗)>Dg(x∗)x]2 = x>Px+ γα2‖Dg(x∗)>y∗‖2

= u>Pu+ 2u>Pv + v>Pv + γα2‖Dg(x∗)>y∗‖2

≥ 2u>Pv + v>Pv + γα2‖Dg(x∗)>y∗‖2

= 2αλ〈u,Dg(x∗)>y∗〉+ λα2‖Dg(x∗)>y∗‖2 + γα2‖Dg(x∗)>y∗‖2

= (λ+ γ)α2‖Dg(x∗)>y∗‖2 = 0.

Relation (1.9) follows.
In case 6 (g(x∗) = y∗ = 0), subcase (a), the authors claim that, since (1.7)

((2.41) in [1]) is violated, there exist a nonzero vector h and γ > 0 such that
h>D2

xxL(x∗, y∗)h < 0, the matrix C := D2
xxL(x∗, y∗) − γDg(x∗)>RDg(x∗) is pos-

itive semidefinite, and h belongs to the kernel of C. However, this assertion is not
true.

Additionally, Theorem 1.5 of [1] generalizes Theorem 1.4 from J = 1 to several
second-order cones provided that at most one of them does not belong to cases 4,
5, and 6 therein (which correspond to the cases when the strict complementarity
condition does not hold).

Theorem 1.5. Let x∗ be a local solution of the problem SOCP, and let y∗ be a
corresponding Lagrange multiplier. Suppose that there is at most one block j such that
either gj(x∗) = 0 and y∗j ∈ ∂Qmj+1 \ {0} or gj(x∗) ∈ ∂Qmj+1 r {0} and y∗j = 0 or
gj(x∗) = 0 = y∗j. Then the following assertions are equivalent:

(i) x∗ is nondegenerate (Definition 1.2) and SOCP fulfills the strong second-order
sufficient condition (1.7) at (x∗, y∗).

(ii) The GE (1.2) (KKT system) is strongly regular at (x∗, y∗).
(iii) x∗ is nondegenerate, and S has the Aubin property around (0, x∗).
(iv) x∗ is nondegenerate, and in any solution pair (v∗, b∗) of (1.8) one has v∗ = 0.

Regarding the proof of this theorem, in the case |J6| = 1 (J6 := {j ∈ J : y∗j =
gj(x∗) = 0}), subcase (a), the authors claim that, since (1.7) (2.41 in [1]) is violated,
there exist a nonzero vector h and γ > 0 such that Q0(h) < 0, the quadratic form
Q0 − γQ1 is positive semidefinite, and h belongs to the kernel of Q0 − γQ1. Again,
this assertion is not true.
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In the next section we present corrections both to Theorem 1.4, case 6, as well as
to Theorem 1.5. In this way all gaps arising in [1] will be filled.

2. Filling the gap. To remove the remaining gaps in the proof of Theorems
21 and 26 from [1], the next auxiliary lemma will be employed.

Lemma 2.1 (auxiliary lemma). Let A, B be symmetric matrices which satisfy the
following conditions:

1. A 6� 0,
2. B is indefinite,
3. ∀x ∈ Rn, x>Bx ≥ 0 =⇒ x>Ax ≥ 0.

Then there exists δ > 0 such that Ker(A− δB) ∩ {x : x>Bx ≤ 0} 6= {0}.
Proof. Note that a direct application of the S-lemma [3] implies the existence of

a γ > 0 such that A − γB � 0. Moreover, there exists the minimal γ, say γ̄, for
which this condition is fulfilled (this is due to the continuity of the lowest eigenvalue
function). We claim that

(2.1) γ̄ = 1/m with m := inf

{
x>Bx

x>Ax
: x>Ax < 0

}
.

To prove this relationship, we observe first that m is finite. Indeed, it follows from
condition 1 that m < +∞, and from condition 3 that m ≥ 0. In fact, it holds that
m > 0. By contradiction, in the opposite case, we can consider a minimizing sequence
{xn}n such that x>nAxn < 0 and x>

n Bxn

x>
n Axn

↘ 0. Without loss of generality we can take
x>nAxn = −1 ∀n. Let us define

F : Rn → R2, F (x) =
(
x>Ax
x>Bx

)
,

and consider, by virtue of condition 2, a vector y ∈ Rn such that y>By = 1. Hence,
by condition 3, y>Ay ≥ 0. By using the Dines theorem [2], we know that F (Rn)
is a convex set. This implies the existence of a sequence {yn}n such that F (yn) =
tF (y) + (1− t)F (xn) ∀n, for any t ∈ [0, 1].

It can be checked that y>nByn → t. Indeed, from x>nAxn = −1 ∀n and x>
n Bxn

x>
n Axn

↘
0, we deduce that x>nBxn ↗ 0 and then

y>nByn = ty>By + (1− t)x>nBxn = t · 1 + (1− t)x>nBxn → t.

Consequently, if we choose t > 0, we deduce that y>nByn > 0 for any n sufficiently
large. More specifically, if we choose t = 1

2(y>Ay+1) ∈ (0, 1), the equality x>nAxn =
−1 ∀n yields

y>nAyn = ty>Ay + (1− t)x>nAxn = ty>Ay − (1− t)

= t(y>Ay + 1)− 1 =
y>Ay + 1

2(y>Ay + 1)
− 1 = −1

2
∀n,

thus giving a contradiction with condition 3. Hence, m > 0. See Figure 1 for a
geometric visualization of this proof.

Now, we prove that 1
m ∈ A := {γ > 0 : A − γB � 0}. By contradiction, we

assume the existence of z ∈ Rn such that

(2.2) z>Az − 1
m
z>Bz < 0.
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F (yn)

x⊤Bx

F (y)

x⊤Ax(−1,−m)

F (xn)

Fig. 1. Geometric visualization of m > 0.

If z>Bz ≤ 0, then z>Az < 1
mz
>Bz ≤ 0, and so

m = inf

{
x>Bx

x>Ax
: x>Ax < 0

}
≤ z>Bz

z>Az
< m.

This is a contradiction, and so z>Bz > 0 and, by virtue of condition 3, z>Az ≥ 0.
Without loss of generality we may thus assume that z>Bz = 1.

Once again, due to the definition of m there is a minimizing sequence {xn}n such
that

(2.3) F (xn) =
(
−1

x>nBxn

)
→
(
−1
−m

)
.

So, we can clearly assume that x>nBxn < 0 ∀n. From the Dines theorem [2], for any
t ∈ [0, 1], there exists a sequence {zn}n such that

F (zn) = tF (z) + (1− t)F (xn) ∀n.

Now, we show that there exists t ∈ [0, 1] such that for n ∈ N large enough we have
that z>n Azn < 0 and z>n Bzn ≥ 0 or, equivalently, F (zn) ∈ R−− × R+. This would of
course contradict condition 3. Indeed, we have the following equivalences:

F (zn) ∈ R−− × R+ ⇐⇒ t(z>Az + 1)− 1 < 0 and t(1− x>nBxn) + x>nBxn ≥ 0

⇐⇒ α :=
x>nBxn

x>nBxn − 1
≤ t < 1

1 + z>Az
=: β,

which can be fulfilled provided n is large enough. Note that the interval (α, β] ⊂ [0, 1]
is nonempty because α is arbitrarily close to m/(1 +m) and β > m/(1 +m). This is
the announced contradiction with condition 3 and so we conclude that 1

m ∈ A. This
proof is illustrated in Figure 2.
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x⊤Bx

x⊤Ax

F (z)

F (zn)

(−1,−m)

F (xn)

(1,−γ)

Fig. 2. Geometric intuition of A− γB � 0.

Now, it is easy to check that for any γ′ > 0 such that A− γ′B � 0 it follows that
γ′ ≥ 1

m . Indeed, for all x with x>Ax < 0 it follows that

x>Ax− γ′x>Bx ≥ 0 ⇐⇒ 1
γ′
≤ x>Bx

x>Ax
,

which implies the desired inequality. To summarize, 1
m amounts to the lower bound

of A and our initial claim γ = 1/m follows.
In the last step, keeping in mind that A − γB is positive semidefinite, we prove

that Ker(A− γB) ∩ {x : x>Bx ≤ 0} 6= {0}. We argue by contradiction and assume
that the above intersection amounts to {0}. Since F (x) = 0 implies that x>Bx = 0
and x>Ax−γx>Bx = 0−γ ·0 = 0, it follows from our contradictory assumption that
the implication

F (x) = 0 =⇒ x = 0

holds. We may thus invoke [2, Theorem 2] and conclude that the set F (Rn) is closed.
Consequently, for any minimizing sequence {xn}n for (2.1) satisfying x>nAxn = −1,
it holds that

Lim
n→∞

F (xn) =
(
−1
−m

)
∈ F (Rn).

Let w be such that F (w) =
(−1
−m

)
. Then, clearly, w 6= 0. Furthermore, one has

w>Aw − γ̄w>Bw = −1 +mγ̄ = 0 and w>Bw = −m < 0.

It follows that w ∈ Ker(A − γB) ∩ {x : x>Bx ≤ 0}, which contradicts the posed
assumption. It suffices thus to put δ = γ̄, and the lemma has been proved.

Now we are in position to fix the proofs of the mentioned results. First we present
a corrected proof for the mentioned part of Theorem 1.4.
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Proof of Theorem 1.4 in [1], case 6, subcase a. Let us suppose that (1.7) ((2.41)
in [1]) is violated due to the existence of a nonzero vector h∗ satisfying

(h∗)>D2
xxL(x∗, y∗)h∗ < 0.

Let A = D2
xxL(x∗, y∗), B = Dg(x∗)>RDg(x∗). Then all the hypotheses of the

auxiliary lemma are satisfied. In fact, condition 1 is true thanks to the existence of
h∗, condition 2 holds because R is indefinite, and Dg(x∗) is a surjective operator
(using the nondegeneracy of x∗), and condition 3 is a reformulation of the necessary
condition (1.6) ((2.44) in [1]).

Then, there exist a positive number γ > 0 and a vector h 6= 0 such that

D2
xxL(x∗, y∗)h− γDg(x∗)>RDg(x∗)h = 0,(2.4)

h>Dg(x∗)>RDg(x∗)h ≤ 0.(2.5)

We claim that the vector −d = −Dg(x∗)h belongs to the set

(2.6) ∂̄BP (0)(−d+ γRd) = ∂̄BP (0)
(
−(1− γ)d0
−(1 + γ)d̄

)
.

Indeed, it suffices to select in the definition of ∂̄BP (0) ((2.15) in [1]) a matrix
specified by a unit vector w such that d>(1, −w) = 0 and α = 1/(1 + γ). Note that
the existence of such w is ensured due to inequality h>Dg(x∗)>RDg(x∗)h ≤ 0, which
is the same as ||d̄|| ≥ |d0|. This condition ensures the existence of a unit vector w such
that 〈d̄, w〉 = d0. Now, since D∗P (0)u∗ contains ∂̄BP (0)u∗ for all u∗, we conclude
that −d belongs to D∗P (0)(−d+ γRd). Our claim is proved.

Finally, we can see that the relations (1.8) ((3.3) in [1]) are solved by the
vectors v = h and b = d − γRd = (Im+1 − γR)Dg(x∗)h. This contradicts the
statement (iv).

The last thing we need to do is to fix the proof for the mentioned case of Theo-
rem 1.5.

Proof of Theorem 1.5, case |J6| = 1, subcase a. Let j ∈ J6. If (1.7) ((2.41) in [1])
is violated because there is a vector h∗ such that Q0(h∗) < 0, then all the hypotheses
of the auxiliary lemma are satisfied for the matrices associated with Q0, Q1, say A,B.
In fact, condition 1 is true thanks to the existence of h∗, condition 2 holds because
Rmj

is indefinite, and Dgj(x∗) is a surjective operator (using the nondegeneracy of
x∗), and condition 3 is a reformulation of the necessary condition.

Then, there exist γ > 0 and a vector h 6= 0 such that

D2
xxL(x∗, y∗)h+H(x∗, y∗)h− γDgj(x∗)>Rmj

Dgj(x∗)h = 0,(2.7)

h>Dgj(x∗)>RDgj(x∗)h ≤ 0.(2.8)

It can be proved that −d = −dj(h) = −Dgj(x∗)h belongs to the set

∂̄BP
j(0)(−d+ γRmj

d) = ∂̄BP
j(0)

(
−
[

(1− γ)d0
(1 + γ)d̄

])
.

Indeed, it suffices to choose a unit vector w such that d>(1,−w) = 0 and α = 1/(1+γ)
in the definition of ∂̄BP (0) ((2.15) in [1]). As in the proof of case 6 of Theorem 1.4,
the existence of such w is ensured due to inequality Q0(h) ≤ 0, which, together with
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Q0 − γQ1 � 0, implies that ‖d̄‖2 > d2
0 or, equivalently, ‖d̄‖ ≥ |d0|. This condition

clearly ensures the existence of a unit vector w such that 〈d̄, w〉 = d0. For the case
when mj = 1, see Remark 27 in [1].

Now, since D∗P j(0)(u∗) contains ∂̄BP
j(0)(u∗) for all u∗ (see the definition of D∗P

((2.14) in [1])), we conclude that −d belongs to D∗P j(0)(−d+γRmjd). Consequently,
(v, bj) with v = h and bj = d− γRmj

d = (Imj+1− γRmj
)Dgj(x∗)h solves (1.8) ((4.1)

in [1]) for the block j ∈ J6.
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