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Abstract. Two gaps were found in the proof of the main theorems (Theorems 21 and 26) of the
paper “On the Aubin property of critical points to perturbed second-order cone programs” [SIAM
J. Optim. 21 (2011), 3, pp. 798-823] by J. V. Outrata and H. Ramirez C. In this note both these
gaps will be filled. As to the second one, a new technical result will be employed which may possibly
be used also in other situations.
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1. Introduction. In [1], the authors consider the following nonlinear second-
order cone programming problem (SOCP):
(SOCP) Min  f(2); /@) =&, (7)o = 5], j=1,...,J,

zeR”,sieR™it!

where f and ¢7, j = 1,...,J, are twice continuously differentiable mappings from
R™ into R and R™s !, respectively. Here we use the standard convention of indexing
components of vectors of R™i*! from 0 to m;, and given s € R™iT1 5 denotes the
subvector (sq,..., smj)T. The vectors in R™ are indexed in the standard way from 1
to m, and by || - || we denote the Euclidean norm. The second-order cone (or ice-cream
cone, or Lorentz cone) of dimension m + 1 is defined to be

Qa1 = {s € R™ ! |50 > [|3]]}.

The following definitions and results appear in [1] and are relevant for the purpose
of this note.

DEFINITION 1.1. We say that y is a Lagrange multiplier for z (denoted y € A(x))
if it satisfies the standard KKT system associated to (SOCP):
0 =D,L(z,y),

(1.1) 0 € g(x)+ No(),

where L(x,y) == f(z) + g(z) Ty is the Lagrangian and Q := szl Q41
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Under the assumptions posed in [1] this KKT system can be cast as the generalized
equation (GE)

(1.2) 0 € Df(x) + (Dg(x)) ' No(g(x)).

Consequently, we define the associated solution map as follows:

(1.3) S(n) == {zln € Df(x) + (Dg(x)) " No(g(z))}-

DEFINITION 1.2. Let x* be a feasible point of SOCP. We say that * is nonde-
generate if

(1.4) Dg(a*)R" + lin(To(g(z*))) = IL/_ R™+1,

where lin(-) denotes the greatest linear subspace contained in the respective set.

To introduce the following conditions, we define first H(x,y) := Z;']:1 Hi (z,y7),
where we set

(L5)  Hi(z,y7) = —ngj(:z:)Tijng () if 87 € 0Qm,;+1 ~ {0},

0 otherwise

1 0T
ij o ( 0 _Imj )

DEFINITION 1.3. Let 2* be a critical point of SOCP and y* € A(z*). We say that
the second-order necessary condition (SONC) holds at (z*,y*), provided

and

(1.6) Qo(h) :=h " D2 L(z*,y" )h +h"H(z"*,y*)h >0 Vhe C(z*).

We say that the strong second-order sufficient condition (SSOSC) holds at (z*,y*),
provided

(1.7) Qo(h) >0 Vh e Sp(C(z")) \ {0}.

Here, C(x*) := Df(x*)* N Dg(x*)~ To(g(z*)) is the cone of critical directions at z*,
and Sp(C) denotes the smallest linear space which contains the set C.

The next relations are relevant for the main theorem:

(1.8a) 0=D2,L(z*,y")v+ (Dg(z*))" (b — Dg(a*)v)
(1.8b) —Dg(z*)v € D*P(g(z*) — y*, g(z*))(~b),

where P(-) denotes the projection operator onto Q.
The main results in [1] are stated below.

THEOREM 1.4. Consider SOCP with J = 1. Let x* be a local solution of the
problem and y* be a corresponding Lagrange multiplier. Then the following assertions
are equivalent:

(i) «* is nondegenerate (Definition 1.2) and SOCP fulfills the strong second-order

sufficient condition (1.7) at (x*,y*).
(ii) The GE (1.2) (KKT conditions) is strongly regular at (x*,y*).
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* is nondegenerate, and S has the Aubin property around (0, z*).

is nondegenerate, and in any solution pair (v*,b*) of (1.8) one has v* = 0.

(iii)

(iv) z*

The proof of this theorem reduces to showing the implication (iv) = (i) via a cont-
raposition, which is done separately in six cases specified by the position of the con-
sidered pair (g(x*),y*). In case 1 (g(z*) =0, y* € int Qp+1) the authors claim that,
since (1.6) ((2.44) in [1]) is fulfilled, condition (1.7) ((2.41) in [1]) is violated if and
only if there is a nonzero vector h € R™ such that

Dg(z)*h =0 and D} L(z*,y*)h = 0.

However, from the comparison of second-order necessary and sufficient conditions
we get only the existence of a nonzero h such that

hTDixL(x*,y*)h:Q Dg(l'*)h:()
It follows that this h is a (global) minimum in the optimization problem

minimize k' D2, L(z*,y*)h
subject to  Dg(z*)h = 0.

Hence, there is a Lagrange multiplier u such that
D3, L(z*,y*)h+ Dg(z*) " pn = 0.

We can now put v = h and b = p. Then (1.8a) ((3.3a) in [1]) holds true, and it
remains to verify that
0 € D*P(—y*,0)(=b).

This is, however, fulfilled because in this case one has
D*P(—y*,0)(=b) = DP(—y*)(—b) = 0 Vb.

This completes the proof of Theorem 1.4, case 1.
Before we fill the second gap in the case 6 we will now explain, for the sake of
completeness, the derivation of relation

(1.9) D2, L(z*,y*)h = Z—ODg(x*)TRng(x*)h
0

(cf.(3.4) in [1]) in case 3 (g(z*), y* € 0Q@m+1 \ {0}) in more detail. For this case,
since second-order necessary condition (1.6) ((2.44) in [1]) is fulfilled, second-order
sufficient condition (1.7) ((2.41) in [1]) is violated if and only if there exists a nonzero
direction h such that (d(h),y*) = (y*)" Dg(z*)h = 0 and Qo(h) = 0, with d(h) :=
Dg(xz*)h. For the sake of simplicity, let us denote by P the symmetric matrix such
that Qo(h) = A" Ph. Thus, in order to proceed, it is enough to find a nonnegative
value v > 0 for which the matrix

Q= P+~Dg(a*) " y*(y") ' Dg(z")
is positive semidefinite. Indeed, since it holds that

h'Qh =h" Ph+~[(y*) " Dg(z*)h)*> = h" Ph =0,
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we obtain Qh = 0, which implies that Ph = 0. The latter coincides with (1.9). Note
that if P is positive semidefinite, our assertion is trivially true with v = 0. We thus
suppose that the smallest eigenvalue of P, denoted by A, is negative.

Then, since second-order necessary condition (1.6) says that Qq(h) = h" Ph > 0
over the linear space defined by directions h such that (d(h),y*) = h" Dg(z*) Ty* =
0, the eigenvector(s) corresponding to A (which is negative) should belong to the
orthogonal space to this one, that is, to the space generated by Dg(z*)"y*. The latter
space has of course dimension 1. So, Dg(z*)"y* generates the eigenspace associated
with A. Consequently, it is an eigenvector; that is,

(1.10) PDg(z*)"y* = ADg(z*) " y*.

Notice that Dg(z*)Ty* # 0 because otherwise (1.6) is equivalent to saying that P is
positive semidefinite.

Finally, fix v = —A. Then, for any x € R, we decompose it as = u + v with u
such that (u, Dg(z*)Ty*) = 0 and v = aDg(x*)Ty* for some o € R. It follows from
second-order necessary condition (1.6) and from (1.10) that

21 Qe =" Pr+7[(y") Dg(z*)a]* = & Pr +~0®|Dg(a*) Ty*||?
=u' Pu+2u' Pv+v' Pv+~ya?||Dg(z*) Ty
> 2u' Pv+v' Pv+ va?|Dg(z*) Ty*||?
= 20\ (u, Dg(z*) Ty*) + Aa?|[Dg(z*) Ty*||* +1a?| Dg(=*) T y*||?
= (A +7) @?|Dg(a*) "y*|* = 0.

Relation (1.9) follows.

In case 6 (g(z*) = y* = 0), subcase (a), the authors claim that, since (1.7)
((2.41) in [1]) is violated, there exist a nonzero vector h and v > 0 such that
hT D2 L(z*,y*)h < 0, the matrix C' := D2 L(z*,y*) — vDg(x*) " RDg(z*) is pos-
itive semidefinite, and h belongs to the kernel of C. However, this assertion is not
true.

Additionally, Theorem 1.5 of [1] generalizes Theorem 1.4 from J = 1 to several
second-order cones provided that at most one of them does not belong to cases 4,
5, and 6 therein (which correspond to the cases when the strict complementarity
condition does not hold).

THEOREM 1.5. Let x* be a local solution of the problem SOCP, and let y* be a
corresponding Lagrange multiplier. Suppose that there is at most one block j such that
either g7 (%) = 0 and y* € 0Qum, 41\ {0} or g7 (%) € 0Qum;4+1 ~ {0} and y*7 =0 or
¢’ (z*) = 0=y*. Then the following assertions are equivalent:

(i) «* is nondegenerate (Definition 1.2) and SOCP fulfills the strong second-order

sufficient condition (1.7) at (z*,y*).

(ii) The GE (1.2) (KKT system) is strongly reqular at (z*,y*).

(iii) «* is nondegenerate, and S has the Aubin property around (0, x*).

(iv) a* is nondegenerate, and in any solution pair (v*,b*) of (1.8) one hasv* = 0.

Regarding the proof of this theorem, in the case |Js| = 1 (Jg := {j € J : y*/ =
g’ (z*) = 0}), subcase (a), the authors claim that, since (1.7) (2.41 in [1]) is violated,
there exist a nonzero vector h and v > 0 such that Qy(h) < 0, the quadratic form

Qo — vQ1 is positive semidefinite, and h belongs to the kernel of Q¢ — vQ1. Again,
this assertion is not true.
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In the next section we present corrections both to Theorem 1.4, case 6, as well as
to Theorem 1.5. In this way all gaps arising in [1] will be filled.

2. Filling the gap. To remove the remaining gaps in the proof of Theorems
21 and 26 from [1], the next auxiliary lemma will be employed.

LEMMA 2.1 (auxiliary lemma). Let A, B be symmetric matrices which satisfy the
following conditions:
1. A#0,
2. B is indefinite,
3.VzeR™, "Bz >0 = z" Az > 0.
Then there exists § > 0 such that Ker(A —6B)N{x: x" Bxr <0} # {0}.

Proof. Note that a direct application of the S-lemma [3] implies the existence of
a vy > 0 such that A —vB = 0. Moreover, there exists the minimal ~, say 7, for
which this condition is fulfilled (this is due to the continuity of the lowest eigenvalue
function). We claim that

(2.1) vy =1/m with m:—inf{xTAx.

z! Bx T

cx Ax <0y,
To prove this relationship, we observe first that m is finite. Indeed, it follows from
condition 1 that m < +oo, and from condition 3 that m > 0. In fact, it holds that

m > 0. By contradiction, in the opposite case, we can consider a minimizing sequence
T
z, Bxy

{zp}n such that x,—L'—Axn < 0 and T N\, 0. Without loss of generality we can take
z,) Az, = —1 Vn. Let us define

-
on 9 [z Az
F:R %R,F(x)—(mq—Bm),

and consider, by virtue of condition 2, a vector y € R™ such that y' By = 1. Hence,
by condition 3, y" Ay > 0. By using the Dines theorem [2], we know that F(R")
is a convex set. This implies the existence of a sequence {yy}, such that F(y,) =
tF(y) + (1 —t)F(z,) Vn, for any t € [0,1].
+T Bx
It can be checked that y,! By,, — t. Indeed, from z,! Az,, = —1 ¥n and ﬁ;’%izn N\
0, we deduce that z,! Bx,, /0 and then

Y By, =ty By+ (1 —t)z) Bx, =t-1+ (1 —t)z] Bz, —t.

Consequently, if we choose t > 0, we deduce that y,! By, > 0 for any n sufficiently

large. More specifically, if we choose t = m € (0,1), the equality z,| Az, =

—1 Vn yields
yIAyn =ty Ay + (1- t)x,TLAa:n =ty Ay — (1—1%)
T
y Ay +1 1
=ty Ay+1)—1= = —1=—=

thus giving a contradiction with condition 3. Hence, m > 0. See Figure 1 for a
geometric visualization of this proof.

Now, we prove that % e A:={y>0:A—~B » 0}. By contradiction, we
assume the existence of z € R™ such that

1
(2.2) 2T Az — —2"Bz <0.
m
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x' Bz

A

Fic. 1. Geometric visualization of m > 0.

If 2" Bz <0, then 2" Az < %ZTBZ <0, and so

. xTBx' T ZTBZ
m = inf AL z Ax <0 SZTAZ<m.

This is a contradiction, and so z" Bz > 0 and, by virtue of condition 3, 2" Az > 0.
Without loss of generality we may thus assume that 2z Bz = 1.

Once again, due to the definition of m there is a minimizing sequence {z,, }, such
that

(2.3) F(zg) = <xIlen> ~ (7;) '

So, we can clearly assume that x,! Bz,, < 0 Vn. From the Dines theorem [2], for any
t € [0,1], there exists a sequence {z, }, such that

F(zp) =tF(z) + (1 = t)F(x,) ¥n.

Now, we show that there exists ¢ € [0, 1] such that for n € N large enough we have
that 2, Az, < 0 and z,} Bz, > 0 or, equivalently, F(z,) € R__ x R,. This would of
course contradict condition 3. Indeed, we have the following equivalences:

F(zp) ER__ xRy <= t(z2' Az+1)—1<0 and t(1 — z, Bx,) + 2. Bz, >0
zIan 1

<~ =<t < —=
“ x) Br, — 1~ 1+2TAz

: B,

which can be fulfilled provided n is large enough. Note that the interval (o, ] C [0, 1]
is nonempty because « is arbitrarily close to m/(1 4+ m) and 8 > m/(1 4+ m). This is
the announced contradiction with condition 3 and so we conclude that % € A. This
proof is illustrated in Figure 2.
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F1a. 2. Geometric intuition of A —~B > 0.

Now, it is easy to check that for any 7/ > 0 such that A —+’'B = 0 it follows that
~ > % Indeed, for all x with ' Az < 0 it follows that

- LT 1  a'Bx
x Az —~'z Bxr >0 <= ?gm,

which implies the desired inequality. To summarize, % amounts to the lower bound
of A and our initial claim = 1/m follows.

In the last step, keeping in mind that A — B is positive semidefinite, we prove
that Ker(A —~yB)N{x: x"Bx <0} # {0}. We argue by contradiction and assume
that the above intersection amounts to {0}. Since F(x) = 0 implies that ' Bz = 0
and 2" Az —yx " Bz = 0—~-0 = 0, it follows from our contradictory assumption that
the implication

Flz)=0 = =0

holds. We may thus invoke [2, Theorem 2] and conclude that the set F/(R™) is closed.
Consequently, for any minimizing sequence {x,}, for (2.1) satisfying =, Az, = —1,
it holds that

n—oo

Lim F(z,) = (__Tln> € F(R™).

Let w be such that F(w) = (:7711) Then, clearly, w # 0. Furthermore, one has

w'Aw —Jw Bw = —-14+m5 =0 and w' Bw = —m < 0.

It follows that w € Ker(A —yB)N{z : x" Bxr < 0}, which contradicts the posed
assumption. It suffices thus to put § = 7, and the lemma has been proved. 0

Now we are in position to fix the proofs of the mentioned results. First we present
a corrected proof for the mentioned part of Theorem 1.4.
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Proof of Theorem 1.4 in [1], case 6, subcase a. Let us suppose that (1.7) ((2.41)
in [1]) is violated due to the existence of a nonzero vector h* satisfying

(h*)" D2, L(z*, y*)h* < 0.

Let A = D2 L(z*, y*), B = Dg(z*)TRDg(z*). Then all the hypotheses of the
auxiliary lemma are satisfied. In fact, condition 1 is true thanks to the existence of
h*, condition 2 holds because R is indefinite, and Dg(z*) is a surjective operator
(using the nondegeneracy of x*), and condition 3 is a reformulation of the necessary
condition (1.6) ((2.44) in [1]).

Then, there exist a positive number v > 0 and a vector h # 0 such that

(2.4) D3, L(z", y*)h —yDg(z*)" RDg(z*)h = 0,
h'Dg(z*)" RDg(z*)h < 0.

We claim that the vector —d = —Dg(z*)h belongs to the set

- 0t = e 0) (14T,

Indeed, it suffices to select in the definition of dgP(0) ((2.15) in [1]) a matrix
specified by a unit vector w such that d' (1, —w) = 0 and a = 1/(1 + ). Note that
the existence of such w is ensured due to inequality h" Dg(z*) T RDg(z*)h < 0, which
is the same as ||d|| > |do|. This condition ensures the existence of a unit vector w such
that (d,w) = dy. Now, since D*P(0)u* contains dgP(0)u* for all u*, we conclude
that —d belongs to D*P(0)(—d + yRd). Our claim is proved.

Finally, we can see that the relations (1.8) ((3.3) in [1]) are solved by the
vectors v = h and b = d — yRd = (I;p41 — YR)Dg(«*)h. This contradicts the
statement (iv). 0

The last thing we need to do is to fix the proof for the mentioned case of Theo-
rem 1.5.

Proof of Theorem 1.5, case |Jg| =1, subcase a. Let j € Jg. If (1.7) ((2.41) in [1])
is violated because there is a vector h* such that Qo(h*) < 0, then all the hypotheses
of the auxiliary lemma are satisfied for the matrices associated with Qg, @1, say A, B.
In fact, condition 1 is true thanks to the existence of h*, condition 2 holds because
Ry, is indefinite, and Dg(x*) is a surjective operator (using the nondegeneracy of
z*), and condition 3 is a reformulation of the necessary condition.

Then, there exist v > 0 and a vector h # 0 such that

(2.7) Dme(:c*, y )+ H(x", y*)h — 'yng(x*)Tij Dg’(z*)h = 0,
h'"Dgl (x*)" RDg’ (z*)h < 0.

It can be proved that —d = —d?(h) = —Dg’ (x*)h belongs to the set

B3P (0)(—d + Ry, d) = 3P (0) (— { 8;%0 D

Indeed, it suffices to choose a unit vector w such that d' (1, —w) = 0 and @ = 1/(1+7)

in the definition of dpP(0) ((2.15) in [1]). As in the proof of case 6 of Theorem 1.4,
the existence of such w is ensured due to inequality Qo(h) < 0, which, together with
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Qo — vQ1 = 0, implies that ||d||? > d3 or, equivalently, ||d|| > |do|. This condition
clearly ensures the existence of a unit vector w such that (d,w) = dy. For the case
when m; = 1, see Remark 27 in [1].

Now, since D* P7(0)(u*) contains 9 P?(0)(u*) for all u* (see the definition of D* P
((2.14) in [1])), we conclude that —d belongs to D* P?(0)(—d+~R,,,d). Consequently,
(v,0) withv = h and &/ = d —yRy,;d = (I, 41 —vRm,;)Dg’ (x*)h solves (1.8) ((4.1)
in [1]) for the block j € Jg. d
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