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Abstract. Artificial intelligence is present in many modern computer
science applications. The question of effectively learning parameters of
such models even with small data samples is still very active. It turns
out that restricting conditional probabilities of a probabilistic model by
monotonicity conditions might be useful in certain situations. Moreover,
in some cases, the modeled reality requires these conditions to hold. In this
article we focus on monotonicity conditions in Bayesian Network mod-
els. We present an algorithm for learning model parameters, which sat-
isfy monotonicity conditions, based on gradient descent optimization. We
test the proposed method on two data sets. One set is synthetic and the
other is formed by real data collected for computerized adaptive testing.
We compare obtained results with the isotonic regression EM method
by Masegosa et al. which also learns BN model parameters satisfying
monotonicity. A comparison is performed also with the standard unre-
stricted EM algorithm for BN learning. Obtained experimental results
in our experiments clearly justify monotonicity restrictions. As a conse-
quence of monotonicity requirements, resulting models better fit data.

Keywords: Computerized adaptive testing · Monotonicity · Isotonic
regression EM · Gradient method · Parameters learning

1 Introduction

In our previous research Plajner and Vomlel (2015) we focused on Computer-
ized Adaptive Testing (CAT) (Almond and Mislevy 1999; van der Linden and
Glas 2000). We used artificial student models to select questions during the
course of testing. We have shown that it is useful to include monotonicity con-
ditions while learning parameters of these models (Plajner and Vomlel 2016b).
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Monotonicity conditions incorporate qualitative influences into a model. These
influences restrict conditional probabilities in a specific way to avoid unwanted
behavior. Some models we use for CAT include monotonicity naturally, but in
this article we focus on a specific family of models, Bayesian Networks, which do
not. Monotonicity in Bayesian Networks is discussed in literature for a long time.
It is addressed, for example, by Wellman (1990), Druzdzel and Henrion (1993)
and more recently by, e.g., Restificar and Dietterich (2013), Masegosa et al.
(2016). Monotonicity restrictions are often motivated by reasonable demands
from model users. In our case of CAT it means we want to make sure that stu-
dents having certain skills will have a higher probability of answering questions
depending on these skills correctly. Moreover, assuming monotonicity we can
learn better models, especially when the data sample is small. In our work we
have so far used monotonicity attained by logistic regression models of CPTs.
This has proven useful but it is restrictive since it requires a prescribed CPT
structure.

In this article we extends our results in the domain of Bayesian Networks. We
present a gradient descent optimum search method for learning parameters of
CPTs respecting monotonicity conditions. First, we establish our notation and
monotonicity conditions in Sect. 2. Our method is derived in Sect. 3. We have
implemented the method and performed tests. For testing we used two different
data sets. First, we used a synthetic data set generated from a monotonic model
(CPTs satisfying monotonicity) and second, we used real data set collected ear-
lier. Experiments were performed on these data sets also with the isotonic regres-
sion EM (irem) method described by Masegosa et al. (2016) and the ordinary
EM learning without monotonicity restrictions. In Sect. 4 of this paper we take
a closer look at the experimental setup and present results of described tests.
The last section brings an overview and a discussion of the obtained results.

2 BN Models and Monotonicity

2.1 Notation

In this article we use Bayesian Networks. Details about BNs can be found in,
for example, Pearl (1988), Nielsen and Jensen (2007). We restrict ourselves to
the following BN structure. Networks have two levels. In compliance with our
previous articles, variables in the parent’s level are addressed as skill variables
S. The children level contains questions-answers variables X. Example network
structures, which we also used for experiments, are shown in Figs. 1 and 2.

– We will use symbol X to denote the multivariable (X1, . . . , Xn) taking states
x = (x1, . . . , xn). The total number of question variables is n, the set of all
indexes of question variables is N = {1, . . . , n}. Question variables are binary
and they are observable.

– We will use symbol S to denote the multivariable (S1, . . . , Sm) taking states
s = (s1, . . . , sm). The set of all indexes of skill variables is M = {1, . . . , m}.
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Fig. 1. Artificial model

Fig. 2. CAT model network

Skill variables have variable number of states1, the total number of states of a
variable Sj is mj and individual states are sj,k, k ∈ {1, . . . , mj}. The variable
Si = Spa(i) stands for a multivariable same as S but containing only parent
variables of the question Xi. Indexes of these variables are M i ⊆ M . The
set of all possible state configurations of Si is V al(Si). Skill variables are all
unobservable.

CPT parameters for a question variable Xi for all i ∈ N , si ∈ V al(Si) are

θi,si = P (Xi = 0|Si = si), θi = (θi,si)si∈V al(Si).

We will also use θi,s = θi,si with the whole parent set S, where variables from
S\Si do not affect the value. Probabilities of a correct answer to a question Xi

given state configuration si is P (X = 1|Si = si) = 1 − θi,si (binary questions).
Parameters of parent variables for j ∈ M are

ρj,sj = P (Sj = sj), ρj = (P (Sj = sj′)) , j′ ∈ {1, . . . , mj}.

Parameter vector ρj is constrained by a condition
∑mj

sj=1 ρj,sj = 1. To remove
this condition we reparametrize this vector to

ρj,sj =
exp(μj,sj )∑mi

s′
j=1 exp(μj,s′

j
)
.

1 In our experiments we use parents with 3 states, but the following theory applies to
any number of states.
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The whole vector of parameters is then

θ = (θ1, . . . ,θn,ρ1, . . . ,ρm) , or μ = (θ1, . . . ,θn,μ1, . . . ,μm) ,

where the meaning of μj is the same as ρj but in this case vectors contain
reparametrized variables. The transition from μ to θ is simply done with the
reparametrization above and will be used without further notice. The total num-
ber of elements in the vector μ and θ is

lμ = lθ =
∑

i∈N

∏

j∈Mi

mj +
∑

l∈M

ml.

2.2 Monotonicity

The concept of monotonicity in BNs has been discussed in literature since the last
decade of the previous millennium (Wellman 1990; Druzdzel and Henrion 1993).
Later its benefits for BN parameter learning were addressed, for example, by
van der Gaag et al. (2004), Altendorf et al. (2005). This topic is still active, e.g.,
Feelders and van der Gaag (2005), Restificar and Dietterich (2013), Masegosa
et al. (2016).

We will consider only variables with states from N0 with their natural order-
ing, i.e., the ordering of states of skill variable’s Sj for j ∈ M , is

sj,1 ≺ . . . ≺ sj,mj
.

For questions we use natural ordering of its states (0 ≺ 1).
A variable Sj has monotone, resp. antitone, effect on its child if for all k, l ∈

{1, . . . , mj}:

sj,k � sj,l ⇒ P (Xi = 1|Sj = sj,k, s) ≤ P (Xi = 1|Sj = sj,l, s), resp.
sj,k � sj,l ⇒ P (Xi = 1|Sj = sj,k, s) > P (Xi = 1|Sj = sj,l, s).

where s is the configuration of other remaining parents of question i without
Sj . For each question Xi, i ∈ M we denote by Si,+ the set of parents with a
monotone effect and by Si,− the set of parents with an antitone effect.

Next, we create a partial ordering �i on all state configurations of parents
Si of the i-th question, where for all si, ri ∈ V al(Si):

si �i ri ⇔ (
sij � rij , j ∈ Si,+

)
and

(
rij � sij , j ∈ Si,−)

.

The monotonicity condition then requires that the question probability of
correct answer is higher for a higher order parent configuration, i.e., for all
si, ri ∈ V al(Si):

si �i ri ⇒ P (Xi = 1|Si = si) ≤ P (Xi = 1|Si = ri),
si �i ri ⇒ P (Xi = 0|Si = si) ≥ P (Xi = 0|Si = ri) ⇔ θi,si ≥ θi,ri .

In our experimental part we consider only isotone effect of parents on their
children. The difference with antitone effects is only in the partial ordering.
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3 Parameter Gradient Search with Monotonicity

To learn parameter vector μ we develop a method based on the gradient descent
optimization. We follow the work of Altendorf et al. (2005) where they use a
gradient descent method with exterior penalties to learn parameters. The main
difference is that we consider models with hidden variables.

We denote by D the set of indexes of observations vectors. One vector
xk, k ∈ D corresponds to one student and an observation of i-th variable Xi

is xk
i . The number of occurrences of the k-th configuration vector in the data

sample is dk.
We use the model structure as described in Sect. 2, i.e., unobserved parent

variables and observed binary children variables. With sets Ik
0 and Ik

1 of indexes
of incorrectly and correctly answered questions, we create following products
based on observations in the k-th vector:

pk0(μ, s, k) =
∏

i∈Ik
0

θi,s, pk1(μ, s, k) =
∏

i∈Ik
1

(1 − θi,s), pµ(μ, s) =
m∏

j=1

exp(μj,sj ).

We work with the log likelihood:

LL(μ) =
∑

k∈D

dk · log

⎛

⎝
∑

s∈V al(S)

m∏

j=1

exp(μj,sj )∑mj

s′
j=1 exp(μj,s′

j
)

· pk0(μ, s, k) · pk1(μ, s, k)

⎞

⎠

=
∑

k∈D

dk · log
( ∑

s∈V al(S)

pµ(μ, s) · pk0(μ, s, k) · pk1(μ, s, k)
)

− N ·
m∑

j=1

log

mj∑

s′
j=1

exp(μj,s′
j
).

The partial derivatives of LL(μ) with respect to θi,si for i ∈ N , si ∈ V al(Si)
are

δLL(μ)
δθi,si

=
∑

k∈D

dk · (−2xk
i + 1) · pµ(μ, si) · pk0(μ, si, k) · pk1(μ, si, k)

θi,si · ∑
s∈V al(S) pµ(μ, s) · pk0(μ, s, k) · pk1(μ, s, k)

.

and with respect to μi,l for i ∈ M , l ∈ {1, . . . , mi} are

δLL(μ)
δμi,l

=
∑

k∈D

dk ·
∑si=l

s∈V al(S) pµ(μ, s) · pk0(μ, s, k) · pk1(μ, s, k)
∑

s∈V al(S) pµ(μ, s) · pk0(μ, s, k) · pk1(μ, s, k)

−N · exp(μi,l)∑mi

l′=1 exp(μk,l′)
.

3.1 Monotonicity Restriction

To ensure monotonicity we use a penalty function

p(θi,si , θi,ri) = exp(c · (θi,ri − θi,si))
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for the log likelihood:

LL′(μ, c) = LL(μ) −
∑

i∈N

∑

si�iri

p(θi,si , θi,ri),

where c is a constant determining the strength of the condition. Theoretically,
this condition does not ensure monotonicity but, practically, selecting high values
of c results in monotonic estimates. If the monotonicity is not violated, i.e.
θi,ri < θi,si then the penalty value is close to zero. Otherwise, the penalty is
raising exponentially fast with respect to θi,ri − θi,si . In our experiments we
have used the value of c = 40 but any value higher than 20 provided almost
identical results.

Partial derivatives with respect to μi,l remain unchanged. Partial derivatives
with respect to θi,si are:

δLL′(μ, c)
δθi,si

=
δLL(μ)
δθi,si

+ c
∑

si�iri

p(θi,si , θi,ri) − c
∑

ri�isi

p(θi,ri , θi,si)

Using the penalized log likelihood, LL′(μ, c), and its gradient

∇(LL(μ, c)) =
(δLL′(μ, c)

δθi,si

,
δLL(μ)

δμj,l

)
,

for i ∈ N , si ∈ V al(Si), j ∈ M , l ∈ {1, . . . , mj}, we can apply the standard gra-
dient method optimization to solve the problem. In order to ensure probability
values of θi, i ∈ N it is necessary to use a bounded optimization method.

4 Experiments

For testing we use two different Bayesian Network models. The first one is an
artificial model and we use simulated data. The second model is one of the
models we used for computerized adaptive testing and we work with real data (for
details please refer to Plajner and Vomlel (2016a)). In both cases we learn model
parameters from data. Parameters are learned with our gradient method, isotonic
regression EM2 and the standard unrestricted EM algorithm. The learned model
quality is measured by the log likelihood of the whole data sample including the
training subset. This is done in order to provide results comparable between
different training set sizes.

2 We have implemented the irem algorithm based on the article (Masegosa et al. 2016).
We extended the method to work with parents with more states than 2 (the article
considers only binary variables). Questions (children) remain binary which makes
the extension easy.
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4.1 Artificial Model

The first model is displayed in Fig. 1. This model was created to provide sim-
ulated data for testing. The structure of the model is similar to models we use
in CAT modeling with two levels of variables. Parents S1 and S2 have 3 possi-
ble states and children X1, . . . , X5 are binary. We have instantiated the model
with random parameters vector θ∗ satisfying monotonicity conditions. We drew
a random sample of 100 000 cases from the model.

For parameters learning we use random subsets of size k of 10, 20, 50, 100,
1 000, 10 000, 50 000, and 100 000-(full data set) cases. For each size (except
the last one) we use 10 different sets. Next, we prepared 15 initial parameter
configurations for the fixed Bayesian Network structure (Fig. 1). These networks
have starting parameters θi generated at random, but in such a way, that they
satisfy monotonicity conditions. The assumption of monotonicity is part of our
domain expert knowledge. Therefore we can use it to speed up the process and
avoid local optima. Parameters of parent variables are uniform and initial vectors
are the same for each method. In our experiment we learn network parameters
for each initial parameter setup for each set in a particular set size (giving a
total of 150 learned networks for one set size). The learned parameter vectors
are θi,j for j-th subset of data.

The average log likelihood for the whole data sample

LLA =

∑10
j=1

∑15
i=1 LL(θi,j)
150

is shown in Fig. 3 for each set size. In case of this model we are also able to
measure the distance of learned parameters from the generating parameters in
addition to the log likelihood. First we calculate an average error for each learned
model:

ei,j =
|θ∗ − θi,j |

lθ
,

k − training sample size

−
LL

A
(k
)
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Fig. 3. Negative log likelihood for the whole sample and different training set sizes for
the artificial model.
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Fig. 4. Mean difference of parameters of learned and generating networks for different
set sizes for the artificial model.
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Fig. 5. Negative log likelihood for the whole sample and different training set sizes for
the CAT model.

where || is L1 norm. Next we average over all results in one set size:

e =

∑10
j=1

∑15
i=1 ei,j

150
.

Resulting values of e are displayed in Fig. 4 for each set size.

4.2 CAT Model

The second model is the model we used for CAT (Plajner and Vomlel 2016b).
Its structure is displayed in Fig. 2. Parent variables S1, . . . , S7 have 3 states and
each one of them represents a particular student skill. Children nodes Xi are vari-
ables representing questions which are binary. Data associated with this model
were collected from paper tests of mathematical skills of high school students.
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In total the data sample has 281 cases. For more detailed overview of tests refer
to Plajner and Vomlel (2016a). For learning we use random subsets of size of
1/10, 2/10, 3/10, and 4/10 of the whole sample. Similarly to the previous model,
we drew 10 random sets for each size and initiated models by 15 different initial
random monotonic starting parameters θi.

After learning we compute log likelihoods of the whole data set and we create
averages for each set size LLA(k) as with the previous model. Resulting values
are in Fig. 5. In this case we cannot compare learned parameters because the
real parameters with real are unknown.

5 Conclusions

In this article we have presented a gradient based method for learning parameters
of Bayesian Network under monotonicity restrictions. The method was described
and then tested on two data sets. In Figs. 3 and 5 it is clearly visible that this
method achieves the best results from three tested methods (especially for small
training samples). The irem method has problems with small training samples
and the log likehood in those cases is low. This is a consequence of the fact that it
moves to monotonic solution from a poor EM estimate and in these cases ensur-
ing monotonicity implies log likelihood degradation. We can also observe that
for the training sets larger than 1000 data vectors the EM algorithm stabilizes
in its parameter estimations. It means that at about k = 1000 the EM algorithm
found the best model it can and increasing training size does not improve the
result. Nevertheless, as we can observe in Fig. 4 parameters of learned networks
are always closer to the generating parameters while considering monotonicity
for both the irem and the gradient methods than for the standard EM.

These results verify usefulness of monotonicity for learning Bayesian Net-
works. A possible extension is to enlarge the theory of gradient based method
to work with more general network structures.
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