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The paper is devoted to analysis of a class of nonlinear free boundary problems that are usually solved by variational
methods based on primal, dual or primal-dual variational settings. We deduce and investigate special relations (error
identities). They show that a certain nonlinear measure of the distance to the exact solution (specific for each problem)
is equivalent to the respective duality gap, whose minimization is the keystone of all variational numerical methods.
Therefore, the identity actually sets the measure that contains maximal quantitative information on the quality of a
numerical solution available through these methods. The measure has quadratic terms generated by the linear part of
the differential operator and nonlinear terms associated with the free boundary. We obtain fully computable two sided
bounds of this measure and show that they provide efficient estimates of the distance between the minimizer and any
function (approximation) from the corresponding energy space. Several computational examples show that for different
minimization sequences the balance between the quadratic and the nonlinear terms of the overall error measure may be
different and essential contribution of nonlinear terms may serve as an indicator that the free boundaries are approximated
very roughly.
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1 Introduction

Variational inequalities form an important class of nonlinear models that describe free boundary phenomena arising in
various applied problems (see, e.g., G. Duvaut and J. L. Lions [8] and other publications cited therein). Usually free
boundaries separate regions where solutions possess quite different physical properties. Therefore, any reliable information
on the shape and location of such a boundary is very important. Qualitative properties of free boundaries are studied by
purely analytical (a priori) methods unlike quantitative information, which in the vast majority of cases can be obtained
only by computational methods. In this context, it is necessary to know what quantitative information could be really
extracted from a numerical solution.

Differentiability properties of exact solutions to variational inequalities are, in general, restricted even if all external
data of a problem are smooth (e.g., see H. Brezis [1], L.A. Caffarelli [7], D. Kinderlehrer and G. Stampacchia [16], A.
Friedman [10], N. N. Uraltseva [28]). In H. Brezis and M. Sibony [2], it was proved that there exists a unique solution
u ∈ W 2,2(�) of the classical obstacle problem∫

�

∇u · ∇w dx ≥
∫
�

f w dx, ∀w ∈ K

where K := {w ∈ H 1(�) | w = uD on ∂�,w ≥ ψ} provided that ψ ∈ W 2,2(�), f ∈ L2(�), and the function uD (which
defines the Dirichlét boundary condition) belongs to W 2,2(�) and satisfies the constrain uD ≥ ψ on ∂�. Many researches
were focused on clarifying mathematical properties of the coincidence set. In particular, it was proved that if the domain
� ⊂ R2 is strictly convex with a smooth boundary ∂� and if the obstacle ψ ∈ C2(�) is strictly concave, then the
coincidence set is connected and its boundary is smooth and homeomorphic to the unit circle (see, e.g., D. Kinderlehrer
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and G. Stampacchia [16]). However, in general, the structure of a coincidence set can be very complicated and for any
domain one can find an obstacle such that this set contains any number of disjoint subsets.

Numerical methods for problems with obstacles (and many other problems related to variational inequalities) were
systematically studied in R. Glowinski, J.-L. Lions, and R. Tremolieres [11, 12]. Getting the respective a priori rate
convergence estimates (in terms of the mesh size h) was the first question studied by many authors. In the context of finite
element approximations, such type estimates were derived by R. S. Falk [9] who proved standard a priori convergence
error estimates (with the rate h for the L2 norm of gradients and the rate h2 for the L2 norm of the functions) provided that
u ∈ W 2,2. Convergence of mixed approximations for problems with obstacles was established in F. Brezzi, W. Hager, and
P. A. Raviart [3] and numerical methods based on the augmented Lagrangian approach were studied in T. Kärkkäinen, K.
Kunisch, and P. Tarvainen [15].

In this paper, we are concerned with another important question arising in quantitative analysis of nonlinear problems
- which measure M of the distance to the exact solution is adequate (natural) for a particular problem? We study this
question in detail for two classes of obstacle type problems - the classical obstacle problem and the two-phase obstacle
problem. Our analysis is based on general type error identities derived and used in [18,21,22,24] for a wide class of convex
variational problems and applied here to problems with obstacles. The error identities establish equivalence of a certain
nonlinear measure M and the duality gap between the primal and dual energy functionals. Since the variational methods
are based on minimization of this gap, the measure M shows limits of quantitative analysis for this class of methods. The
newly derived energy identities (primal, dual, or primal-dual) are formulated in Theorem 1 and Theorem 2 for the classical
obstacle problem and in Theorem 3 for the two-phase obstacle problem. In the last section, we present several numerical
tests aimed to illustrate theoretical results. We show that the measures correctly represent the quality of approximations
for various minimizing sequences. In different cases, components of the measure may have different values. Depending
on the minimizing sequence, one or the other measure component may dominate. In other cases, the measures may be
comparable. Theoretical and computational results give a presentation on the amount of quantitative information contained
in a minimizing sequence constructed by means this or other version of the variational approach.

2 General energy identities for variational problems

For convenience of the reader we shortly recall the main items necessary to understand the material. Consider the class of
variational problems

inf
v∈V

J (v), J (v) = G(�v) + F (v), (1)

where � : V → Y is a bounded linear operator, G : Y → R is a convex, coercive, and lower semicontinuous functional,
F : V → R is another convex lower semicontinuous functional, and Y and V are reflexive Banach spaces. The dual spaces
are denoted by Y ∗ and V ∗, respectively, and the duality pairings are denoted by (y∗, y) and 〈v∗, v〉. The dual variational
problem consists of finding p∗ ∈ Y ∗ maximizing the dual functional

I ∗(y∗) := −G∗(y∗) − F ∗(−�∗y∗) (2)

over the space Y ∗. Here G∗ : Y ∗ → R and F ∗ : V ∗ → R are the Young-Fenchel transforms (convex conjugates) of G and
F , respectively. Henceforth, we use the so called compound functionals

DF (v, v∗) := F (v) + F ∗(v∗) − 〈
v∗, v

〉
,

DG(y, y∗) := G(y) + G∗(y∗) − (y∗, y)

generated by the convex functionals F and G, respectively. These functionals are nonnegative and vanish if and only
if v and v∗ (resp. y and y∗) are joined by special differential relations (see, e.g., [19]). Notice that in the simplest case
where V is a Hilbert space and F (v) = 1

2‖v‖2, the functional DF (v, v∗) coincides with the norm 1
2‖v − v∗‖2. However, in

general DF (v, v∗) should be viewed as a nonlinear measure, which vanishes if and only if the pair (v, v∗) satisfies certain
conditions.

Let v ∈ V and y∗ ∈ Y ∗ be the functions (approximations) compared with u and p∗. Introduce the following measure of
the distance between {u, p∗} and {v, y∗}:

M({u, p∗}, {v, y∗}) := DF (u,−�∗y∗) + DF (v,−�∗p∗) + DG(�u, y∗) + DG(�v, p∗) ≥ 0.

It vanishes if and only if

�v ∈ ∂G∗(p∗), y∗ ∈ ∂G(�u), −�∗y∗ ∈ ∂F (u), v ∈ ∂F ∗(−�∗p∗).
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The above conditions are satisfied if and only if v = u and y∗ = p∗ (i.e., if approximations coincide with the exact primal
and dual solutions). In [18] (Sect. 7.2), [21], and [24], it was proved that

M({u, p∗}, {v, y∗}) = J (v) − I ∗(y∗). (3)

Hence M{(u, p∗), (v, y∗)} = 0 if and only if J (v) = I ∗(y∗) (what means that v is a minimizer of the problem P and y∗

is a maximizer of the problem P∗). Two particular forms of (3) arise if we set v = u or y∗ = p∗. They are

M(u, v) := M({u, p∗}, {v, p∗}) and M(p∗, y∗) := M({u, p∗}, {u, y∗}).
In view of (3),

M(u, v) = DF (v,−�∗p∗) + DG(�v, p∗) = J (v) − J (u), (4)

M(p∗, y∗) = DF (u,−�∗y∗) + DG(�u, y∗) = I ∗(p∗) − I ∗(y∗). (5)

Henceforth, we call (3), (4), and (5) the primal-dual, the primal and the dual energy identities, respectively. The functionals
M({u, p∗}, {v, y∗}),M(u, v),M(y∗, p∗) are in fact the error measures used by any energy based numerical procedure
designed to solve (1). Since the error measures are equal to the respective duality gaps, they present the strongest (and in a
sense the most natural) measure for the class of problems considered.

Below we study energy identities for two classes of nonlinear variational problems and show that they generate specific
error measures containing two parts. The first (quadratic) part is presented by a norm equivalent to the H 1 norm and
the second (nonlinear) part controls (in a rather weak sense) how accurately the approximate solution recovers the free
boundary.

3 Classical obstacle problem

3.1 Variational setting

We begin with the classical obstacle problem (see, e.g. [1, 10, 16]), where admissible functions belong to the set

K := {w ∈ V0 | φ(x) ≤ w(x) ≤ ψ(x) a.e. in �}.
Here, V0 := H 1

0 (�) denotes the Sobolev space of functions vanishing on ∂� (hence we consider the case uD = 0), � ⊂ R
d

(d ∈ {1, 2, 3}) is a bounded domain with a Lipschitz continuous boundary ∂� and φ,ψ ∈ H 2(�) are two given functions
(lower and upper obstacles) such that

φ(x) ≤ 0 on ∂�, ψ(x) ≥ 0 on ∂�, φ(x) ≤ ψ(x), ∀x ∈ �.

The problem is to find u ∈ K satisfying the variational inequality

a(u,w − u) ≥
∫
�

f (w − u) dx ∀w ∈ K (6)

for a given function f ∈ L2(�) and a bilinear form

a(u,w) :=
∫
�

A∇u · ∇w dx.

It is assumed that A is a symmetric matrix subject to the condition

A(x)ξ · ξ ≥ c1 |ξ |2 c1 > 0, ∀ξ ∈ R
d (7)

almost everywhere in �. Under the assumptions made, the problem (6) is uniquely solvable. In general, the solution u

divides � into three sets:

�u
− := {x ∈ � | u(x) = φ(x)} ,

�u
+ := {x ∈ � | u(x) = ψ(x)} , (8)

�u
0 := {x ∈ � | φ(x) < u(x) < ψ(x)} .

The sets �u
− and �u

+ are the lower and upper coincidence sets and �u
0 is an open set, where u satisfies the Poisson equation

div(A∇u) + f = 0. Thus, the problem involves a priori unknown free boundaries. Let v ∈ K be an approximation of u.
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It defines the sets

�v
− := {x ∈ � | v(x) = φ(x)} ,

�v
+ := {x ∈ � | v(x) = ψ(x)} , (9)

�v
0 := {x ∈ � | φ(x) < v(x) < ψ(x)} .

Notice that unlike the sets in (8), the sets (9) are known. The dual component of the exact solution

p∗ = A∇u (10)

satisfies the conditions

divp∗ + f ≤ 0 on �u
−,

divp∗ + f ≥ 0 on �u
+, (11)

divp∗ + f = 0 on �u
0 .

It is well known that the pair (u, p∗) ∈ K × L2(�, R
d) is a saddle point of the respective minimax formulation. Moreover,

p∗ has square summable divergence and satisfies the relations (10) and (11) almost everywhere in �.

3.2 Error measures

The variational inequality (6) is known to have the equivalent form (1) for

�v = ∇v, �∗y∗ = −divy∗,

G(�v) = 1
2

∫
�

A∇v · ∇v dx, F (v) = −
∫
�

f v dx + χK(v),

where χK is the characteristic functional of the set K , i.e.,

χK(v) :=
{

0 if φ ≤ v ≤ ψ,

+∞ else.

In this case, V = V0, V ∗ = H−1(�), Y = L2(�, R
d),

G∗(y∗) = 1

2

∫
�

A−1y∗ · y∗ dx,

DG(�v, y∗) = 1

2

∫
�

(A∇v − y∗) · (∇v − A−1y∗) dx. (12)

Thus, we have

DG(�v, p∗) = 1

2

∫
�

A∇(u − v) · ∇(u − v) dx =:
1

2
||∇(u − v)||2A,

DG(�u, y∗) = 1

2

∫
�

A−1(p∗ − y∗) · (p∗ − y∗) dx =:
1

2
||p∗ − y∗||2A−1 .

Next, for v∗ ∈ L2(�),

F ∗(v∗) = sup
v∈K

∫
�

v(v∗ + f ) dx

= sup
v∈K

∫
�

(−v(v∗ + f )− + v(v∗ + f )+) dx =
∫
�

(−φ(v∗ + f )− + ψ(v∗ + f )+) dx. (13)

Here, (z)− and (z)+ denote the negative and positive parts of the quantity z, i.e., (z)− := − min{0, z}, (z)+ := max{0, z}
and it holds z = −(z)− + (z)+, |z| = (z)− + (z)+.
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In view of (13), we deduce explicit form of the functional DF provided that y∗ ∈ Y ∗
div(�) := {y∗ ∈ Y ∗ | divy∗ ∈

L2(�)}:
DF (v,−�∗y∗) = F (v) + F ∗(−�∗y∗) + 〈

�∗y∗, v
〉

=
∫
�

(−f v − φ (divy∗ + f )− + ψ (divy∗ + f )+ − divy∗v) dx

=
∫
�

((v − φ) (divy∗ + f )− + (ψ − v) (divy∗ + f )+) dx.

Since p∗ belongs to Y ∗
div(�) and satisfies the relation (11), we find that

DF (v,−�∗p∗) = −
∫
�u−

(v − φ)(divp∗ + f ) dx +
∫
�u+

(ψ − v)(divp∗ + f ) dx

= −
∫
�u−

(v − φ)(divA∇φ + f ) dx +
∫
�u+

(ψ − v)(divA∇ψ + f ) dx.

This quantity can be viewed as a certain measure

μφψ(v) :=
∫
�u−

Wφ(v − φ) dx +
∫
�u+

Wψ(ψ − v) dx, (14)

where Wφ := −(divA∇φ + f ), Wψ := divA∇ψ + f are two nonnegative weight functions generated by the source term
f , the obstacles ψ, φ and the diffusion A. It is clear that μφψ(v) = 0 if �v

− ⊂ �u
− and �v

+ ⊂ �u
+. In other words, if all

points of approximate sets �v
− and �v

+ indeed belong to the coincidence sets, then the measure is zero.

Remark 1. Assume that A = I (the identity matrix), obstacles φ,ψ are harmonic functions (�φ = �ψ = 0 in �)
satisfying φ < 0 < ψ a.e. in � and f = const �= 0. If f > 0 then �u

− = ∅ (the lower obstacle φ is never active) and

μφψ(v) = f

∫
�u+

(ψ − v) dx = f ‖ψ − v‖L1(�u+) = f ‖ψ − v‖L1(�u+\�v+) .

Here, we decomposed

�u
+ = (�u

+ \ �v
+) ∪ (�u

+ ∩ �v
+)

and applied the equality ‖ψ − v‖L1(�u+) = ‖ψ − v‖L1(�u+\�v+) (which holds because ‖ψ − v‖L1(�u+\�v+) = 0). Analogously,
if f < 0 then �u

+ = ∅ (the upper obstacle ψ is never active) and

μφψ(v) = −f

∫
�u−

(v − φ) dx = −f ‖v − φ‖L1(�u−) = −f ‖v − φ‖L1(�u−\�v−) .

We see that μφψ(v) represents a certain measure, which controls (in a weak integral sense) whether or not the function v

coincides with obstacles ψ, φ on true coincidence sets �u
− and �u

+.

Analogously, the quantity

DF (u,−�∗y∗) = −
∫

�
y∗
−

(u − φ)(divy∗ + f ) dx +
∫

�
y∗
+

(ψ − u)(divy∗ + f ) dx

forms another measure

μ∗
φψ(y∗) := −

∫
�

y∗
−

(u − φ)(divy∗ + f ) dx +
∫

�
y∗
+

(ψ − u)(divy∗ + f ) dx, (15)

where the sets

�
y∗
− := {x ∈ � | divy∗ + f < 0} ,

�
y∗
+ := {x ∈ � | divy∗ + f > 0} ,

�
y∗
0 := {x ∈ � | divy∗ + f = 0}
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are approximations of �u
−,�u

+,�u
0 generated on the basis of the dual solution y∗. It is clear that this measure is zero if

�
y∗
− ⊂ �u

− and �
y∗
+ ⊂ �u

+. Hence, the measure μ∗
φψ(y∗) is positive if the sets �

y∗
− and �

y∗
+ contain parts which do not

belong to true coincidence sets. We summarize properties of μφψ(v) and μ∗
φψ(y∗) as follows:

�u
− ⊂ �v

− and �u
+ ⊂ �v

+ ⇒ μφψ(v) = 0, (16)

�
y∗
− ⊂ �u

− and �
y∗
+ ⊂ �u

+ ⇒ μ∗
φψ(y∗) = 0. (17)

Now we use (3), (4), and (5) and deduce primal and dual error identities in terms of the primal and dual settings.

Theorem 1 (primal and dual energy identities for the classical obstacle problem). Let v and y∗ be approximations of u

and p∗, respectively. Then,

M(u, v) = 1

2
||∇(u − v)||2A + μφψ(v) = J (v) − J (u), (18)

M(p∗, y∗) = 1

2
||p∗ − y∗||2A−1 + μ∗

φψ(y∗) = I ∗(p∗) − I ∗(y∗). (19)

In view of the relation between the primal and dual functionals, the identities (18) and (19) yield the form of the
primal-dual energy identity

M({u, p∗}, {v, y∗}) = M(u, v) + M(p∗, y∗) = J (v) − I ∗(y∗). (20)

This error identity decomposes the primal-dual measure M({u, p∗}, {v, y∗}) additively to the primal and the dual measures.
It shows that the duality gap consists of four nonnegative quantities. Two of them are quadratic terms 1

2 ||∇(u − v)||2A and
1
2 ||p∗ − y∗||2

A−1 associated with energy errors. Two others are nonlinear terms μφψ(v) and μ∗
φψ(y∗) defined by (14) and

(15).

Remark 2. By neglecting nonlinear terms μφψ(v), μ∗
φψ(y∗) in (18) and (19) we obtain known inequalities

1

2
||∇(u − v)||2A ≤ J (v) − J (u),

1

2
||p∗ − y∗||2A−1 ≤ I ∗(p∗) − I ∗(y∗).

3.3 Computable bounds of error measures

First we show that the primal-dual measure M({u, p∗}, {v, y∗}) can be directly computed for any pair of approximate
solutions {v, y∗} provided that y∗ possesses an additional regularity.

Theorem 2 (primal-dual error identity for the classical obstacle problem). Let {v, y∗} ∈ K × Y ∗
div(�). Then,

M({u, p∗}, {v, y∗}) = 1

2
||A∇v − y∗||2A−1 + ϒ(v, y∗) = J (v) − I ∗(y∗), (21)

where
ϒ(v, y∗) :=

∫
�

y∗
− \�v−

(φ − v)(divy∗ + f ) dx +
∫

�
y∗
+ \�v+

(ψ − v)(divy∗ + f ) dx. (22)

P r o o f . In view of (2), (12), and (13), we have

J (v) = 1

2
||∇v||2A −

∫
�

f v dx,

I ∗(y∗) = −1

2
||y∗||2A−1 +

∫
�

(φ (divy∗ + f )− − ψ (divy∗ + f )+) dx. (23)

According to (20),

M({u, p∗}, {v, y∗}) = 1

2
||∇v||2A −

∫
�

f v dx + 1

2
||y∗||2A−1

+
∫
�

(−φ (divy∗ + f )− + ψ (divy∗ + f )+) dx. (24)
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Since

1

2
||∇v||2A + 1

2
||y∗||2A−1 −

∫
�

f v dx = 1

2
||A∇v − y∗||2A−1 +

∫
�

(y∗ · ∇v − f v) dx

= 1

2
||A∇v − y∗||2A−1 −

∫
�

(divy∗ + f )v dx

and

−
∫
�

(divy∗ + f )v dx +
∫
�

(−φ (divy∗ + f )− + ψ (divy∗ + f )+) dx

= −
∫

�
y∗
−

(v − φ)(divy∗ + f ) dx +
∫

�
y∗
+

(ψ − v)(divy∗ + f ) dx

= −
∫

�
y∗
− \�v−

(v − φ)(divy∗ + f ) dx +
∫

�
y∗
+ \�v+

(ψ − v)(divy∗ + f ) dx

the substitution of last two equalities in (24) yields (21). �

Remark 3. Assume that the right hand side of (21) is equal to zero. Then y∗ = A∇v and

v = φ if divy∗ + f < 0,

v = ψ if divy∗ + f > 0.

Hence, �
y∗
− ⊂ �v

− and �
y∗
+ ⊂ �v

+. The sets �v
+ and �v

− do not intersect as well as the sets �
y∗
+ and �

y∗
− . Therefore, the

set �v
0 = � \ (�v

+ ∪ �v
−) is contained in the set �

y∗
0 = � \ (�y∗

+ ∪ �
y∗
− ). Thus, divy∗ + f = 0 in �v

0. For any w ∈ K , we
have ∫

�

A∇v · ∇(w − v) dx −
∫
�

f (w − v) dx =
∫
�v−

(divy∗ + f )(φ − w) dx

+
∫
�v+

(divy∗ + f )(ψ − w) dx +
∫
�v

0

(divy∗ + f )(v − w) dx.

The right hand side of the above relation is nonnegative. Indeed, the first two integrals are nonnegative and the last one
is equal to zero. This means that v satisfies the variational inequality and, consequently, the pair {v, y∗} coincides with
{u, p∗}.

Remark 4. If approximations of the coincidence sets (constructed on the basis of v and y∗) satisfy the relations
�

y∗
− ⊂ �v

− and �
y∗
+ ⊂ �v

+, then (21) reads

M({u, p∗}, {v, y∗}) = 1

2
||A∇v − y∗||2A−1 .

Moreover, if �
y∗
− ⊂ �u

− ⊂ �v
− and �

y∗
+ ⊂ �u

+ ⊂ �v
+, then both nonlinear terms of M({u, p∗}, {v, y∗}) vanish and we

arrive at the equality

||∇(u − v)||2A + ||p∗ − y∗||2A−1 = ||A∇v − y∗||2A−1 .

However, the sets �u
− and �u

+ are unknown, so that in practice it is impossible to verify the conditions that yield this
simplest (hypercircle type) form of the error identity.

Remark 5 (nonhomogeneous Dirichlét boundary conditions). Error identities for the classical obstacle problem were
derived in this section for the homogeneous Dirichlét boundary conditions only. However, the exact solution u of the
forthcoming Example 3 satisfies nonhomogeneous Dirichlét boundary conditions. It is possible to show that all forms of
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error identities remain unchanged. The only difference is that an extra boundary term∫
∂�

(y∗ · n)uD dx

needs to be added to the dual functional (23).

3.4 Estimates for the primal and dual measures

Theorem 2 provides a way to compute M({u, p∗}, {v, y∗}), which is the sum of error measures M(u, v) and M(p∗, y∗).
These measures separately evaluate deviations of v from u and y∗ from p∗. It is desirable to have guaranteed bounds for
them as well (notice that in view of (21) two sided bounds of M(u, v) imply two sided bounds of M(p∗, y∗) and vise
versa). For this purpose, we require knowledge of the exact energy J (u) = I ∗(p∗), which is generally unknown. However,
there is a way to derive computable bounds of J (v) − J (u) without this knowledge (see [21, 23]). In this subsection, we
briefly discuss applications of these results addressing the reader to a more systematic exposition and numerical tests in
[6, 13, 14, 18, 20]. First, we have the estimate

M(u, v) ≤ M+(v; β, λ1, λ2, y
∗) := (1 + β−1)DG(∇v, y∗)

+1

2
C2

�(1 + β)‖divy∗ + f + λ1 − λ2‖2
� +

∫
�

(λ1(v − φ) + λ2(ψ − v)) dx. (25)

The majorant M+ contains free variables: β > 0, y∗ ∈ Y ∗
div(�), and two nonnegative functions (Lagrange multipliers)

λ1, λ2 ∈ L2(�). The constant C� > 0 is a minimal constant in a Friedrichs type inequality ‖w‖ ≤ C�‖∇w‖A for all w ∈
V0. It should be outlined that originally it was proved that M+ majorates only the quadratic part of the error 1

2‖∇(v − u)‖2
A,

see, e.g., [23]. Now, we can claim that M+ is the majorant of the full measure M(u, v).
It is not difficult to show that for any v, there exist β, λ1, λ2, and y∗ such that (25) holds as equality. Indeed, set y∗ = p∗,

and

λ1 = −(divp∗ + f ), λ2 = 0 on �u
−,

λ2 = divp∗ + f, λ1 = 0 on �u
+,

λ1 = 0, λ2 = 0 on �u
0 .

Then, the second term of M+ vanishes (for any choice of β) and the third term is equal to μφψ(v). By taking a limit
β → +∞, the first term converges to

DG(∇v, p∗) =
∫
�

(
1

2
A∇v · ∇v + 1

2
A−1p∗ · p∗ − ∇v · p∗

)
dx = 1

2
‖∇(v − u)‖2

A.

This result is quite natural: since we use the exact coincidence sets, the nonlinear measure μφψ(v) is zero. In practice, v

should be based on approximations of �u
−, �u

+, and �u
0 and set

λ1 = (divy∗ + f )−, λ2 = 0 on �v
−,

λ2 = (divy∗ + f )+, λ1 = 0 on �v
+,

λ1 = 0, λ2 = 0 on �v
0.

The third term of (25) vanishes and we obtain another majorant

M(u, v) ≤ M+
1 (v; β, y∗) := 1

2
(1 + β−1)DG(∇v, y∗)

+1

2
C2

�(1 + β)‖[f + divy∗]v‖2, (26)

where

[f + divy∗]v :=

⎧⎪⎨⎪⎩
(f + divy∗)− in �v

+,

(f + divy∗)+ in �v
−,

f + divy∗ in �v
0.
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Since J (v) − J (w) ≤ J (v) − J (u) holds for all w ∈ K , we always have a computable lower bound

M−(v,w) := J (v) − J (w) ≤ M(u, v). (27)

In practice, a suitable w can be constructed by local (e.g., patch wise) improvement of v and ideas of hierarchical basis
methods. Hence, (26) and (27) provide two-sided bounds of M(u, v). In view of identity (20), we thus obtain computable
two-sided bounds of the dual measure M(p∗, y∗).

4 Two-phase obstacle problem

4.1 Variational setting

The following two-phase obstacle problem was studied in H. Shahgholian, N. N. Uraltseva, and G. S.Weiss [26], N.N.
Uraltseva [29], G. S. Weiss [27] and some other papers cited therein. Here the variational (energy) functional J (v) is
defined by the relation

J (v) :=
∫
�

(
1

2
A∇v · ∇v − f v + α−(v)− + α+(v)+

)
dx.

The functional J (v) is minimized on the set

V0 + uD := {v = v0 + uD : v0 ∈ V0, uD ∈ H 1(�)}.
Here uD is a given bounded function that defines the boundary condition (uD may attain both positive and negative values
on different parts of the boundary ∂�). It is assumed that the coefficients α+, α− : � → R are positive constants (without
essential difficulties the consideration and main results can be extended to the case where they are positive Lipschitz
continuous functions). Also, it is assumed that f ∈ L∞(�), A ∈ L∞(�, R

d×d), and the condition (7) holds. Since the
functional J (v) is strictly convex and continuous on V , existence and uniqueness of a minimizer u ∈ K is guaranteed by
well known results of the calculus of variations (see, e.g., [19]). Analysis of the corresponding Euler-Lagrangian equation
leads to the nonlinear problem ([26, 27, 29])

div(A∇u) + f = −α− χ{u<0} + α+ χ{u>0}, u = uD on ∂�, (28)

where χ denotes the characteristic function of a set (attaining values 1 and 0 inside and outside the set, respectively).
A physical interpretation of the problem (28) is presented by an elastic membrane touching the planar phase boundary
between two liquid/gaseous phases (see, e.g., [26]).

We introduce two decompositions of � associated with the minimizer u and an approximation v:

�u
− := {x ∈ � | u(x) < 0}, �v

− := {x ∈ � | v(x) < 0},
�u

+ := {x ∈ � | u(x) > 0}, �v
+ := {x ∈ � | v(x) > 0},

�u
0 := {x ∈ � | u(x) = 0}, �v

0 := {x ∈ � | v(x) = 0}.
These decompositions generate exact and approximate free boundaries. Using the above notation we can rewrite (28) as
follows

div(A∇u) + f =

⎧⎪⎨⎪⎩
−α− in �u

−,

α+ in �u
+,

0 in �u
0 .

(29)

4.2 Error measures

The problem is reduced to (1) if V = V0 := H 1
0 (�), Y = L2(�, R

d), �w = ∇w, �∗y∗ = −divy∗, and the functionals

Ĝ(y) = 1

2

∫
�

A(y + yD) · (y + yD) dx, yD = ∇uD,

F̂ (v0) :=
∫
�

(−f (v0 + uD) + α+(v0 + uD)+ + α−(v0 + uD)−) dx
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stand for G and F , respectively. The problem is to find u0 ∈ V0 such that the functional Ĵ (v0) = Ĝ(∇v0) + F̂ (v0) attains
its infimum on the space V0.

Ĝ∗(y∗) = sup
y∈Y

∫
�

(
y∗ · y − 1

2
A(y + yD) · (y + yD)

)
dx

= sup
y∈Y

∫
�

(
y∗ · (y − yD) − 1

2
Ay · y

)
dx =

∫
�

(
1

2
A−1y∗ · y∗ − y∗ · yD

)
dx

Hence,

DĜ(�v0, y
∗) =

∫
�

(
1

2
A∇v · ∇v + 1

2
A−1y∗ · y∗ − y∗ · ∇v

)
dx = 1

2
‖A∇v − y∗‖2

A−1 , (30)

for any v = v0 + uD . Computation of F̂ ∗(v∗) is more sophisticated.

Lemma 1. Let v∗ ∈ L∞(�). Then,

F̂ ∗(v∗) =
{− ∫

�

v∗uD dx if v∗ + f ∈ [−α−, α+],

+∞ else.
(31)

P r o o f . Assume that v∗ + f > α+ on some open subset ω ⊂ �. Then this inequality holds on a ball B ⊂ ω. Define
two smooth cut off functions λε

1 and λε
2 such that

λε
i (x) ∈ [0, 1], i = 1, 2,

λε
1 = 1 on ∂�, λε

1 = 0 if dist(x, ∂�) > ε,

λε
2 = 1 in B, λε

2 = 0 if dist(x, B) > ε, suppλε
2 ⊂ ω.

Here ε is a positive quantity smaller than 1
2 dist(B, ∂�). For any ρ ∈ R, the function vε := λε

1uD + ρλε
2 belongs to V0 + uD .

It is not difficult to see that

vε =

⎧⎪⎪⎨⎪⎪⎩
λε

1uD in Sε
1 := suppλε

1,

ρλε
2 in Sε

2 := suppλε
2 \ B,

ρ in B,

0 in all other points

and

(vε)− =
{

λε
1(uD)− in Sε

1 ,

0 in all other points
, (vε)+ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λε

1(uD)+ in Sε
1 ,

ρλε
2 in Sε

2 ,

ρ in B,

0 in all other points.

Therefore,

F̂ ∗(v∗) = sup
v0∈V0

⎧⎨⎩
∫
�

(v∗v0 + f (v0 + uD) − α−(v0 + uD)− − α+(v0 + uD)+) dx

⎫⎬⎭
= sup

v∈V0+uD

⎧⎨⎩
∫
�

((v∗ + f )v − α−(v)− − α+(v)+) dx

⎫⎬⎭ −
∫
�

v∗uD dx

≥
∫
�

((v∗ + f )vε − α−(vε)− − α+(vε)+) dx −
∫
�

v∗uD dx

=
∫
Sε

1

((v∗ + f )λε
1uD − α−(uD)− − α+(uD)+) dx

+
∫
Sε

2

ρ(v∗ + f − α+)λε
2 dx + ρ

∫
Sε

2

(v∗ + f − α+) dx −
∫
�

v∗uD dx.
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Let ε → 0 and ρ → +∞. Then the first integral in the right hand side vanishes, the second is positive and the third tends
to +∞. Hence, F ∗(v∗) = +∞.

Quite analogously we prove that F ∗(v∗) = +∞ if v∗ + f < α− on some open set ω ⊂ �. It remains to show that
F ∗(v∗) = − ∫

�

v∗uD dx if −α− ≤ v∗ + f ≤ α+. For this purpose, we define vε := λε
1uD . In this case,

F̂ ∗(v∗) = sup
v∈V0+uD

⎧⎨⎩
∫
�

((v∗ + f )v − α−(v)− − α+(v)+) dx

⎫⎬⎭ −
∫
�

v∗uD dx

=
∫
�v−

((v∗ + f + α−)v dx +
∫
�v+

(v∗ + f − α+)v dx −
∫
�

v∗uD dx.

We see that the first two integrals are nonpositive, so that F̂ ∗(v∗) ≤ − ∫
�

v∗uD dx. On the other hand,

∫
�vε

−

((v∗ + f + α−)vε dx +
∫

�vε
+

(v∗ + f − α+)vε dx → 0

as ε → 0 and we arrive at (31). �

Corollary 1. If v∗ satisfies −α− ≤ v∗ + f ≤ α+, then

DF̂ (v0) = F̂ (v0) + F̂ ∗(v∗) − 〈
v∗, v0

〉 =
∫
�

(−(f + v∗)v + α−(v)− + α+(v)+) dx,

where v = v0 + uD . Hence, if

y∗ ∈ Y ∗
div,[−α−,α+] :=

{
y∗ ∈ Y ∗ : divy∗ + f ∈ [−α−, α+] a.e. in �

}
,

then

DF̂ (v0,−�∗y∗) =
∫
�

(α−(v)− + α+(v)+ − (divy∗ + f )v) dx =

=
∫
�v−

(−α− − (divy∗ + f )) v dx +
∫
�v+

(α+ − (divy∗ + f )) v dx (32)

To obtain error identities, we need to express (32) for two particular cases where either y∗ = p∗ or v = u. For the first
case, we have

DF̂ (v0,−�∗p∗)=
∫
�v−

(−α− − (divp∗ + f )) v dx +
∫
�v+

(α+ − (divp∗ + f )) v dx. (33)

Since p∗ = A∇u the relation (29) guarantees that divp∗ + f ∈ [−α−,−α+] almost everywhere in � and, therefore,
p∗ ∈ Y ∗

div,[α−,α+] .
Let us introduce the set

ω := ω+ ∪ ω− ∪ ω±,

where disjoint subsets read

ω+ : = �v
+ ∩ �u

0,

ω− : = �v
− ∩ �u

0,

ω± : = {
�v

+ ∩ �u
−
} ∪ {

�v
− ∩ �u

+
}
.

These subsets characterize the difference between exact coincidence sets and those formed by v. The remaining part
�̂ := � \ ω contains the points of � which belong to �v

+ ∩ �u
+ or �v

− ∩ �u
− or �v

0. In view of (29), at these points the
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Fig. 1 The exact coincidence sets �u
+,�u

0, �
u
− (left), the approximate coincidence sets �v

+, �v
0, �

v
− (middle), and the

intersection set ω+ := �v
+ ∩ �u

0 colored green (right).

integrands of (33) vanish. Hence (33) yields a nonnegative functional (measure)

μω(v) := DF̂ (v0,−�∗p∗) =
∫
ω

α(x)|v| dx, v = v0 + uD,

where

α(x) :=

⎧⎪⎨⎪⎩
α+ if x ∈ ω+,

α− if x ∈ ω−,

α+ + α− if x ∈ ω±.

Figure 1 illustrates an example of exact and approximate coincidence sets. Note that in this example only the set ω+ is
nonempty. The sets ω− and ω± are empty.

For the second case, we have a nonlinear functional (measure)

μ∗
ω(y∗): = DF̂ (u0,−�∗y∗)

=
∫
�u−

(−α− − (divy∗ + f )) u dx +
∫
�u+

(α+ − (divy∗ + f )) u dx. (34)

It is clear that

�v
− ⊂ �u

− and �v
+ ⊂ �u

+ ⇒ μω(v) = 0, (35)

�u
− ⊂ �

y∗
− and �u

+ ⊂ �
y∗
+ ⇒ μ∗

ω(y∗) = 0, (36)

where the sets

�
y∗
− : = {

x ∈ � | divy∗ + f = −α−
}
,

�
y∗
+ : = {

x ∈ � | divy∗ + f = α+
}

are approximations of �u
−,�u

+ generated on the basis of the dual solution y∗.
Now (3), (4), and (5) imply the following result.

Theorem 3 (primal, dual and primal-dual energy identities for the two-phase obstacle problem). Let v ∈ V0 + uD and
y∗ ∈ Y ∗

div,[α−,α+] be approximations of u and y∗, respectively. Then

M(u, v) = 1

2
||∇(u − v)||2A + μω(v) = J (v) − J (u), (37)

M(p∗, y∗) = 1

2
||p∗ − y∗||2A−1 + μ∗

ω(y∗) = I ∗(p∗) − I ∗(y∗), (38)

M({u, p∗}, {v, y∗}) = 1

2
‖A∇v − y∗‖2

A−1 + ϒ(v, y∗) = J (v) − I ∗(y∗), (39)

where

ϒ(v, y∗) :=
∫
�

(α+(v)+ + α−(v)− − (f + divy∗)v) dx (40)

is a nonnegative functional, which vanishes if y∗ = p∗ and v = u.

P r o o f . We apply (4) and (5). Notice that Ĵ (v0) = G(∇v0) + F (v0) = J (v). Next,

DF̂ (v0,−�∗p∗) + DĜ(�v0, p
∗) = μω(v) + 1

2
‖A∇(u − v)‖2

A.
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It is easy to see that for any v = v0 + uD ∈ V0 + uD , the functional J (v) coincides with Ĵ (v0) and Ĵ (u0) coincides with
J (u). Since

DF̂ (v0,−�∗p∗) + DĜ(�v0, p
∗) = Ĵ (v0) − Ĵ (u0) = J (v) − J (u),

we arrive at (37).
Since u0 = u − uD (where u satisfies the relation A∇u = p∗), we use (30) and (34) and obtain

DF̂ (u0,−�∗y∗) + DĜ(�u0, y
∗) = μ∗

ω(y∗) + 1

2
||p∗ − y∗||2A−1 .

Now (5) yields (38), where

I ∗(y∗) = −Ĝ∗(y∗) − F̂ ∗(−�∗y∗)

−1

2
‖y∗‖2

A−1 +
∫
�

(y∗ · ∇uD + divy∗uD) dx = −1

2
‖y∗‖2

A−1 +
∫
∂�

(y∗ · n)uD dx.

Finally, summation of (37) and (38) yields

M({u, p∗}, {v, y∗}) = Ĵ (v0) − I ∗(y∗) = J (v) − Î ∗(y∗)

= 1

2
‖A∇v − y∗‖2

A−1 + ϒ(v, y∗),

where

ϒ(v, y∗) =
∫
�

(α+(v)+ + α−(v)− − f v + y∗ · ∇(v − uD) − divy∗uD) dx

=
∫
�

(α+(v)+ + α−(v)− − (f + divy∗)v) dx. �

Corollary 2. From (39) it follows that

1

2
||∇(u − v)||2A + 1

2
||p∗ − y∗||2A−1 ≤ 1

2
‖A∇v − y∗‖2

A−1 + ϒ(v, y∗).

This inequality has a practical value because it provides a directly computable upper bound of the error.

Remark 6. It is not difficult to show the equivalence

ϒ(v, y∗) = 0 ⇔ �y∗
<> ⊂ �v

0,

where

�y∗
<> := � \

{
�

y∗
− ∪ �

y∗
+

}
= {

x ∈ � | −α− < divy∗ + f < α+
}
.

In other words, v must not have positive values in �
y∗
− and negative values in �

y∗
+ . To prove this fact we represent ϒ(v, y∗)

in the form

ϒ(v, y∗) =
∫

�
y∗
−

(α+(v)+ + α−((v)− + v) dx +
∫

�
y∗
<>

(α+(v)+ + α−(v)− − (f + divy∗)v) dx

+
∫

�
y∗
+

(α+((v)+ − v) + α−(v)−) dx

=
∫

�
y∗
−

(α+ + α−)(v)+ dx +
∫

�
y∗
<>

(α+χ{v>0} − α−χ{v>0} − f − divy∗)v dx

+
∫

�
y∗
+

(α+ + α−)(v)− dx = ϒ1(v, y∗) + ϒ2(v, y∗) + ϒ3(v, y∗),
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where the terms are defined by the relations

ϒ1(v, y∗) =
∫

{�y∗
− ∩�v+}∪{�y∗

+ ∩�v−}

(α+ + α−)|v| dx,

ϒ2(v, y∗) =
∫

�
y∗
<>∩�v+

W+(y∗)|v| dx, ϒ3(v, y∗) =
∫

�
y∗
<>∩�v−

W−(y∗)|v| dx,

with the weights W+(y∗) := (α+ − f − divy∗) and W−(y∗) := α− + f + divy∗. The term ϒ1(v, y∗) vanishes if v ≤ 0 in
�

y∗
− and v ≥ 0 in �

y∗
+ . In the set �

y∗
<> the weights W+(y∗) and W−(y∗) are positive. Therefore, ϒ2(v, y∗) = ϒ3(v, y∗) = 0

implies v = 0 almost everywhere in �
y∗
<>, i.e., �

y∗
<> ⊂ �v

0. If all the above conditions are satisfied, then ϒ(v, y∗) = 0 and
we arrive at the identity

M({u, p∗}, {v, y∗}) = 1

2
‖A∇v − y∗‖2

A−1 .

It is clear that ϒ(v, y∗) = 0 if the set �v
− coincides (up to a set of zero measure) with the set �

y∗
− and �v

+ coincides �
y∗
+ .

4.3 Estimates for the primal and dual measures

Computable upper bound of the primal error measure M(u, v) was first derived in [25]. It has the form

M(u, v) ≤ M+(v; β, λ+, λ−, y∗)

:= 1

2
(1 + β)||A∇v − y∗||2�,A−1 + 1

2
(1 + 1

β
)C2

�||divy∗ + f − α+λ+ + α−λ−||2�

+
∫
�

(α+ (v+ − λ+v) + α− (v− + λ−v)) dx.

The majorant M+ contains free variables: β > 0, y∗ ∈ Y ∗
div(�), and two nonnegative functions λ+, λ− ∈ L2(�) satisfying

the condition λ+(x), λ−(x) ∈ [0, 1] a.e. in �. In practical computations it is convenient to simplify M+ and use the
majorant

M(u, v) ≤ M+
1 (v; β, λ, y∗) := 1

2
(1 + β)||A∇v − y∗||2�,A−1

+1

2
(1 + 1

β
)C2

�||divy∗ + f − λ||2� +
∫
�

(α+v+ + α−v− − λv) dx,

where only one multiplier λ ∈ L2(�) satisfying λ ∈ [−α−, α+] a.e. in � is required. For a consequent exposition and
numerical examples, we address the reader to [5]. Finally, we note that two-side bounds of the dual measure M(p∗, y∗)
can be deduces by the same arguments as in Subsect. 3.4.

5 Examples

Below we discuss computational examples that illustrate the above presented relations. In these test examples, the exact
solutions u and p∗ are known. Due to this fact, we are able to verify the theoretical results and study proportions between
the quadratic and nonlinear parts of the primal, dual and primal-dual measures (cf. Theorems 1, 2, 3) for various sequences
of approximations converging to exact solutions.

5.1 Example 1: the classical obstacle problem in 1D

Let � = (0, 1), A = 1, f = const < 0, φ = const < 0, ψ = +∞, and u satisfy the homogeneous Dirichlét boundary
conditions u(0) = 0, u(1) = 0. The exact solution has the form (see [13])
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u(x) =

⎧⎪⎨⎪⎩
− f

2 x2 − √
2f φ x if x ∈ [0, 1

2 − r],

φ if x ∈ ( 1
2 − r, 1

2 + r),

− f
2 (x − 1)2 + √

2f φ (x − 1) if x ∈ [ 1
2 + r, 1],

where r := 1
2 −

√
2φ
f

∈ (0, 1
2 ). In this case, J (u) = f φ( 4

3

√
2φ
f

− 1). Consider the approximations

vε1(x) =

⎧⎪⎨⎪⎩
− fε1

2 x2 − √
2fε1φ x if x ∈ [0, 1

2 − rε1 ],

φ if x ∈ ( 1
2 − rε1 ,

1
2 + rε1),

− fε1
2 (x − 1)2 + √

2fε1φ (x − 1) if x ∈ [ 1
2 + rε1 , 1],

where ε1 is a small positive parameter, rε1 := r − ε1, and fε1 := 2φ

( 1
2 −r+ε1)2 . For ε1 ∈ (r − 1

2 , r), it holds

�
vε1− = (

1

2
− rε1 ,

1

2
+ rε1) ⊂ �u

− = (
1

2
− r,

1

2
+ r).

In view of (16), we can await that these approximations the measure μφψ(vε1) is positive. Approximations of the dual
variable are taken in the form y∗

ε2
= I(p∗)(x), where I denotes piecewise linear nodal and continuous interpolation at the

nodes {0, 1
2 − r − ε2,

1
2 − r + ε2,

1
2 + r − ε2,

1
2 + r + ε2, 1}. It differs from p∗ in

(
1

2
− r − ε2,

1

2
− r + ε2) ∪ (

1

2
+ r − ε2,

1

2
+ r + ε2)

and

�u
− ⊂ �

y∗
ε2− = (

1

2
− r − ε2,

1

2
+ r + ε2) for ε2 ∈ (0, r).

Hence the condition (17) is not valid allowing μ∗
φψ(y∗

ε2
) > 0. Notice that in this example ψ = +∞. Therefore, condition

divy∗ + f ≤ 0 in � (41)

must be satisfied. The function y∗
ε2

satisfies this requirement.
In the tests, we set

φ = −1, f = −14.

Then, r ≈ 0.1220 and J (u) ≈ −6.9446. The approximations vε1 , y
∗
ε2

are computed for ε1, ε2 = 2−i/10, i = 0, 1, ..., 4.
Table 1 contains results related to the primal error identity (18) for the approximations vε1 . It shows that both (quadratic

and nonlinear) parts of the primal error measure tend to zero as ε1 → 0. Relative contribution of the nonlinear part is
expressed by the quantity

κ(vε1) := 100
μφψ(vε1)
M(u, vε1)

[%]

presented in the last right column. For smaller values of ε1 the quadratic part dominates. This is quite natural because the
quadratic part is globally distributed over � and the nonlinear part μφψ(vε1) has a local support in the set

�u
− \ �

vε1− ≈ (0.3779, 0.3779 + ε1) ∪ (0.6220 − ε1, 0.6220),

whose measure tends to zero (for the considered sequence of approximations).
Table 2 reports on terms in the dual error identity (19) for the approximations y∗

ε2
. Again, both quadratic and nonlinear

parts of the error converge to zero as ε2 converges to zero. The contribution of the nonlinear measure to the dual energy
identity is measured by the quantity

κ(y∗
ε2
) := 100

μ∗
φψ(y∗

ε2
)

M(p∗, y∗
ε2
)

[%].

In this example, the functions y∗
ε2

and p∗
ε2

differ only locally. Hence none of the error parts dominates. The nonlinear part
μ∗

φψ(y∗
ε2
) is supported in the set

�
y∗

ε2− \ �u
− ≈ (0.3779 − ε2, 0.3779) ∪ (0.6220, 0.6220 + ε2)

and tends to zero as ε2 → 0.
Table 3 reports on the terms in the primal-dual error identity (21), where the computable nonlinear part ϒ is given by

(22). Relative contribution of the nonlinear part (in the primal-dual measure) is presented by the quantity κ(vε1).
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Table 1 Terms in the primal error identity computed for approximations vε1 of Example 1.

ε1
1
2‖∇(u − vε1)‖2 μφψ(vε1) M(u, vε1) J (vε1) − J (u) J (vε1) κ(vε) [%]

1/10 1.54e-01 4.09e-02 1.95e-01 1.95e-01 –6.749391 20.93

1/20 4.82e-02 6.38e-03 5.45e-02 5.45e-02 –6.890142 11.69

1/40 1.36e-02 9.00e-04 1.45e-02 1.45e-02 –6.930187 6.21

1/80 3.62e-03 1.20e-04 3.74e-03 3.73e-03 –6.940928 3.21

1/160 9.33e-04 1.55e-05 9.49e-04 9.49e-04 –6.943714 1.64

Table 2 Terms in the dual error identity computed for approximations y∗
ε2

of Example 1.

ε2
1
2‖p∗ − y∗

ε2
‖2 μ∗

φψ(y∗
ε2
) M(p∗, y∗

ε2
) I ∗(p∗) − I ∗(y∗

ε2
) I ∗(p∗) κ(y∗

ε2
) [%]

1/10 3.27e-02 3.27e-02 6.53e-02 6.53e-02 –7.009997 50.00

1/20 4.08e-03 4.08e-03 8.17e-03 8.17e-03 –6.952830 50.00

1/40 5.10e-04 5.10e-04 1.02e-03 1.02e-03 –6.945684 50.00

1/80 6.38e-05 6.38e-05 1.28e-04 1.28e-04 –6.944791 50.00

1/160 7.97e-06 7.98e-06 1.60e-05 1.61e-05 –6.944679 50.01

Table 3 Terms in the primal-dual error identity computed for approximations vε1 and y∗
ε2

of Example 1. Here, M(vε1 , y
∗
ε2

) denotes
M({u, p∗}, {vε1 , y

∗
ε2

}).

ε1 ε2
1
2 ||∇vε1 − y∗

ε2
||2 ϒ(vε1 , y

∗
ε2
) M(vε1 , y

∗
ε2
) J (vε1) − I ∗(y∗

ε2
) κ(vε1 , y

∗
ε2
)[%]

1/10 1/10 9.72e-02 1.63e-01 2.61e-01 2.61e-01 62.71

1/20 1/10 3.39e-02 8.60e-02 1.20e-01 1.20e-01 71.75

1/20 1/20 3.72e-02 2.55e-02 6.27e-02 6.27e-02 40.64

1/40 1/20 1.05e-02 1.21e-02 2.26e-02 2.26e-02 53.55

1/40 1/40 1.19e-02 3.59e-03 1.55e-02 1.55e-02 23.18

1/80 1/40 3.14e-03 1.61e-03 4.76e-03 4.76e-03 33.94

1/80 1/80 3.38e-03 4.78e-04 3.86e-03 3.86e-03 12.38

1/160 1/80 8.68e-04 2.08e-04 1.08e-03 1.08e-03 19.36

1/160 1/160 9.03e-04 6.17e-05 9.65e-04 9.65e-04 6.40

For illustration, some terms are visualized in Fig. 2 for in the case of approximations vε1 and y∗
ε2

generated by
ε1 = ε2 = 0.1.

5.2 Example 2: the two-phase obstacle problem in 1D

Let � = (−1, 1), f = 0, A = 1, α+, α− > 0, and u satisfy the boundary conditions u(−1) = −1 and u(1) = 1. The exact
solution is given by the formula

u(x) =

⎧⎪⎨⎪⎩
−(α−

2 ) x2 + (
√

2α− − α−) x + √
2α− − α−

2 − 1, x ∈ [−1, r−] ,
0, x ∈ (r−, r+),
(α+

2 ) x2 + (
√

2α+ − α+) x − √
2α+ + α+

2 + 1, x ∈ [r+, 1] ,
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Fig. 2 Example 1 for φ = −1, f = −14 and approximations vε1 and y∗
ε2

generated by ε1 = ε2 = 0.1: the exact solution
u and its approximation vε1 (top left), the exact flux p∗ and its approximation y∗

ε2
(top right), quadratic measures

1
2 ||∇(u − vε1)||2 and 1

2 ||p∗ − y∗
ε2

||2 (bottom left), nonlinear measures μφψ (vε1) and μ∗
φψ(y∗

ε2
) (bottom right).

where r− :=
√

2
α−

− 1, r+ := 1 −
√

2
α+

. It is not difficult to show that J (u) = 2
√

2
3 (

√
α+ + √

α−). Consider the approxi-
mations

vε1(x) =

⎧⎪⎨⎪⎩
−(

α−ε1
2 ) x2 + (

√
2α−ε1

− α−ε1
) x + √

2α−ε1
− α−ε1

2 − 1, x ∈ [−1, r−ε1

]
,

0, x ∈ (r−ε1
, r+ε1

),

(
α+ε1

2 ) x2 + (
√

2α+ε1
− α+ε1

) x − √
2α+ε1

+ α+ε1
2 + 1, x ∈ [

r+ε1
, 1

]
,

for ε1 > 0, where

r−ε1
:= r− + ε1, r+ε1

:= r+ − ε1, α−ε1
:= 2

(1 + r−ε1
)2

, α+ε1
:= 2

(1 − r+ε1
)2

.

It holds �
vε1
0 = (r−ε1

, r+ε1
) ⊂ �u

0 = (r−, r+) for ε1 ∈ (0, min{r+,−r−}) and the condition (35) is not satisfied (hence
we await that μω(vε1) > 0). As previously, y∗

ε2
is constructed as y∗

ε2
(x) = I(p∗)(x), x ∈ �, where I is a piecewise linear

nodal and continuous interpolation operator at the nodes {−1, r− − ε2, r− + ε2, r+ − ε2, r+ + ε2, 1} for small ε2 > 0.
These approximations y∗

ε2
differ from p∗ only locally in the set (r− − ε2, r− + ε2) ∪ (r+ − ε2, r+ + ε2). We have

�
y∗

ε2− = (−1, r− − ε2) ⊂ �u
− = (−1, r−)

�
y∗

ε2+ = (r+ + ε2, 1) ⊂ �u
+ = (r+, 1)

for ε2 ∈ (0, min{−r−, r+})

and the condition (36) is not satisfied (hence μ∗
ω(y∗

ε2
) may be positive).

In the tests, we set (cf. [4])

α− = α+ = 8.
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Fig. 3 Example 2 for α− = α+ = 8 and approximations vε1 and y∗
ε2

generated by ε1 = ε2 = 0.1: the exact solution u and
its approximation vε1 (top left), the exact flux p∗ and its approximation y∗

ε2
(top right), quadratic measures 1

2 ||∇(u − vε1)||2
and 1

2 ||p∗ − y∗
ε2

||2 (bottom left), nonlinear measures μω(vε1) and μ∗
ω(y∗

ε2
) (bottom right).

and this choice implies r− = −0, 5, r+ = 0.5, and J (u) = 5 1
3 . The approximations vε1 , y

∗
ε2

are computed for ε1, ε2 =
2−i/10, i = 0, 1, ..., 4. Table 4 presents results related to the primal error identity (37). The quadratic part of the primal
error measure dominates over the nonlinear part for small values of ε1. This follows from the fact that the quadratic part of
error is globally distributed over � and the nonlinear part μω(vε1) is distributed in a relatively small subdomain

�u
0 \ �

vε1
0 = (−0.5,−0.5 + ε1) ∪ (0.5 − ε1, 0.5).

Table 5 reports on terms in the dual error identity (38) for all approximations y∗
ε2

. Again, both quadratic and nonlinear parts
converge. Since y∗

ε2
and p∗

ε2
differ only locally, none of the error parts dominates. The nonlinear part μ∗

ω(y∗
ε2
) is supported

in the set

(�u
− \ �

y∗
ε2− ) ∪ (�u

+ \ �
y∗

ε2+ ) = (0.5 − ε2, 0.5) ∪ (0.5, 0.5 + ε2)

and tends to zero if ε2 → 0.
Table 6 reports on terms in the primal-dual identity (39), where the computable part ϒ is given by (40).
For illustration, some terms are visualized in Fig. 3 for in the case of approximations vε1 and y∗

ε2
generated by

ε1 = ε2 = 0.1.

5.3 Example 3: the classical obstacle problem in 2D

We consider a 2D example from [17]. Here, � = (−1, 1)2, A = I, φ = 0, ψ = +∞. For

f (ρ) =
{

−16ρ2 + 8R2 if ρ > R ∈ [0, 1),
−8(R4 + R2) + 8R2ρ2 if ρ ≤ R,
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Table 4 Terms in the primal error identity computed for approximations vε1 of Example 2.

ε1
1
2‖∇(u − vε1)‖2 μω(vε1) M(u, vε1) J (vε1) − J (u) J (vε1) κ(vε) [%]

1/5 2.18e-01 8.72e-02 3.05e-01 3.05e-01 5.638095 28.60

1/10 7.41e-02 1.49e-02 8.89e-02 8.89e-02 5.422222 16.71

1/20 2.20e-02 2.22e-03 2.43e-02 2.42e-02 5.357576 9.14

1/40 6.05e-03 3.06e-04 6.35e-03 6.35e-03 5.339682 4.82

1/80 1.59e-03 4.06e-05 1.63e-03 1.63e-03 5.334959 2.50

Table 5 Terms in the dual error identity computed for approximations y∗
ε2

of Example 2.

ε2
1
2‖p∗ − y∗

ε2
‖2 μ∗

ω(y∗
ε2
) M(p∗, y∗

ε2
) I ∗(p∗) − I ∗(y∗

ε2
) I ∗(p∗) κ(y∗

ε2
) [%]

1/5 8.53e-02 8.53e-02 1.71e-01 1.71e-01 5.162666 50.00

1/10 1.07e-02 1.07e-02 2.13e-02 2.13e-02 5.312000 50.00

1/20 1.33e-03 1.33e-03 2.67e-03 2.67e-03 5.330666 50.00

1/40 1.67e-04 1.67e-04 3.33e-04 3.34e-04 5.333000 50.00

1/80 2.08e-05 2.08e-05 4.17e-05 4.19e-05 5.333291 50.00

Table 6 Terms in the primal-dual error identity computed for approximations vε1 and y∗
ε2

of Example 2. Here, M(vε1 , y
∗
ε2

) denotes
M({u, p∗}, {vε1 , y

∗
ε2

}).

ε1 ε2
1
2 ||∇vε1 − y∗

ε2
||2 ϒ(vε1 , y

∗
ε2
) M(vε1 , y

∗
ε2
) J (vε1) − I ∗(y∗

ε2
) κ(vε1 , y

∗
ε2
)[%]

1/5 1/5 1.27e-01 3.48e-01 4.75e-01 4.76e-01 73.26

1/10 1/5 5.96e-02 2.00e-01 2.60e-01 2.60e-01 77.05

1/10 1/10 5.10e-02 5.93e-02 1.10e-01 1.10e-01 53.76

1/20 1/10 1.58e-02 2.98e-02 4.56e-02 4.56e-02 65.28

1/20 1/20 1.81e-02 8.82e-03 2.69e-02 2.69e-02 32.76

1/40 1/20 4.93e-03 4.08e-03 9.02e-03 9.02e-03 45.27

1/40 1/40 5.47e-03 1.21e-03 6.68e-03 6.69e-03 18.10

1/80 1/40 1.42e-03 5.35e-04 1.96e-03 1.96e-03 27.33

1/80 1/80 1.51e-03 1.59e-04 1.67e-03 1.67e-03 9.51

where (ρ, θ) are the polar coordinates, the exact solution is

u(ρ) = max{ρ2 − R2, 0}.

The lower coincidence set reads �u
− = {ρ : ρ < R} and the corresponding energy is given by the relation (see [14])

J (u) = 192

(
12

35
− 28R2

45
+ R4

3

)
− 32R2

(
28

45
− 4R2

3
+ R4

)
+ 2

3
πR8.

In all tests, we take the exact solution u with R = 0.6 (then J (u) ≈ 28.019193). We consider three kinds of approximations
v ∈ K converging to the exact minimizer u.
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5.3.1

The first kind approximations are defined by the relation

vε1 := ṽR+ε1,R+2ε1(ρ),

where ε1 > 0 is a small positive parameter,

ṽr1,r2(ρ) :=

⎧⎪⎨⎪⎩
0, if ρ ≤ r1

u − u(r1) r2−ρ
r2−r1

, if r1 ≤ ρ ≤ r2

u, if ρ ≥ r2

,

and R ≤ r1 ≤ r2 < 1. In this case, �u
− ⊂ �

vε1− and the condition (16) implies that the nonlinear measure μφψ(vε1) is zero.
Table 7 reports on terms in the primal error identity (18). Here, the nonlinear measure μφψ(vε1) is indeed zero and only
the quadratic measure 1

2‖∇(u − vε1)‖2 contributes to the error measure. Fig. 4 displays the approximation vε1 for ε1 = 1/8
and the densities of the nonlinear and the quadratic measures. The positive density of the quadratic measure is localized in
the annulus of radii R + ε1 and R + 2ε1.

5.3.2

The second kind approximations are defined by the relation

vε1 := u + ε1 w,

Fig. 4 Example 3: the first kind approximation vε1 for ε1 = 1/8 (left) and densities of the nonlinear measure μφψ(vε1)
(middle) and of the quadratic measure 1

2 ‖∇(u − vε1)‖2 (right). Densities are displayed in a log-100 scale.

Fig. 5 Example 3: the second kind approximation vε1 for ε1 = 1/8 (left) and densities of the nonlinear measures
μφψ(vε1) (middle) and of the quadratic measures 1

2 ‖∇(u − vε1)‖2 (right). Densities are displayed in a log-100 scale.
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Fig. 6 Example 3: the third kind approximations uh (left column) for various h and their corresponding nonlinear
measures μφψ (uh) (middle column) and quadratic measures 1

2 ‖∇(u − uh)‖2 (right column). Densities are displayed in a
log-100 scale.
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Table 7 Terms in the primal error identity computed for the first kind approximations vε1 of Example 3.

ε1
1
2‖∇(u − vε1)‖2 μφψ(vε1) M(u, vε1) J (vε1) − J (u) J (vε1) κ(vε) [%]

1/4 4.59e+00 0 4.59e+00 4.59e+00 32.604407 0.00

1/8 3.32e-02 0 3.32e-02 3.32e-02 28.051920 0.00

1/16 3.05e-03 0 3.05e-03 3.06e-03 28.021814 0.00

Table 8 Terms in the primal error identity computed for the second kind approximations vε1 of Example 3.

ε1
1
2‖∇(u − vε1)‖2 μφψ(vε1) M(u, vε1) J (vε1) − J (u) J (vε1) κ(vε) [%]

1/4 2.43e+00 7.62e-01 3.19e+00 3.19e+00 31.210070 23.89

1/8 6.07e-01 3.81e-01 9.88e-01 9.88e-01 29.007178 38.56

1/16 1.52e-01 1.91e-01 3.42e-01 3.42e-01 28.361163 55.66

1/32 3.80e-02 9.53e-02 1.33e-01 1.33e-01 28.152013 71.52

Table 9 Terms in the dual error identity computed for approximations y∗
ε2

of Example 3.

ε2
1
2‖p∗ − y∗

ε2
‖2 μ∗

φψ(y∗
ε2
) M(p∗, y∗

ε2
) I ∗(p∗) − I ∗(y∗

ε2
) I ∗(p∗) κ(y∗

ε2
) [%]

1/4 2.08e-02 2.60e-01 2.80e-01 2.80e-01 27.738317 92.57

1/8 5.21e-03 1.30e-01 1.35e-01 1.35e-01 27.883746 96.14

1/16 1.30e-03 6.49e-02 6.62e-02 6.62e-02 27.952554 98.03

Table 10 Terms in the primal-dual error identity computed for the second kind approximations vε1 and approximations y∗
ε2

of Example
3. Here, M(vε1 , y

∗
ε2

) denotes M({u, p∗}, {vε1 , y
∗
ε2

}).

ε1 ε2
1
2 ||∇vε1 − y∗

ε2
||2 ϒ(vε1 , y

∗
ε2
) M(vε1 , y

∗
ε2
) J (vε1) − I ∗(y∗

ε2
) κ(vε1 , y

∗
ε2
)[%]

1/4 1/4 2.40e+00 1.08e+00 3.47e+00 3.47e+00 31.00

1/8 1/4 6.01e-01 6.68e-01 1.27e+00 1.27e+00 52.64

1/8 1/8 5.99e-01 5.25e-01 1.12e+00 1.12e+00 46.69

1/16 1/8 1.50e-01 3.27e-01 4.77e-01 4.77e-01 68.53

1/16 1/16 1.50e-01 2.59e-01 4.09e-01 4.09e-01 63.36

Table 11 Terms in the primal error identity computed for the third kind (fem) approximations uh of Example 3.

h 1
2‖∇(u − uh)‖2 μφψ(uh) M(u, uh) J (uh) − J (u) J (uh) κ(uh) [%]

1/4 6.38e+00 6.66e-03 6.39e+00 6.39e+00 34.410421 0.10

1/8 5.43e-01 6.71e-04 5.43e-01 5.43e-01 28.561970 0.12

1/16 6.43e-02 8.60e-05 6.44e-02 6.44e-02 28.083185 0.13

1/32 1.08e-02 7.30e-06 1.08e-02 1.09e-02 28.029611 0.07
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where ε1 > 0 is a small positive parameter,

w(ρ, θ) :=

⎧⎪⎨⎪⎩
1, if ρ ≤ r ∈ (0, R)
1 − ρ−r

r̃(θ)−r
, if r ≤ ρ ≤ r̃(θ)

0, if ρ ≥ r̃(θ)
,

and r̃(θ) := r + (R − r)( 2+cos(kθ)
4 ) for some k ∈ Z. This construction ensures that vε1 ≥ u in � and �

vε1− ⊂ �u
− for any

choice of ε1 > 0. For the testing, we consider r = 0.5 and k = 10. Table 3 reports on terms in the primal error identity
(18). Here, the nonlinear measure dominates over the quadratic measure for smaller values of ε1. Fig. 5 displays the
approximation vε1 for ε1 = 1/8 and the densities of the nonlinear and the quadratic measures.

Remark 7. Table 8 leads to a conclusion important for numerical analysis. The corresponding sequence of approxima-
tions converges to the exact minimizer in the energy norm: vε1 → u ∈ K as ε1 → 0. In view of this fact, the nonlinear part
of the primal error measure must converge to zero

μφψ(vε1) → μφψ(u) = 0 as ε1 → 0.

At the same time, we see that the shape of the approximate lower coincidence set �
vε1− depends on R, r, k, but it does not

depend on ε1. Therefore, �
vε1− never approximates the exact lower coincidence set �u

− for any choice of ε1! In other words,
approximations of the free boundary produced by a minimizing sequence may be arbitrary coarse.

In addition, we define certain dual approximations y∗
ε2

. Then, the dual and primal-dual estimates can be also evaluated.
In the simplest case, we set

y∗
ε2

= p∗ + ε2z, z(ρ) := −(1/4)∇ρ2, ε2 > 0.

Since divz = −1 in �, the function y∗
ε2

satisfies the equilibrium constrain (41) for any ε2 > 0. Tables 9 and 10 report on
terms in the dual error (19) and the primal-dual identities (21) for some selected approximations.

5.3.3

The third kind approximations uh are provided by the finite element method (FEM) as piecewise bilinear and continuous
functions (known as Q1 elements). Here, the square domain � is subdivided in n × n square elements with the length h

(therefore, h = 2/n). For a given h, the approximation uh is computed by the method discussed in [13]. Table 11 reports on
terms in the primal error identity (18). Here, the nonlinear measure is nonzero but significantly smaller than the quadratic
measure. Fig. 6 displays approximation uh (left column) and their corresponding nonlinear measures (middle column) and
quadratic measures (right column).

Remark 8. The Matlab code generating all computational results is available at http://www.mathworks.
com/matlabcentral/fileexchange/63817.
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