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We present the composition operator, already known from probability, possibility, evidence 
and valuation-based systems theories, for credal sets. We prove that the proposed 
definition preserves all the properties enabling us to design compositional models in a 
way analogous to those in the above-mentioned theories. A special kind of compositional 
models, the so-called perfect sequences of credal sets, is studied in more detail and (among 
others) its relationship to perfect sequences of probability distributions is revealed. The 
theoretical results are illustrated by numerous simple examples.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In the late 1990s, a new approach to efficient representation of multidimensional probability distributions was introduced 
with the aim to be an alternative to Graphical Markov Modelling. This approach is based on a simple idea: a multidi-
mensional distribution is composed from a system of low-dimensional distributions by repetitive application of a special 
composition operator, which is also the reason why such models are called compositional models.

Later, these compositional models were also introduced in possibility theory [17,18] (here the models are parameterised 
by a continuous t-norm), and almost ten years ago in evidence theory as well [8,9]. In all these frameworks, the original 
idea is kept, but there exist some slight differences among these frameworks.

In this paper we present a composition operator for credal sets that fixes an issue known about the previously proposed 
operator [20]. The primary goal of this paper is to show that the revised composition operator keeps the basic properties of 
its counterparts in other frameworks, and therefore it enables us to introduce compositional models for multidimensional 
credal sets, as (to a certain extent) already suggested in [21].

This paper is organised as follows. In Section 2 we summarise the basic concepts and notation. The definition of the 
operator of composition is presented in Section 3, which is also devoted to its basic properties and a few illustrative 
examples. In Section 4 we focus on perfect sequences of credal sets and their properties.

2. Basic concepts and notation

In this Section we will briefly recall basic concepts and notation necessary for understanding the paper.
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Table 1
Credal set describing G and W in Example 1.

M(GW ) P 1 P 2 P 3 P 4

W 0 1 0 1 0 1 0 1

G = 0 0.18 0.27 0.12 0.18 0.09 0.36 0.06 0.24
G = 1 0.44 0.11 0.56 0.14 0.33 0.22 0.42 0.28

Table 2
Marginal credal set describing G in Example 1.

M(G) P 1 P 2 P 3 P 4

G = 0 0.45 0.3 0.45 0.3
G = 1 0.55 0.7 0.55 0.7

2.1. Variables and distributions

For an index set N = {1, 2, . . . , n}, let {Xi}i∈N be a system of variables, each Xi having its values in a finite set Xi ; by 
XN = X1 × X2 × . . . × Xn we denote the Cartesian product of these sets.

In this paper we will deal with groups of variables on the Cartesian product’s subspaces. Let us note that, throughout 
the paper, XK will denote a group of variables {Xi}i∈K with values in XK =×i∈K Xi .

Any group of variables XK can be described by a probability distribution (sometimes also called probability (mass) function)

P : XK −→ [0,1],
such that∑

xK ∈XK

P (xK ) = 1.

Having two probability distributions P1 and P2 of XK , we say that P1 is absolutely continuous with respect to P2 (and 
denote P1 � P2) if, for any xK ∈ XK ,

P2(xK ) = 0 =⇒ P1(xK ) = 0.

This concept plays an important role in the definition of the composition operator.

2.2. Credal sets

A credal set M(XK ) describing a group of variables XK is usually defined as a closed convex set of probability measures 
describing the values of these variables. In order to simplify the expression of operations with credal sets, it is often 
considered ([14]) that a credal set is the set of probability distributions associated to the probability measures in it. The 
reason is quite simple — to work with point functions is usually more convenient than to work with set functions.

Under such considerations, a credal set can be expressed as a convex hull (denoted by CH) of its extreme distributions 
(ext)

M(XK ) = CH{ext(M(XK))}.
In this paper we will consider only credal sets with a finite number of extreme points.

Consider a credal set M(XK ). For each L ⊂ K , its marginal credal set M(XL) is obtained by element-wise marginalisation, 
i.e.,

M(XL) = CH{P↓L : P ∈ ext(M(XK ))}, (1)

where P↓L denotes the marginal distribution of P on XL .
Besides marginalisation, we will also need the opposite operation, called vacuous extension. Vacuous extension of a credal 

set M(XL) describing XL to a credal set M(XK ) = M(XL)
↑K (L ⊂ K ) is the maximal credal set describing XK such that 

M(XK )↓L =M(XL).

Example 1. Let M(G, W ) be a credal set describing binary variables G and W as suggested by Table 1 (their interpretation 
can be found in Section 4.5). The marginal credal set describing G is then contained in Table 2. Let us note that the first 
and third marginals coincide (as do the remaining two). One can see that its vacuous extension M(G)↑GW (described by 
Table 3) is much bigger than M(G, W ). More precisely, any extreme point of M(G, W ) lies inside M(G)↑GW .

To show that M(G)↑GW is maximal, let us suppose that there exists a credal set M′(GW ) containing M(G)↑GW and 
M(G) = M′(G). Then M′(GW ) must contain at least one p = (p1, p2, p3, p4) /∈ M(X1 X2). Nevertheless, it means that 
either p1 + p2 < 0.3 or p1 + p2 > 0.45 (from which analogous inequalities for p3 + p4 follow). However, p↓{1} /∈M(G) and 
therefore M(G)↑GW is maximal. �
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Table 3
Vacuous extension of M(G) – M(G)↑GW in Example 1.

M(GW ) P 1 P 2 P 3 P 4

W 0 1 0 1 0 1 0 1

G = 0 0.45 0 0 0.45 0.45 0 0 0.45
G = 1 0.55 0 0.55 0 0 0.55 0 0.55

P 5 P 6 P 7 P 8

W 0 1 0 1 0 1 0 1

G = 0 0.3 0 0 0.3 0.3 0 0 0.3
G = 1 0.7 0 0.7 0 0 0.7 0 0.7

Having two credal sets M1 and M2 describing XK and XL , respectively (assuming that K , L ⊆ N), we say that these 
credal sets are projective if their marginals describing common variables coincide, i.e., if

M1(XK∩L) = M2(XK∩L).

Let us note that if K and L are disjoint, then M1 and M2 are always projective, as M1(X∅) =M2(X∅) ≡ 1.

2.3. Independence

Among the numerous definitions of independence for credal sets studied in [3], two of them appear as the most appro-
priate to be applied in real situations: epistemic independence and strong independence.

Epistemic independence can be intuitively expressed as follows: two variables are epistemically independent if information 
about one of them cannot change our state of knowledge about the other. It is a very natural definition, often used in a 
precise probability setting to explain the concept of independence; moreover, it possesses a clear behavioural interpretation. 
However, as noticed in [14], it gives rise to very complex problems in inference.

Strong independence, on the other hand, is the most usual concept in credal networks, and therefore it seems to be the 
most appropriate for our multidimensional models.

We say that (groups of) variables XK and XL (K and L disjoint) are strongly independent with respect to M(XK∪L) iff (in 
terms of probability distributions)

M(XK∪L) = CH{P1 · P2 : P1 ∈ M(XK ), P2 ∈ M(XL)}.

2.4. Conditional independence

Again, there exist several generalisations of this notion to conditional independence, as one can see in [14]. The following 
definition (in [14], called conditional independence in distribution), is suggested by the authors as the most appropriate for 
the marginal problem; hence it seems to be a suitable concept in our case as well, since the operator of composition can 
also be used as a tool for solving the marginal problem, as shown (in the framework of possibility theory) e.g., in [18].

Given three groups of variables XK , XL and XM (K , L, M being mutually disjoint subsets of N such that K and L are 
nonempty), we say that XK and XL are conditionally independent given XM under global set M(XK∪L∪M ) (to simplify the 
notation, we will denote this relationship by K ⊥⊥ L|M) iff

M(XK∪L∪M) = CH{(P1 · P2)/P
↓M

1 : P1 ∈ M(XK∪M), P2 ∈ M(XL∪M), P↓M
1 = P↓M

2 } .

This definition is a generalisation of stochastic conditional independence: if M(XK∪L∪M ) is a singleton, then M(XK∪M)

and M(XL∪M) are also (projective) singletons and the definition reduces to the definition of stochastic conditional indepen-
dence.

It has been proven in [14] that this independence concept satisfies the so-called semigraphoid properties [11], analogous 
to stochastic conditional independence, and it is the reason it is also suitable for our models.

The other two concepts, called conditional independence on decomposition and causal irrelevance, respectively, are stronger 
than the definition introduced above. Adopting any of these concepts would substantially influence the properties of com-
positional models (or, at least, their relation to conditional independence). Furthermore, none of these concepts satisfies the 
semigraphoid properties. The former fails contraction, while the latter is not symmetric (for more details see [14]).

3. Composition operator

In this section we will introduce the definition of composition operator for credal sets. The concept of the composition 
operator is presented first in a precise probability framework, as it seems to be useful for its better understanding.



362 J. Vejnarová / International Journal of Approximate Reasoning 90 (2017) 359–373
Table 4
Two marginal credal sets describing variables R and T – 
Example 2.

M1(R) P 1
1 P 2

1

R = 0 0.2 0.5
R = 1 0.8 0.5

M2(T ) P 1
2 P 2

2

T = 0 0.5 0.8
T = 1 0.5 0.2

3.1. Composition operator of probability distributions

Let us recall the definition of composition of two probability distributions [5]. Consider two index sets K , L ⊂ N . We do 
not put any restrictions on K and L; they may, but need not, be disjoint, and one may be a subset of the other. Let P1 and 
P2 be two probability distributions of (groups of) variables XK and XL ; then

(P1 � P2)(XK∪L) = P1(XK ) · P2(XL)

P2(XK∩L)
, (2)

whenever P1(XK∩L) � P2(XK∩L); otherwise, it remains undefined.
It is a specific property of composition operator for probability distributions — the operator is always defined in other 

settings [18,9]. In Section 3.5 we shall see that the credal sets framework is not an exception, either.
To make the concept clearer, let us list the results of its application in a few basic situations:

1. If K ∩ L = ∅, then (P1 � P2)(XK∪L) = P1(XK ) · P2(XL);
2. If K = L, then (P1 � P2)(XK∪L) = P1(XK );
3. (P1 � P2)(XK∪L) �= (P2 � P1)(XK∪L) in general; and
4. (P1 � P2)(XK∪L) = (P2 � P1)(XK∪L) ⇐⇒ P1(XK∩L) = P2(XK∩L).

Analogous results for credal sets will be proven/demonstrated by examples in Sections 3.3 and 3.4, respectively.

3.2. Definition

Let M1 and M2 be credal sets describing XK and XL , respectively. Our goal is to define a new credal set, denoted by 
M1 �M2, which will be describing XK∪L and will contain all of the information contained in M1 and, as much as possible, 
in M2. The required properties are met by Definition 1, as we shall prove in Section 3.4.

Definition 1. For two credal sets M1 and M2 describing XK and XL , their composition M1 � M2 is defined as a convex 
hull of probability distributions P obtained as follows. For each pair of distributions P1 ∈ M1(XK ) and P2 ∈ M2(XL) such 
that P↓K∩L

2 ∈ argmin{Q 2 ∈M2(XK∩L) : d(Q 2, P
↓K∩L
1 ), the distribution P is obtained by one of the following rules:

[a ] If P↓K∩L
1 � P↓K∩L

2

P (XK∪L) = P1(XK ) · P2(XL)

P↓K∩L
2 (XK∩L)

.

[b ] Otherwise

P (XK∪L) ∈ ext{P↑K∪L
1 (XK )}.

Function d used in this definition is a suitable distance function (e.g., the Kullback–Leibler divergence, total variation or 
another f -divergence [16]). It should be noted that most of the important results presented in this paper are not affected 
by a specific choice of the distance function, as they are obtained for (at least) projective credal sets.

Application of Definition 1 to a few simple examples (with the goal to clarify the notion) will be the topic of the next 
subsection.

3.3. Examples

Let us now illustrate the application of the operator of composition and its properties in three examples. The first one 
shows what happens when K ∩ L = ∅.

Example 2. Let M1(R) and M2(T ) be two credal sets describing R and T , respectively, with the values shown in Table 4
(interpretation of both R and T can again be found in Section 4.5).

M1 � M2 is obtained via [a] in Definition 1 and its values are contained in Table 5. One can easily see that both 
(M1 �M2)(R) =M1(R) and (M1 �M2)(T ) = M2(T ) hold true. �
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Table 5
(M1 �M2)(RT ) – Example 2.

(M1 �M2)(RT ) P 1 P 2 P 3 P 4

T 0 1 0 1 0 1 0 1

R = 0 0.1 0.1 0.16 0.04 0.25 0.25 0.4 0.4
R = 1 0.4 0.4 0.64 0.16 0.25 0.25 0.1 0.1

Table 6
Credal set M1(X1 X2) – Example 3.

M1(X1 X2) P 1
1 P 2

1 P 3
1 P 4

1

X2 0 1 0 1 0 1 0 1

X1 = 0 0.2 0.8 0.1 0.4 0.25 0.25 0 0
X1 = 1 0 0 0.1 0.4 0.25 0.25 0.5 0.5

Table 7
Credal set M2(X2 X3) – Example 3.

M2(X2 X3) P 1 P 2 P 3 P 4

X3 0 1 0 1 0 1 0 1

X2 = 0 0 0.3 0.2 0.1 0.5 0 0.2 0.3
X2 = 1 0 0.7 0.4 0.3 0.5 0 0.2 0.3

Table 8
Marginal credal sets of non-projective credal sets – Example 3.

M1(X2) P 1
1 P 2

1

X2 = 0 0.2 0.5
X2 = 1 0.8 0.5

M2(X2) P 1
2 P 2

2

X2 = 0 0.3 0.5
X2 = 1 0.7 0.5

Table 9
Credal set (M1 �M2)(X1 X2 X3) – Example 3.

(M1 �M2)(X1 X2 X3 P 1 P 2 P 3 P 4

X3 0 1 0 1 0 1 0 1

X1 = 0 X2 = 0 0 0.3 0.2 0.1 0 0.1 0.07 0.03
X2 = 1 0 0.7 0.4 0.3 0 0.3 0.17 0.13

X1 = 1 X2 = 0 0 0 0 0 0 0.2 0.13 0.07
X2 = 1 0 0 0 0 0 0.4 0.23 0.17

P 5 P 6 P 7 P 8

X3 0 1 0 1 0 1 0 1

X1 = 0 X2 = 0 0.25 0 0.1 0.15 0 0 0 0
X2 = 1 0.25 0 0.1 0.15 0 0 0 0

X1 = 1 X2 = 0 0.25 0 0.1 0.15 0.5 0 0.2 0.3
X2 = 1 0.25 0 0.1 0.15 0.5 0 0.2 0.3

P 9 P 10 P 11 P 12

X3 0 1 0 1 0 1 0 1

X1 = 0 X2 = 0 0 0.2 0.13 0.07 0 0.1 0.07 0.03
X2 = 1 0 0.8 0.46 0.34 0 0.4 0.23 0.17

X1 = 1 X2 = 0 0 0 0 0 0 0.1 0.07 0.03
X2 = 1 0 0 0 0 0 0.4 0.23 0.17

The next example illustrates application of Definition 1 to two credal sets that are not projective.

Example 3. Let M1(X1 X2) and M2(X2 X3) be two credal sets describing pairs of binary variables X1 X2 and X2 X3, respec-
tively. Their extreme points are contained in Tables 6 and 7.

These two credal sets are not projective, as can be seen from Table 8 containing both M1(X2) and M2(X2). Therefore 
M2(X2) ⊂M1(X2).

Definition 1 in this case leads (using total variation) to (M1 �M2)(X1 X2 X3) (see Table 9), while (M2 �M1)(X1 X2 X3)

is a smaller credal set, being a convex hull of distributions contained in Table 10. �
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Table 10
Credal set (M2 �M1)(X1 X2 X3) – Example 3.

(M2 �M1)(X1 X2 X3) P 1 P 2 P 3 P 4

X3 0 1 0 1 0 1 0 1

X1 = 0 X2 = 0 0 0.3 0.2 0.1 0 0.1 0.07 0.03
X2 = 1 0 0.7 0.4 0.3 0 0.3 0.17 0.13

X1 = 1 X2 = 0 0 0 0 0 0 0.2 0.13 0.07
X2 = 1 0 0 0 0 0 0.4 0.23 0.17

P 5 P 6 P 7 P 8

X3 0 1 0 1 0 1 0 1

X1 = 0 X2 = 0 0.25 0 0.1 0.15 0 0 0 0
X2 = 1 0.25 0 0.1 0.15 0 0 0 0

X1 = 1 X2 = 0 0.25 0 0.1 0.15 0.5 0 0.2 0.3
X2 = 1 0.25 0 0.1 0.15 0.5 0 0.2 0.3

Table 11
Marginal credal sets M1(X1) and M2(X2) – Example 4.

M1(X1) P 1
1 P 2

1

X1 = 0 0.2 0.7
X1 = 1 0.8 0.3

M2(X2) P 1
2

X2 = 0 0.5
X2 = 1 0.5

Table 12
Credal set M3(X1 X2) – Example 4.

M3(X1 X2) P 1
3 P 2

3 P 3
3 P 4

3

X2 0 1 0 1 0 1 0 1

X1 = 0 1 0 0 1 0 0 0 0
X1 = 1 0 0 0 0 1 0 0 1

Table 13
(M1 �M2)(X1 X2) (and also ((M1 �M2) �M3)(X1 X2)) 
– Example 4.

(M1 �M2)(X1 X2) P 1 P 2

X2 0 1 0 1

X1 = 0 0.1 0.1 0.35 0.35
X1 = 1 0.4 0.4 0.15 0.15

Table 14
(M2 �M3)(X1 X2) – Example 4.

(M2 �M3)(X1 X2) P 1 P 2 P 3 P 4

X2 0 1 0 1 0 1 0 1

X1 = 0 0.5 0.5 0.5 0 0 0.5 0 0
X1 = 1 0 0 0 0.5 0.5 0 0.5 0.5

This difference deserves an explanation. M2 �M1 is smaller (more precise) than M1 �M2, which corresponds to the 
idea that we want M2 � M1 to keep all the information contained in M2. Therefore, we disregard those distributions 
from M1 that do not correspond to any from M2, although these distributions are taken into account when composing 
M1 �M2.

This is an example of a typical property of the operator of composition — it is not commutative. Neither is it associative, 
as can be seen from the following simple example.

Example 4. Let M1(X1) and M2(X2) be two credal sets describing X1 and X2, respectively, with the values shown in 
Table 11, and M3(X1 X2) be another credal set describing X1 X2. Its values can be found in Table 12.

Then (M1 � M2)(X1 X2) (Table 13) is obtained via option [a] in Definition 1 and ((M1 � M2) � M3)(X1 X2) = (M1 �
M2)(X1 X2) is true according to Property 2 in Lemma 1.

On the other hand, (M2 �M3)(X1 X2) is composed via option [b] in Definition 1. The result is shown in Table 14. Now, 
computing (M1 � (M2 � M3))(X1 X2) we obtain, again via option [b] in Definition 1, a credal set with the distributions 
shown in Table 15. It evidently differs from ((M1 �M2) �M3)(X1 X2). �
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Table 15
(M1 � (M2 �M3))(X1 X2) – Example 4.

(M1 � (M2 �M3))(X1 X2) P 1 P 2 P 3 P 4

X2 0 1 0 1 0 1 0 1

X1 = 0 0.2 0 0.2 0 0 0.2 0 0.2
X1 = 1 0.8 0 0 0.8 0.8 0 0 0.8

P 5 P 6 P 7 P 8

X2 0 1 0 1 0 1 0 1

X1 = 0 0.7 0 0.7 0 0 0.7 0 0.7
X1 = 1 0.3 0 0 0.3 0.3 0 0 0.3

3.4. Basic properties

In the following Lemma we prove that the composition operator possesses basic properties required above.

Lemma 1. For two credal sets M1 and M2 describing XK and XL , respectively, the following properties hold true:

1. M1 �M2 is a credal set describing XK∪L .
2. (M1 �M2)(XK ) =M1(XK ).
3. M1 �M2 =M2 �M1 iff M1(XK∩L) =M2(XK∩L).

Proof.

1. To prove that M1 �M2 is a credal set describing XK∪L , it is sufficient to take into consideration that it is the convex 
hull of probability distributions on XK∪L , which is obvious from both [a] and [b] in Definition 1.

2. As marginalisation of a credal set is element-wise, it is sufficient to prove that, for any P ∈ (M1 �M2)(XK∪L), P↓K =
P1 ∈ M1(XK ) holds. In the case [a] it immediately follows from the results obtained for precise probabilities (see, e.g., 
[5]). In the case [b] it is obvious, as any P belongs to a vacuous extension of P1 ∈M1(XK ) to XK∪L .

3. First, let us assume that

(M1 �M2)(XK∪L) = (M2 �M1)(XK∪L).

Then also its marginals must be identical; in particular

(M1 �M2)(XK∩L) = (M2 �M1)(XK∩L).

Taking into account Assertion 2 of this Lemma we obtain

(M1 �M2)(XK∩L) =
(
((M1 �M2)(XK∪L))

↓K
)↓K∩L = ((M1 �M2)(XK ))↓K∩L

= (M1(XK ))↓K∩L = M1(XK∩L)

and similarly

(M2 �M1)(XK∩L) = M2(XK∩L),

from which the desired equality immediately follows.
Let us, on the other hand, suppose M1(XK∩L) = M2(XK∩L). In this case only option [a] in Definition 1 is applied, 
and for any distribution P in (M1 �M2)(XK∪L) there exist P1 ∈M1(XK ) and P2 ∈M2(XL) such that P↓K∩L

1 = P↓K∩L
2

and P = (P1 · P2)/P↓K∩L
2 . But simultaneously (due to projectivity) P = (P1 · P2)/P↓K∩L

1 , which is an element of (M2 �
M1)(XK∪L). Hence

(M1 �M2)(XK∪L) = (M2 �M1)(XK∪L),

as desired. �
3.5. Relationship to probabilistic case

As said in the Introduction, the operator of composition was originally introduced in (precise) probability theory. Never-
theless, any probability distribution may be viewed also as a singleton credal set (i.e., a credal set containing a single point). 
One would expect that the operator of composition we have introduced in this paper coincides with the probabilistic one if 
applied to a singleton credal set. And it is the case, as can be seen from the following Lemma.

Lemma 2. Let M1(XK ) and M2(XL) be two singleton credal sets (i.e., probability distributions) describing XK and XL , respectively, 
where M1(XK∩L) is absolutely continuous with respect to M2(XK∩L). Then (M1 �M2)(XK∪L) is also a singleton credal set.
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Table 16
Singleton credal sets M1(X1 X2) and M2(X2 X3) – Example 5.

M1(X1 X2) P1

X2 0 1

X1 = 0 0.25 0.25
X1 = 1 0.25 0.25

M2(X2 X3) P2

X3 0 1

X2 = 0 0.5 0.5
X2 = 1 0 0

Table 17
(M1 �M2)(X1 X2 X3) = M1(X1 X2)↑{1,2,3} – Example 5.

(M1 �M2)(X1 X2 X3) P 1 P 2 P 3 P 4

X3 0 1 0 1 0 1 0 1

X1 = 0 X2 = 0 0.25 0 0.25 0 0.25 0 0.25 0
X2 = 1 0 0.25 0 0.25 0 0.25 0 0.25

X1 = 1 X2 = 0 0 0.25 0 0.25 0.25 0 0.25 0
X2 = 1 0 0.25 0.25 0 0 0.25 0.25 0

P 5 P 6 P 7 P 8

X3 0 1 0 1 0 1 0 1

X1 = 0 X2 = 0 0.25 0 0.25 0 0.25 0 0.25 0
X2 = 1 0.25 0 0.25 0 0.25 0 0.25 0

X1 = 1 X2 = 0 0 0.25 0 0.25 0.25 0 0.25 0
X2 = 1 0 0.25 0.25 0 0 0.25 0.25 0

P 9 P 10 P 11 P 12

X3 0 1 0 1 0 1 0 1

X1 = 0 X2 = 0 0 0.25 0 0.25 0 0.25 0 0.25
X2 = 1 0 0.25 0 0.25 0 0.25 0 0.25

X1 = 1 X2 = 0 0 0.25 0 0.25 0.25 0 0.25 0
X2 = 1 0 0.25 0.25 0 0 0.25 0.25 0

P 13 P 14 P 15 P 16

X3 0 1 0 1 0 1 0 1

X1 = 0 X2 = 0 0 0.25 0 0.25 0 0.25 0 0.25
X2 = 1 0.25 0 0.25 0 0.25 0 0.25 0

X1 = 1 X2 = 0 0 0.25 0 0.25 0.25 0 0.25 0
X2 = 1 0 0.25 0.25 0 0 0.25 0.25 0

Proof. Let us suppose that M1 � M2 is not a singleton, i.e., it contains at least two different points. Due to the condition 
of absolute continuity, both these points can be expressed in the form

P i(XK∪L) = P i
1(XK ) · P i

2(XL)/(P i
2)

↓K∩L(XK∩L),

i = 1, 2. As P 1(XK∪L) �= P 2(XK∪L), it is evident that either P 1
1(XK ) �= P 2

1(XK ) or P 1
2(XL)/(P 1

2)↓K∩L(XK∩L) �= P 2
2(XL)/

(P 2
2)↓K∩L(XK∩L) (and therefore also P 1

2(XL) �= P 2
2(XL)), or both. In any case, it is a contradiction as both credal sets M1(XK )

and M2(XL) are singletons. �
The reader should, however, realise that the definition of the operator of composition for singleton credal sets is not 

completely equivalent to the definition of composition for probabilistic distributions. They equal each other only in the case 
when the probabilistic version is defined. This is ensured in Lemma 2 by assuming absolute continuity. If it does not hold, 
the probabilistic operator is not defined, while its credal version introduced in this paper is always defined (analogous to 
an evidential operator of composition). Nevertheless, in this case, the result is not a singleton credal set. We shall illustrate 
this fact by a simple example.

Example 5. Let M1(X1 X2) and M2(X2 X3) be two singleton credal sets describing variables X1 X2 and X2 X3, respectively. 
Their values are shown in Table 16. Let us compute (M1 � M2)(X1 X2 X3). As M1(X2) = {[0.5, 0.5]}, while (M2(X2) =
{[1, 0]}), it is evident that M1 is not absolutely continuous with respect to M2. Therefore we have, via option [b] in 
Definition 1:

(M1 �M2)(X1 X2 X3) = M1(X1 X2)
↑{1,2,3}.

The extreme points of this credal set, which is evidently not a singleton, are described in Table 17.
Let us remark that (M2 � M1)(X1 X2 X3), in contrast to (M1 � M2)(X1 X2 X3), is a singleton credal set (see Table 18), 

because M2(X2) is absolutely continuous with respect to M1(X2). �
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Table 18
(M2 �M1)(X1 X2 X3) – Example 5.

(M2 �M1)(X1 X2 X3) X3 = 0 X3 = 1

X2 0 1 0 1

X1 = 0 0.25 0 0.25 0
X1 = 1 0.25 0 0.25 0

3.6. Relationship to strong independence

The following Theorem, proven in [20], expresses the relationship between strong independence and the operator of 
composition. It is, together with Lemma 1, the most important assertion enabling us to introduce multidimensional models.

Theorem 1. Let M be a credal set describing XK∪L with marginals M(XK ) and M(XL). Then

M(XK∪L) = (M↓K �M↓L)(XK∪L) (3)

iff

(K \ L) ⊥⊥ (L \ K )|(K ∩ L). (4)

Proof. Let us suppose that (3) holds. Since M1(XK ) and M2(XL) are projective, option [a] in Definition 1 is applied and 
therefore

M(XK∪L) = {(P1 · P2)/P
↓K∩L

2 : P1 ∈ M(XK ), P2 ∈ M(XL), P↓K∩L
1 = P↓K∩L

2 }).
Proving (4) means finding, for any P from M(XK∪L), a pair of projective distributions P1 and P2 from M(XK ) and M(XL), 
respectively, such that P = (P1 · P2)/P1

↓K∩L . But due to the condition of projectivity, M(XK∪L) consists of exactly this type 
of distributions.

Let, on the other hand, (4) be satisfied. Then any P from M(XK∪L) can be expressed as a conditional product of its 
marginals, namely

P = (P↓K · P↓K )/P↓K∩L,

P↓K ∈M(XK ) and P↓L ∈M(XL). Therefore,

M(XK∪L) = {(P↓K · P↓K )/P↓K∩L : P↓K ∈ M1(XK ), P↓L ∈ M2(XL))},
which concludes the proof. �
4. Compositional models

In this section we will consider repetitive application of the operator of composition with the goal to create a mul-
tidimensional model. Since the operator is neither commutative nor associative, we have to specify in which order the 
low-dimensional credal sets should be composed together. To make the formulae more transparent, we will omit parenthe-
ses in the case that the operator is to be applied from left to right, i.e., in what follows

M1 �M2 �M3 � . . . �Mn−1 �Mn = (. . . ((M1 �M2) �M3) � . . . �Mn−1) �Mn. (5)

Furthermore, we will always assume that Mi is a credal set describing XKi .

4.1. Perfect sequences

The reader familiar with probabilistic, possibilistic or evidential compositional models knows that one of the most im-
portant notions in this theory is that of the so-called perfect sequence, which will now also be introduced for credal sets.

Definition 2. A generating sequence of credal sets M1, M2, . . . , Mn is called perfect if

M1 �M2 = M2 �M1,

M1 �M2 �M3 = M3 � (M1 �M2),

...

M1 �M2 � . . . �Mn = Mn � (M1 � . . . �Mn−1).
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Table 19
M3(RT ) – Example 6.

M3(RT ) P 1
3 P 2

3 P 3
3 P 4

3

T 0 1 0 1 0 1 0 1

R = 0 0.2 0 0.2 0 0.5 0 0.5 0
R = 1 0.3 0.5 0.6 0.2 0 0.5 0.3 0.2

Table 20
Two marginals of credal set M3(RT ) – Example 6.

M3(R) P 1
1 P 2

1

R = 0 0.2 0.5
R = 1 0.8 0.5

M3(T ) P 1
2 P 2

2

T = 0 0.5 0.8
T = 1 0.5 0.2

It is evident that the necessary condition for perfectness is pairwise projectivity of low-dimensional credal sets. However, 
the following example demonstrates the fact that it need not be sufficient.

Example 6. Let M1(R) and M2(T ) be the same as in Example 2 and let M3(RT ) be defined by Table 19. It is evident 
that M1, M2 and M3 are pairwise projective, as the marginals of M3 contained in Table 20 coincide with M1(R) and 
M2(T ), respectively, and M1(R) and M2(T ) are trivially projective, as already mentioned above. But they do not form a 
perfect sequence because

(M1 �M2 �M3)(X1 X2) = (M1 �M2)(X1 X2),

which is equal to the convex hull of distributions in Table 5, while

(M3 � (M1 �M2))(X1 X2) = M3(X1 X3),

which is different. �
Therefore a stronger condition, expressed by the following assertion, must be fulfilled.

Lemma 3. A generating sequence M1, M2, . . . , Mn is perfect iff the pairs of credal sets M j and (M1 � . . . �M j−1) are projective, 
i.e., if

M j(XK j∩(K1∪...∪K j−1)) = (M1 � . . . �M j−1)(XK j∩(K1∪...∪K j−1)),

for all j = 2, 3, . . . , n.

Proof. This assertion is proved just by a multiple application of Assertion 3 of Lemma 1:

M1 �M2 = M2 �M1 ⇐⇒ M1(XK2∩K1) = M2(XK2∩K1),

M1 �M2 �M3 = M3 � (M1 �M2)

⇐⇒ (M1 �M2)(XK3∩(K1∪K2)) = M3(XK3∩(K1∪K2)),

...

M1 �M2 � . . . �MnMn � (M1 � . . . �Mn − 1)

⇐⇒ (M1 � . . . �Mn−1)(XKn∩(K1∪...∪Kn−1))

= Mn(XKn∩(K1∪...∪Kn−1)),

which finishes the proof. �
4.2. Properties of perfect sequences

From Definition 2 one can hardly see what the properties of the perfect sequences are; the most important among 
them is expressed by the following characterisation Theorem, which, hopefully, also reveals why we call these sequences 
perfect.
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Theorem 2. A generating sequence of credal sets M1, M2, . . . , Mn is perfect iff all the credal sets from this sequence are marginal 
to the composed credal set M1 �M2 � . . . �Mn:

(M1 �M2 � . . . �Mn)(XK j ) = M j(XK j ), (6)

for all j = 1, . . . , m.

Proof. The fact that all credal sets M j from a perfect sequence are marginals of (M1 � M2 � . . . � Mn) follows from the 
fact that (M1 � . . . �M j) is marginal to (M1 � . . . �Mn) (due to (ii) of Lemma 1) and M j is marginal to

M j � (M1 � . . . �M j−1) = M1 � . . . �M j.

Suppose now that, for all j = 1, . . . , n, M j are marginal credal sets to M1 � . . . � Mn . It means that all the credal sets 
from the sequence are pairwise projective, and that each M j is projective with any marginal credal set of M1 � . . . �Mn , 
and consequently also with M1 � . . . �M j−1. So we get that

M j(XK j∩(K1∪...∪K j−1)) = (M1 � . . . �M j−1)(XK j∩(K1∪...∪K j−1))

for all j = 2, . . . , n, which is equivalent, due to Lemma 3, to the fact that M1, M2, . . . , Mn is perfect. �
This result is quite close to Theorem 5 in [13], expressing the joint coherence of separately coherent conditional lower 

previsions. Condition (6) is, roughly speaking, substituted by the requirement of coherence of a marginal of the resulting 
model with the corresponding original coherent conditional lower prevision (for more details see [13]).

The following (almost trivial) assertion, which establishes a sufficient condition for perfectness, resembles assertions 
concerning decomposable models.

Theorem 3. Let a generating sequence of pairwise projective credal sets M1, M2, . . . , Mn be such that K1, K2, . . . , Kn meets the 
well-known running intersection property:

∀ j = 2,3, . . . ,n ∃�(1 ≤ � < j) such that K j ∩ (K1 ∪ . . . ∪ K j−1) ⊆ K�.

Then M1, M2, . . . , Mn is perfect.

Proof. Due to Lemma 3 it is sufficient to show that, for each j = 2, . . . , n credal set M j and the composed credal set 
M1 � . . . �M j−1 are projective. Let us prove it by induction.

For j = 2 the required projectivity is guaranteed by the fact that we assume pairwise projectivity of all M1, . . . , Mn . 
So we have to prove it for general j > 2 under the assumption that the assertion holds for j − 1, which means (due to 
Theorem 2) that all M1, M2, . . . , M j−1 are marginal to M1 � . . . � M j−1. Since we assume that K1, . . . , Kn meets the 
running intersection property, there exists � ∈ {1, 2, . . . j − 1} such that K j ∩ (K1 ∪ . . . ∪ K j−1) ⊆ K� . Therefore (M1 � . . . �
M j−1)(XK j∩(K1∪...∪K j−1)) and M�(XK j∩(K1∪...∪K j−1)) are the same marginals of M1 � . . . �M j−1 and therefore they have to 
be equal to each other:

(M1 � . . . �M j−1)(XK j∩(K1∪...∪K j−1)) = M�(XK j∩(K1∪...∪K j−1)).

However, we assume that M j and M� are projective and therefore also

(M1 � . . . �M j−1)(XK j∩(K1∪...∪K j−1)) = M j(XK j∩(K1∪...∪K j−1)),

as desired. �
It should be pointed out at this moment that the running intersection property of K1, K2, . . . , Kn is a sufficient condition 

which guarantees perfectness of a generating sequence of pairwise projective credal sets. By no means is this condition 
necessary, as will be shown in the following example.

Example 7. A simple example is given by two credal sets M1 and M2 from Example 6 describing X1 and X2, respectively, 
and the third credal set M̃3 = M1 � M2. Considering sequence M1, M2, M̃3, it is evident that K1 = {1}, K2 = {2}, K3 =
{1, 2} do not meet the running intersection property. And yet the sequence M1, M2, M̃3 is perfect because all the credal 
sets are marginal (or equal) to M1 �M2 �M3. Notice that if we chose, instead of M̃3, any other credal set M3 describing 
X1 X2 different from M̃3 = M1 � M2, e.g., that from Example 6, the generating sequence M1, M2, M3 would no longer 
be perfect. �

So we can see that perfectness of a sequence is not only a structural property connected with the properties of 
K1, K2, . . . , Kn; it also depends on specific values of the respective credal sets.

We can summarize, that properties of perfect sequences presented up to this point completely correspond to those 
possessed by analogous models not only in (precise) probability framework, but also in possibility and evidence theories.
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4.3. Perfect sequence as convex hull

In this subsection we will study the relationship between perfect sequences of credal sets and those of probability 
distribution. Before doing that, let us present a simple Lemma necessary for the proof of the main Theorem.

Lemma 4. Let M1 and M2 be two projective credal sets describing XK and XL , respectively. Then

{ext((M1 �M2)(XK ∪ XL))} (7)

⊆ {P1 � P2 : P1 ∈ ext(M1(XK )), P2 ∈ ext(M2(XL)), P↓K∩L
1 = P↓K∩L

2 }.

Proof. By Definition 1, (M1 � M2)(XK∪L) is a convex hull of the set of probability distributions from the set in the right 
hand side of (7), taking into account the definition of composition operator for precise probabilities. Therefore its extreme 
points must also belong to this set. �

The equality need not hold in (7), as can be seen from the following simple example.

Example 8. Let M1(R) and M2(T ) be two credal sets describing R and T , respectively, as defined in Example 2. One can 
easily see that P 3 is not an extreme point of the credal set defined as a convex hull of distributions from Table 5 because it 
can be obtained as a linear combination of P 1 and P 4. �
Theorem 4. Let M1, M2, . . . , Mm be a perfect sequence of credal sets such that each Mi, i = 1, . . .m, is the convex hull of its 
extreme points, i.e.,

Mi(XKi ) = CH{Pi : Pi ∈ ext(Mi(XKi ))}.
Then

M1 �M2 � · · · �Mm

is a convex hull of all

P1 � P2 � . . . � Pm

such that each Pi ∈ ext(Mi(XKi )) and P1, P2, . . . , Pm form a perfect sequence.

Proof. Let us prove the assertion by induction. For m = 2 it is obvious as it follows directly from Definition 1. Let us suppose 
that

M1 �M2 � · · · �M j

= CH{P1 � P2 � . . . � P j, Pi ∈ ext(Mi), P1, P2, . . . , P j is perfect}
for 2 ≤ j < m and prove that

M1 �M2 � · · · �M j+1 (8)

= CH{P1 � P2 � . . . � P j+1, Pi ∈ ext(Mi), P1, P2, . . . , P j+1 is perfect}
holds as well.

By convention (5)

M1 �M2 � . . . �M j �M j+1 = (M1 �M2 � · · · �M j) �M j+1

and since M1 �M2 � . . . �M j and M j+1 are projective, we can apply Definition 1 to these credal sets and obtain

(M1 �M2 � · · · �M j) �M j+1

= CH{Q j · P j+1

P
↓(K1∪···∪K j)∩K j+1
j+1

, Q j ∈ ext(M1 �M2 � · · · �M j),

P j+1 ∈ ext(M j+1), Q
↓(K1∪···∪K j)∩K j+1
j = P

↓(K1∪···∪K j)∩K j+1
j+1 }.

However, due to Lemma 4

Q j ∈ {P1 � P2 � . . . � P j, Pi ∈ ext(Mi), P1, P2, . . . , P j is perfect}.
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Table 21
Credal set M3(RT G).

M3(RT G) P 1
3 P 2

3 P 3
3

G 0 1 0 1 0 1

R = 0 T = 0 0 0.1 0 0.16 0 0.4
T = 1 0.1 0.3 0.01 0.03 0.075 0.025

R = 1 T = 0 0.05 0.05 0.32 0.32 0.2 0.2
T = 1 0.3 0.1 0.04 0.12 0.025 0.075

Let us denote by P∗
1, P∗

2, . . . , P∗
j a perfect sequence such that

Q j = P∗
1 � P∗

2 � . . . � P∗
j .

Then, due to Lemma 3 (applied to precise probability distributions) P∗
1, P∗

2, . . . , P∗
j , P j+1 form a perfect sequence. Therefore

M1 �M2 � · · · �M j+1

⊆ CH{P1 � P2 � . . . � P j+1, Pi ∈ ext(Mi), P1, P2, . . . , P j+1 is perfect}.
Let, on the other hand, P1, P2, . . . , P j+1 be a perfect sequence of distributions such that each Pi ∈ ext(Mi). Then

P1 � P2 � . . . � P j+1 ∈ M1 �M2 � · · · �M j+1,

and therefore also

CH{P1 � P2 � . . . � P j+1, P1, P2, . . . , P j+1 is perfect}
⊆ M1 �M2 � · · · �M j+1.

Therefore (8) is satisfied. �
Let us note, that an analogous result was obtained in the framework of possibility theory for product t-norm (for more 

details see [19]).

4.4. Inference from credal compositional models

Up to now, little work was done in the direction of inference on even (precise) probabilistic compositional models. Some 
preliminary results can be found in [2,6,7]. The situation is even more complicated in our models with inherent imprecision.

One can profit from Theorem 4 and make inference from perfect sequences of probability distributions, but still, no 
universal procedure exists. In a special case when the conditions of Theorem 3 are satisfied, local computations by Lauritzen 
and Spiegelhalter [12] for any of these perfect sequences can be applied. Finally a convex hull of the probabilities of interest 
must be constructed.

This approach is demonstrated in a small illustrative example, which is the content of the next subsection. Nevertheless, 
we know that it can hardly be used in practical situations and the need for an efficient computational procedure is obvious.

4.5. Illustrative example

Our example, simplified from [10], will describe relationships among events influencing the fact whether Joan goes for 
her regular evening walk or not. All the possible situations will be described with the help of the following four variables:

W — describes whether Joan goes for her evening walk;
R — corresponds to the evening weather conditions: if it rains or not;
G — describes one of Joan’s friends’ intention to come to pay her a visit;
T — expresses Joan’s attitude to the evening TV programme.

The overall model will be composed from some credal sets described in the preceding parts of this paper, more precisely 
from credal sets M1(R) and M2(T ) from Example 2, M4(G, W ) =M(G, W ) from Example 1 and M3(R, T , G) defined by 
Table 21.

These credal sets form a perfect sequence M1, M2, M3, M4, as M1 � M2 is marginal to M3 and M3 and M4 are 
projective. The credal set M1 � M2 � M3 � M4(R, T , G, W ) is the convex hull of the distributions from Table 22. This 
credal set can be expressed as a convex hull of P i1

1 � P i2
2 � P i3

3 � P i4
4 , where any P i1

1 , P i2
2 , P i3

3 , P i4
4 form a perfect sequence and 

P
i j ∈ ext(M j) is true for any P

i j . We have six perfect sequences in this example, namely,
j j
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Table 22
Joint model “evening walk”.

M1 �M2 �M3 �M4 P 1 P 2

G = 0 G = 1 G = 0 G = 1

W 0 1 0 1 0 1 0 1

R = 0 T = 0 0 0 0.08 0.02 0 0 0.06 0.04
T = 1 0.04 0.06 0.24 0.06 0.02 0.08 0.18 0.12

R = 1 T = 0 0.02 0.03 0.04 0.01 0.01 0.04 0.03 0.02
T = 1 0.12 0.18 0.08 0.02 0.06 0.24 0.06 0.04

P 3 P 4

G = 0 G = 1 G = 0 G = 1

W 0 1 0 1 0 1 0 1

R = 0 T = 0 0 0 0.128 0.032 0 0 0.096 0.064
T = 1 0.004 0.006 0.024 0.006 0.002 0.008 0.018 0.012

R = 1 T = 0 0.128 0.192 0.256 0.064 0.064 0.256 0.192 0.128
T = 1 0.048 0.072 0.032 0.008 0.024 0.096 0.024 0.016

P 5 P 6

G = 0 G = 1 G = 0 G = 1

W 0 1 0 1 0 1 0 1

R = 0 T = 0 0 0 0.32 0.08 0 0 0.24 0.16
T = 1 0.03 0.045 0.02 0.005 0.015 0.06 0.015 0.01

R = 1 T = 0 0.08 0.12 0.16 0.04 0.04 0.16 0.12 0.08
T = 1 0.01 0.015 0.06 0.015 0.005 0.02 0.045 0.03

P 1
1, P 1

2, P 1
3, P 1

4; P 1
1, P 1

2, P 1
3, P 3

4;
P 1

1, P 2
2, P 2

3, P 1
4; P 1

1, P 2
2, P 2

3, P 3
4; (9)

P 2
1, P 2

2, P 3
3, P 2

4; P 2
1, P 2

2, P 3
3, P 4

4,

where P i1
1 and P i2

2 are probabilities from Table 4, P i3
3 from Table 21, and P i4

4 from Table 1.
To make inference from this model, it is necessary to do it for any of the six models

P i1
1 (R) · P i2

2 (T ) · P i3
3 (RT G)

P i3
3 (RT )

· P i4
4 (GW )

P i4
4 (G)

formed by these perfect sequences as suggested in the preceding subsection. It follows from Theorem 1 that R ⊥⊥ T and 
RT ⊥⊥ W |G . These independence relationships can be utilized to simplify the inference.

Our goal is to find the probability that Joan invited a guest knowing that it was not raining, the TV programme was good 
and she did not go for a walk. Any of these conditionals will be expressed in the form

Pi(G = 1|R = 0, T = 1, W = 0)

=
P i3

3 (R = 0, T = 1, G = 1) · P
i4
4 (G=1,W =0)

P
i4
4 (G=1)

P i3
3 (R = 0, T = 1, G = 1) · P

i4
4 (G=1,W =0)

P
i4
4 (G=1)

+ P i3
3 (R = 0, T = 1, G = 0) · P

i4
4 (G=0,W =0)

P
i4
4 (G=0)

,

i = 1, . . . , 6. Computing this expression, we will obtain the following values: 0.86, 0.9, 0.86, 0.9, 0.4, 0.5. Therefore P (G =
1|R = 0, T = 1, W = 0) ∈ [0.4, 0.9] (and hence P (G = 0|R = 0, T = 1, W = 0) ∈ [0.1, 0.6]). Similarly we can proceed for other 
combinations of values.

5. Conclusions

We have defined the composition operator for credal sets, manifesting all the main characteristics of its probabilistic 
pre-image. Even more, there is one point in which the credal set operator of composition is superior to the probabilistic 
one: thanks to the ability of credal sets to model total ignorance, the composition operator is always defined for credal sets, 
which is not the case in the (precise) probabilistic framework.

We have proved the basic properties of the operator (including the relationship to strong independence) necessary for 
the introduction of compositional models and their most important special case, perfect sequence models. We have also found 
the relationship between perfect sequences of credal sets and those of their extreme points.
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Naturally, there are still many open problems to be solved. The most important one is the problem of effective finding of 
the nearest probability distributions (if there is no projective) and, in general, a design of efficient computational procedures 
for this type of model with special attention paid to inference.

At this moment we know very little about the relationship between the compositional models developed for credal 
sets and those introduced in possibility theory [17,18] and in evidence [8] theories (apart from formal analogies). Another 
interesting class of problems are similarities and differences between the described compositional models and other multi-
dimensional models within the framework of credal sets such as [1,4,15].
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