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Abstract. Influence diagrams are decision-theoretic extensions of Bayes-
ian networks. In this paper we show how influence diagrams can be used
to solve trajectory optimization problems. These problems are tradition-
ally solved by methods of optimal control theory but influence diagrams
offer an alternative that brings benefits over the traditional approaches.
We describe how a trajectory optimization problem can be represented as
an influence diagram.We illustrate our approach on twowell-known trajec-
tory optimization problems – the Brachistochrone Problem and the God-
dard Problem. We present results of numerical experiments on these two
problems, compare influence diagrams with optimal control methods, and
discuss the benefits of influence diagrams.
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1 Introduction

Influence diagrams (IDs) were originally proposed by Howard and Matheson
(1981). They extend Bayesian network models (Pearl 1988) by utility and deci-
sion nodes. They can be used to solve optimal decision problems. For a detailed
introduction to influence diagrams, see, for example, Jensen (2001). In the regu-
lar influence diagrams proposed in 80’s it was required that (a) a total ordering
of decision nodes that specifies the order in which the decisions are made must
be specified and (b) the total utility is the sum of utility values of all utility
nodes in the influence diagram. In this paper we will see that both requirements
are naturally satisfied for many trajectory optimization problems.

IDs have been applied to diverse decision problems. Kratochv́ıl and Vomlel
(2016) applied IDs to the speed profile optimization problem. The experiments
performed on a real problem – the speed control of a Formula 1 race car – revealed
that IDs can provide a good solution of the problem very quickly and that this
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solution can be used as an initial solution for the methods of the optimal control
theory, which significantly improves the convergence of these methods.

In this paper we will generalize the approach presented in (Kratochv́ıl and
Vomlel 2016). In Sect. 2 we will describe how IDs can be used to solve trajectory
optimization problems. We consider not only problems where the goal is to find
the trajectory but also problems where we want to optimize certain criteria (e.g.,
the total time, the fuel consumption) for a given trajectory. We use the suggested
approach to solve two well-known optimal control problems: the Brachistochrone
problem in Sect. 3 and the Goddard problem in Sect. 4. We conclude the paper
by a discussion in Sect. 5.

2 Influence Diagrams for Trajectory Optimization

In this section we will describe how one can use IDs to solve a trajectory opti-
mization problem. Next we describe general guidelines for the construction of an
ID for the trajectory optimization. We will illustrate this construction on two
problems in the next sections.

1. Specify the state variables, the control variables, and the utility function.
2. Describe the system dynamics using a system of ordinary differential equa-

tions (ODEs). Often, the system dynamics is described with respect to time.
In the trajectory optimization it is often more convenient or even necessary
to rewrite the ODEs with respect to the trajectory.

3. Discretize the trajectory to short segments.
4. Find the analytical formula for the state transitions as a function of previous

values of the state and control variables for one segment. If the analytical
solution is not available use approximations by an appropriate method –
candidates are, for example, the Euler method, a Runge-Kutta method, or
an implicit method as the Gauss-Legendre method.

5. If necessary, discretize the state and control variables.
6. If states are discretized and the state transitions lead to states that are

not in the set of state values then use the stochastic approximation of the
state transition by a mixture of two nearest states whose probability is
proportional to their closeness to the computed state value, so that the
expected value (conditioned on previous state and control values) is equal
to the computed state value, see (Kratochv́ıl and Vomlel 2016, Sect. 5.2).

7. Construct the ID with state variables as chance nodes, the control variables
as decision nodes, and a utility node for each segment.

8. Specify the state transitions using conditional probability tables (CPTs).
9. Find and store the optimal policy for each state and control configuration

and for each segment of the trajectory by solving the ID.
10. During the application in a real control problem the optimal policy for the

actual observed values of state variables at each point of the trajectory
is used. In practice, the controlled object often deviates from the optimal
solution. The reason can be a measuring and control imprecision, a bias,
unexpected interventions, etc. Therefore, it is very useful to have the optimal
policy stored for all configurations of the parents of all decision nodes.
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The additive utility requirement means that the utility function decomposes
additively along the segments of the trajectory. Such utility functions are com-
mon in practice. This condition is satisfied, for example, by total time or by the
total fuel consumption. The requirement of the total ordering of the decisions is
also natural for trajectory optimization problems. The decisions at coordinates
closer to the origin are taken before those more distant ones. Another natural
total ordering is the ordering by time elapsed from the beginning.

3 Brachistochrone Problem

Formulated by Johan Bernoulli in 1696, the Brachistochrone Problem is: given
two points find a curve connecting them such that a mass point moving along
the curve under the gravity reaches the second point in minimum time. We will
consider this problem as an optimal control problem (Bertsekas 2000, Example
3.4.2). The state variable is the vertical coordinate y and it is a function of the
horizontal coordinate x. The variable u controls the derivative of y:

dy(x)
dx

= u(x). (1)

It is assumed that the initial speed at the origin is zero. Speed v is defined by the
law of energy conservation – kinetic energy equals to the change of gravitational
potential energy, which results in

v =
√

−2 · g · y. (2)

For an infinitesimal segment of length dx with an infinitesimal change dy of
the vertical position y we can write for the speed, which is the derivative of the
position s with respect to time t:

v =
ds

dt
=

√(
dy

dt

2)
+

(
dx

dt

)2

=

⎛

⎝

√

1 +
(

dy

dx

)2
⎞

⎠ dx

dt
. (3)

By substituting (1) and (2) to (3) we get

dt =
ds

v
=

(
1√−2 · g · y

·
√

1 + u2

)
dx

df
= q (y, u) dx. (4)

The solution of the Brachistochrone problem is a function y = f(x) that mini-
mizes the total time T necessary to get from the point (0, 0) to the point (a, b),
where a > 0 and b < 0.

3.1 Influence Diagram for the Brachistochrone Problem

Next, we will illustrate how an ID can be used to find an arbitrary precise solution
of the problem. We will discretize the problem and use the following symbols:
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the number of discrete intervals n, the distance discretization step Δx =
a

n
, the

index of the interval i = 0, 1, . . . , n, x-coordinate xi = i · Δx, y-coordinate yi,
the speed vi, and time to get from xi−1 to xi denoted as ti. The control value
ui defines the vertical shift: yi+1 = yi + ui. In each segment we will assume that
the path is a line segment1, i.e. for x ∈ [xi, xi+1] and for y ∈ [yi, yi+1] it holds

y =
ui

Δx
· x + yi. (5)

By substituting (5) to (4) and solving the definite integral
∫ xi+1

xi

q (y, u) dx =
∫ xi+1

xi

q
( ui

Δx
· x + yi, ui

)
dx (6)

we get the formula for the time spent at the segment [xi, xi+1]:

ti+1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Δx√−2 · g · yi
if ui = 0

−
√

2
g

·
(

(Δx)2 + u2
i

ui

)
· (

√−yi − √−ui − yi) otherwise.
(7)

The goal is to find a control strategy u = (u0, . . . , un−1), ui ∈ R, i =
0, 1 . . . , n − 1 so that we get from the initial point (x0, y0) to the terminal point
(xn, yn) minimizing the total time

∑n
i=1 ti and satisfying the state constraints

yi ≤ y0 for i = 1, . . . , n.

Yi Yi+1

ti+1

Ui Ui+1

Fig. 1. One segment of the ID for the Brachistochrone Problem

1 This is an approximation only, but the smaller distance discretization step the smaller
the approximation error.
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Fig. 2. Comparison of the optimal solution with the ID solution.

The structure of a segment of the ID for the discrete version of the Brachis-
tochrone Problem is presented in Fig. 1. The state transition CPT is determin-
istic and defined as:

P (Yi+1 = yi+1|Ui = ui, Yi = yi) =
{

1 if yi+1 = yi + ui

0 otherwise. (8)

The utility function for node ti+1 is defined by formula (7).

3.2 Experimental Results

The solution of the Brachistochrone Problem is known – it is a part of a cycloid,
which can be specified by two functions of a parameter ϕ ∈ [0,M ], M ≤ 2π:

x =
K

2
(ϕ + sin ϕ) + L, y = −K

2
(1 − cos ϕ) . (9)

K,L,M are specified so that the cycloid goes through the points (0, 0) and (a, b).
In Fig. 2 we compare the optimal trajectory (full red line) with the solution

found by the ID (circles connected by lines) for Δx = 0.25, Δy = 0.1 and
(a, b) = (10,−5). We can see that the solution found by the ID approximates
well the optimal solution. The difference between the optimal trajectory and the
ID solution can be reduced by decreasing the lengths of the discretization steps
Δx and Δy. More details about the experiments and the R code used for the
experiments can be found in our research report (Vomlel 2017).

4 Goddard Problem

Formulated by Robert H. Goddard, see (Goddard 1919), the problem is to estab-
lish the optimal thrust profile for a rocket ascending vertically from the Earth’s
surface to achieve a given altitude with a given speed and pay load and with the
minimum fuel expenditure. The aerodynamic drag and the gravitation vary with
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the altitude. We assume a bounded thrust. The problem has become a bench-
mark in the optimal control theory due to a characteristic singular arc behavior
in connection with a relatively simple model structure.

In this paper we consider the normalized Goddard Problem. For the deriva-
tion of the normalized version and more details about the approximation meth-
ods see our research report (Vomlel and Kratochv́ıl 2017). We specify the God-
dard Problem as an optimal control problem. The movement of the rocket is
described by ordinary differential equations (ODEs). We describe the system
dynamics with respect to the altitude h measured as the distance from the
Earth’s center. The rocket’s mass m is composed from the pay load and the fuel,
the latter is burnt during the rocket ascent. The speed is denoted by v.

The control variable u controls the engine thrust, which is the derivative of
the rocket’s mass m with respect to time t multiplied by the jet speed c, i.e.,

u = c · dm

dt
= c · dm

dh
· dh

dt
=

dm

dh
· c · v. (10)

The derivatives of mass m and speed v with respect to h are defined using
functions of g and f as it follows:

dm

dh
= g(u, v)

df
=

u

c · v (11)

dv

dh
= f(h, m, u, v)

df
= − u

m · v − v · s · cD
2 · m · ρ0 · exp (β · (1− h)) − 1

v · h2
, (12)

where s is the cross-section area of the rocket, cD is the drag constant, ρ0 is the
density of the air at the Earth’s surface, and β is a dimensionless constant.

We will use model parameter values presented in (Tsiotras and Kelley 1991)
and (Seywald and Cliff 1992). The aerodynamic data and the rocket’s parameters
originate from (Zlatskiy and Kiforenko 1983) and correspond roughly to the
Soviet SA-2 surface-to-air missile, NATO code-named Guideline. The control
will be restricted to u ∈ [−3.5, 0]. It is assumed that the rocket is initially at rest
at the surface of the Earth and that its fuel mass is 40% of the rocket total mass.
The nondimensionalized values of these constants and the initial and terminal
values are:

β = 500, s · ρ0 = 12400, cD = 0.05, c = 0.5,

h0 = 1, hT = 1.01, m0 = 1, mT ≥ 0.6 · m0 = 0.6, v0 = 0.

4.1 The Influence Diagram for the Goddard Problem

In each segment i of the ID there are (a) two state variables – a speed variable
Vi and a mass variable Mi, (b) one decision variable Ui controlling the thrust of
the rocket engine, (c) one utility node fi representing the fuel consumption in
the segment. The structure of one segment of the ID for the discrete version of
the Goddard Problem is presented in Fig. 3.

We discretize the trajectory to segments of length Δh with a constant control.
In each segment a solution of the system of two ODEs (11) and (12) is found by an
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Ui

fi+1

Ui+1

Mi Mi+1

Vi Vi+1

Fig. 3. One segment of the ID for the Goddard Problem

ODE approximation method. The solution provides values of the mass m(h+Δh)
and speed v(h+Δh) at the end of the segment. ODE approximation methods can
be used, e.g. the Euler, Runge–Kutta, and Gauss–Legendre methods. See (Vomlel
and Kratochv́ıl 2017) for a derivation of these methods for the Goddard Problem.
The computed mass and speed values will not lay in the discrete set of values of
these variables. Therefore we will approximate the state transformations by non-
deterministic CPTs P (Vi+1|Ui, Vi,Mi) and P (Mi+1|Ui, Vi,Mi) as it is described
in (Kratochv́ıl and Vomlel 2016, Sect. 5.2).

4.2 Experimental Results

In Fig. 4 we compare the control, speed, and mass profiles of the optimal solution
found by Bocop2 (Team Commands, Inria Saclay 2016) with solutions found by
IDs with different discretizations and different approximation methods. It is
known (Miele 1963) that the optimal solution consists of three sub-arcs: (a) a
maximum-thrust sub-arc, (b) a variable-thrust sub-arc, and (c) a coasting sub-
arc, i.e., a sub-arc with the zero thrust.

For the solutions found by IDs we use the following name schema v.u.m.M.h
composed from the parameters used in the experiments:

– v ... the number of states of the speed variables,
2 Bocop package implements a local optimization method. The optimal control prob-

lem is approximated by a nonlinear programming (NLP) problem using a time dis-
cretization. The NLP problem is solved by Ipopt, using sparse exact derivatives
computed by ADOL-C.
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Fig. 4. Comparisons of the optimal solution with ID solutions.

– u ... the number of states of the control variables,
– m ... the number of states of the mass variables,
– M ... the discretization method for solving ODEs (E is the Euler method, G

the Gauss–Legendre method, and RK the Runge–Kutta RK4 method), and
– h ... the length of the trajectory segment.
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By looking at Fig. 4 we can conclude that the Euler method best approxi-
mates the optimal control and it suffers from smaller oscillations of the control
than other methods. The control strategy found by Runge-Kutta and the Gauss-
Legendre methods have larger oscillations. However, the speed and the mass
profiles are similar for all methods and they are close to the optimal profiles
found by BOCOP3.

The quality of the solution is influenced by the number of states of speed,
control, and mass variables. We had to find a proper balance between these
parameters to avoid large oscillations. This issue deserves a further study to
allow the application of IDs to problems where no optimal solution is known.

5 Conclusions and Future Work

We have described how IDs can be used to solve trajectory optimization prob-
lems. We applied the suggested approach to two trajectory optimization prob-
lems. The ID solution methods were tailored for these problems and can be con-
sidered a special case of dynamic programming (Bellman 1957). The numerical
experiments reveal that the solutions found by IDs approximates well the optimal
solution and the quality of the approximation improves with finer discretizations.
It is important that IDs work well also in problems where the optimal strategy
is more complex than a simple bang-bang strategy4.

The trajectory optimization problems are traditionally solved by methods of
the optimal control theory but IDs offer an alternative that can bring several
benefits over the traditional approaches. IDs can incorporate uncertainty about
the state transitions into the model. For each decision node in an ID the optimal
decision is computed for all configurations of its parents. This is very handy in the
situations where the controlled objects deviates for some reason from the optimal
trajectory. The new optimal trajectory is thus available without any delay. In
noisy environments or in environments with interactions with other objects the
imposed deviations from the optimal trajectory can be quite common.

For many control problems it would be natural to use continuous IDs. Unfor-
tunately, exact ID solution methods are available only for special cases that
cannot be used in the problems studied in this paper. We leave a deeper study
of applications of continuous IDs to trajectory optimization for future research.

3 The initial mass of the rocket is the same for all methods but in the third plot of
Fig. 4 we can see that the terminal mass slightly differs. The lowest fuel consumption
is observed in case of RK method but we should conclude from that the RK method
is optimal but rather that it has the largest approximation error.

4 A bang-bang strategy is a strategy that consists of extreme values only, e.g. it consists
of the full thrust and the zero thrust phases only. Bang-bang strategies are optimal
solutions of a wide class of optimal control problems.
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