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Abstract

Our research reported in this paper is twofold. In the first part of the paper we use
standard statistical methods to analyze medical records of patients suffering myocardial
infarction from the third world Syria and a developed country - the Czech Republic.
One of our goals is to find whether there are statistically significant differences between
the two countries. In the second part of the paper we present an idea how to deal with
incomplete and imbalanced data for tree-augmented naive Bayesian (TAN). All results
presented in this paper are based on a real data about 603 patients from a hospital in
the Czech Republic and about 184 patients from two hospitals in Syria.

Keywords: Machine Learning, Data analysis, Bayesian networks, Missing data, Im-
balanced data, Acute Myocardial Infarction.

1 Introduction

Acute myocardial infarction (AMI) is commonly known as a heart attack. A heart attack occurs
when an artery leading to the heart becomes completely blocked and the heart doesn’t get enough
blood or oxygen. Without oxygen, cells in that area of the heart die. AMI is responsible for more
than a half of deaths in most countries worldwide. Its treatment has a significant socioeconomic
impact.

One of the main objectives of our research is to design, analyze, and verify a predictive model of
hospital mortality based on clinical data about patients. A model that predicts well the mortality
can be used, for example, for the evaluation of the medical care in different hospitals. The evalua-
tion based on mere mortality would not be fair to hospitals that treat often complicated cases. It
seems better to measure the quality of the health care using the difference between predicted and
observed mortality.

A related work was published by [1]. The authors analyze the mortality data in U.S. hospitals
using the logistic regression model. Other work was published by [2]. The authors compare different
machine learning methods using a real medical data from a hospital.

2 Data

Our dataset contains data about 787 patients characterized by 24 variables. 603 patients of them
are from the Czech Republic [2] and 184 are from Syria. The attributes are listed in the Table 1.
Most of the attributes are real valued, four attributes are nominal. Only a subset of attributes was
measured for the Syrian patients.
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Most records contain missing values, i.e., for most patients only some attribute values are
available. The thirty days mortality is recorded for all patients. In the Czech Republic the results
of blood tests are reported in millimoles per liter of blood. In Syria some of the measurements are
reported in milligrams per liter and some in millimoles per liter. We standartize all measurements
to the millimoles per liter scale.

We will note U = {X1, X2, . . . , Xm} for a discrete domain, where Xi, i ∈ {1, 2, . . . ,m} is
a discrete attribute and take on values from a finite set, denoted by V al(Xi). We use capital
letters such as X, Y , Z for attribute names, and lower-case letters such as x,y,z to denote specific
values taken by those variables. Sets of variables are denoted by boldface capital letters such as
X,Y,Z and assignments of values to the variables in these sets are denoted by boldface lowercase
letters x,y,z. A classified discrete domain is a discrete domain where one of the attributes is
distinguished as class. We will use UC = {A1, A2, . . . , An, C} for a classified discrete domain. A
dataset D = {u1, . . . ,uN} of instances of UC , where each ui, i ∈ {1, . . . , N} is a tuple of the form
(a1

i , . . . , a
n
i , ci) where a1

i ∈ V al(A1), . . . , ani ∈ V al(An) and ci ∈ V al(C). Also we note that the
class is always known, and a missing value in the dataset is denoted by NA.

Table 1: Attributes

Attribute Code type value range in data Country
Age AGE real [23, 94] SYR, CZ
Height HT real [145, 205] CZ
Weight WT real [35, 150] CZ
Body Mass Index BMI real [16.65, 48.98] CZ
Gender SEX nominal {male, female} SYR, CZ
Nationality NAT nominal {Czech, Syrian} SYR, CZ
STEMI Location STEMI nominal {inferior, anterior, lateral} SYR, CZ
Hospital Hospital nominal {CZ, SYR1, SYR2} SYR, CZ
Kalium K real [2.25, 7.07] CZ
Urea UR real [1.6, 61] SYR, CZ
Kreatinin KREA real [17, 525] SYR, CZ
Uric acid KM real [97, 935] SYR, CZ
Albumin ALB real [16, 60] SYR, CZ
HDL Cholesterol HDLC real [0.38, 2.92] SYR, CZ
Cholesterol CH real [1.8, 9.9] SYR, CZ
Triacylglycerol TAG real [0.31, 11.9] SYR, CZ
LDL Cholesterol LDLC real [0.261, 7.79] SYR, CZ
Glucose GLU real [2.77, 25.7] SYR, CZ
C-reactive protein CRP real [0.3, 359] SYR, CZ
Cystatin C CYSC real [0.2, 5.22] SYR, CZ
N-terminal prohormone of
brain natriuretic peptide

NTBNP real [22.2, 35000] CZ

Troponin TRPT real [0, 25] CZ
Glomerular filtration rate
(based on MDRD)

GFMD real [0.13, 7.31] CZ

Glomerular filtration rate
(based on Cystatin C)

GFCD real [0.09, 7.17] CZ

3 Preliminary Statistical Analysis

For a preliminary statistical analysis [3] we selected a subset of attributes that are highly corre-
lated with the class [5] and present in both groups, namely, we considered these variables: age,
nationality, gender, STEMI location, and the class mortality.

The STEMI location encoded by 1 denotes a STEMI.inf, 2 denotes a STEMI.ant, and 3 denotes
a STEMI.lat. The nationality is encoded by a binary variable, where 0 means Czech and 1 means
Syrian. The Gender is encoded by a binary variable where 0 denotes a man, while 1 stands for
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a female. The mortality is also encoded as a binary variable, where 0 means that the patient
survived 30 days, while 1 means that he/she did not.

Already from Figure 1, where the histogram of the age values is presented, we can see that
from patients that didn’t survive a high percentage are young patients from Syria.

Figure 1: Histogram of the age values

Table 2: The Chi-Square Test of conditional independence

gender STEMI loc. mortality nationality
age value .174 -.010 .048 -.381

sign. .0001 .775 .181 .0001
gender value .022 .068 .92

sign. .53 .057 .01
STEMI loc. value -.026 -.036

sign. 0.46 .312
mortality value .089

sign. 0.013

The standard chi-square test of conditional independence between two variables reveals (see
Table 2) that there is a significant dependence (at the level 0.05) between the mortality and
nationality, the gender and nationality, also there are a significant dependencies between the gender
and age, the mortality and gender – the patients from Syria have the lowest probability to survive,
also they are younger and there is higher percentage of woman.

Finally, we learned the logistic regression model, that describes the relationship between the
considered independent variables and the mortality as the dependent variable. We have got:

logit P (C = 1|A = a) = β0 + β1a1 + . . .+ β4a4

= −0.034 + 0.001 · a1 + 0.027 · a2 − 0.007 · a3 + 0.065 · a4

where a1: age, a2: gender, a3: STEMI loc, and a4: nationality. Variables age and nationality
appeared to be statistically significant for mortality prediction.

From the preliminary statistical analysis we can conclude that:
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• In Syria the mortality from AIM is significantly higher than in the Czech Republic – 87.3%
Syrian patients survive, while 94.7% patients from the Czech Republic survive.

• The age of patients in Syria is lower in average (the average difference is 13 years) and there
is a higher prevalence of women among the patients with AIM in Syria than in the Czech
Republic.

• The STEMI location is related to the mortality.

4 Machine Learning Methods

The preliminary statistical analysis studied mostly the pairwise relations only. Since the explana-
tory variables may combine their influence and the influence of a variable may be mediated by an-
other variable it is worth of studying the relations of variables alltogether. Our data are incomplete
and imbalanced. We will present an idea for dealing with that type of data using tree-augmented
naive Bayesian (TAN).

4.1 Bayesian networks

A Bayesian network [6] is an annotated directed acyclic graph that encodes a mass probability
distribution over a set of random variables U. Formally, a Bayesian network for U is a pair
B = 〈G,Θ〉. The first component, G, is a directed acyclic graph whose vertices correspond to the
random variables U = {X1, X2, . . . , Xm}, and whose edges represent direct dependencies between
the variables. The graph G encodes independence assumptions: each variable Xi is independent of
its non-descendants given its parents in G. The second component of the pair, namely Θ, represents
the set of parameters that quantifies the network. It contains the parameter θxi|Πxi

= f(xi|Πxi)
for each possible value xi of Xi and Πxi of ΠXi , where ΠXi denotes the set of parents of Xi in G.
Accordingly, a Bayesian network B defines a unique joint probability distribution over U given by:

f(X1 = x1, . . . , Xm = xm) =

m∏

i=1

f(Xi = xi|ΠXi = Πxi) =

m∏

i=1

θxi|Πxi

for each ΠXi which is a parent of Xi.

4.2 Learning with Trees

A directed acyclic graph on {X1, X2, . . . , Xn} is a tree if ΠXi contains exactly one parent for all Xi, except
for one variable that has no parents (this variable is referred to as the root). A tree network can be
described by identifying the parent of each variable [7]. A function π : {1, . . . , n} → {0, . . . , n} is said to
define a tree over X1, X2, . . . , Xn if there is exactly one i such that π(i) = 0 (namely the root of the tree),
and there is no sequence i1, . . . , ik such that π(ij) = ij+1 for i ≤ j < k and π(ik) = i1 (i.e., no cycles).
Such a function defines a tree network where ΠXi = {Xπ(i)} if π(i) > 0 and ΠXi = ∅ if π(i) = 0.

4.3 Learning Maximum Likelihood TAN

Let {A1, A2, . . . , An} be a set of attribute variables and C be the class variable. We say that B (Bayesian
network) is a TAN model if ΠC = ∅ and there is a function that defines a tree over {A1, A2, . . . , An} . The
optimization problem consists on finding a tree defining function π over {A1, A2, . . . , An} such that the log
likelihood is maximized [8] LL(BT |D) =

∑
u∈D log f(u). To learn the maximum likelihood TAN we should

use the following equation to compute the parameters [8], θai,Πai
=

Nai,Πai
(ai,Πai

)

NΠai
(Πai

)
where Nai,Πai

(ai,Πai)

stands for the number of times that attribute i has value ai and its parents have values Πai in the dataset.
Similarly, NΠai

(Πai) is the number of times that the parents of attribute Ai have values Πai in the dataset.

5 Learning TAN from incomplete data

Missing data are a very common problem which is important to consider in a many data mining appli-
cations, and machine learning or pattern recognition applications. Some variables may not be observable
(i.e. hidden) even for training instances. Now more and more datasets are available, and most of them
are incomplete. Therefore, we want to find a way to build a new model from an incomplete dataset.
Normally, to learn the maximum likelihood TAN structure [8], we need a complete data, such that all
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instances ui, i ∈ {1, . . . , N} from UC are complete and don’t have any missing value. In case the data
are incomplete and there is an instance which has a missing value, we will not use the whole instance in
TAN structure learning i.e. not use the other known values from that instance in TAN structure learning.
Note that the class is always known, and a missing value in the dataset is denoted by NA. Our goal
is to learn a tree-augmented naive Bayesian (TAN) from incomplete data. Some previous work by [13]
propose maximizing conditional likelihood for BN parameter learning. They apply their method to MCAR
(Missing Completely At Random) incomplete data by using available case analysis in order to find the best
TAN classifier. In other work by [9] also deals with TAN classifiers and expectation-maximization (EM)
principle for partially unlabeled data. In their work, only the variable corresponding to the class can have
missing. Also, other work by [10] deals with TAN based on the EM principle, where they have proposed
an adaptation of the learning process of Tree Augmented Naive Bayes classifier from incomplete data. In
their work, any variable can have missing values in the dataset. The TAN algorithm can be adapted to
learn from incomplete datasets, such that most available data will be used in TAN structure learning. The
procedure is shown in Algorithm 1, where the Conditional Mutual Information ”CMI” is defined as:

I(X,Y |Z) =
∑

x,y,z
f(x,y,z) log

f(z)f(x,y,z)

f(x,z)f(y,z)

where the sum is only over x,y,z such that f(x,z) > 0 and f(y,z) > 0.

Algorithm 1 TAN For Incomplete Data

1: procedure CMI(Ai, Aj , C}) . // Conditional Mutual Information
2: D = {u1, . . . ,uN},um = (ai, aj , c),m ∈ {1, . . . , N}, such that um = (a1, . . . , an, c) ∈ D
3: Foreach um ∈ D
4: If(ai == NA|aj == NA)
5: Delete um from D
6: endfor
7: Compute Ip = I(Ai, Aj |C) from D
8: return Ip
9: Endprocedure

10: Read D = {u1, . . . ,uN},um = (a1, . . . , an, c),m ∈ {1, . . . , N}
11: var:
12: n the number of attribute variables A;
13: Ip[n][n] the WeightMatrix;
14: UG the UndirectedGraph;
15: UT the UndirectedTree;
16: T the DirectedTree;
17: TAN the DirectedGraph;
18: Foreach Ai, i ∈ {1, . . . , n− 1}
19: Foreach Aj , j ∈ {2, . . . , n}
20: Ipij = CMI(Ai, Aj , C)
21: Ip[i][j] = Ipij

22: Ip[j][i] = Ipij

23: EndForeach
24: EndForeach
25: G = ConstructUndirectedGraph(Ip[i][j])
26: UT = MaximumWeightedSpanningTree(G);
27: T = MakeDirected(UT );
28: TAN = AddClass(T );

In Algorithm 1, on line 25 we build a complete undirected graph in which the vertices are the attributes
A1, . . . , An. Annotate the weight of an edge connecting Ai to Aj , i 6= j by Ipij = I(Ai, Aj |C) One line 26
we build a subgraph from G, without any cycles and with the maximum possible total edge weight. On
line 27 we transform the resulting undirected tree to a directed one by choosing a root variable and setting
the direction of all edges to be outward from it. On line 28 we add the class C to the graph as a node and
add edges from C to all other nodes in the graph

The idea behind Algorithm 1 is that we believe if we use more data then the estimates of conditional
mutual information are more reliable.
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6 Imbalanced Data

In case of imbalanced data the classifiers are more sensitive to detecting the majority class and less sensitive
to the minority class. Thus, if we don’t take care of the issue, the classification output will be biased,
in many cases resulting in always predicting the majority class. Many methods have been proposed in
the past few years to deal with imbalanced data. In our research the mortality rate of patients with
myocardial infarction refers to the percentage of patients who have not survived more than 30 days, where
the results are 89% of patients survive and 11% of patients do not survive, therefore the data are quite
imbalanced. One of the most common and simplest strategies to handle imbalanced data is to under-sample
the majority class [11, 12]. While different techniques have been proposed in the past, they did not bring
any improvement with respect to simply selecting samples at random. So, for this analysis we propose the
following steps:

• Let M be the number of samples for the majority class, and N be the number of samples for the
minority class, and M be L times greater than N.

• Divide the instances which have majority class into L distinct clusters.

• Train L predictors, where each predictor is trained on only one of the distinct clusters, but on all of
the data from the rare class. To be clear, the data from the minority class are used in the training
of all L predictors.

• Use model averaging for the L learned predictors as your final predictor. i.e (in our case we will com-
pute a conditional mutual information between each pair of attributes (Ai, Aj), i, j ∈ 1, 2, . . . , n, i 6= j
given the class L times for each pair, in each time will use only one of the distinct clusters and all
data from the minority class, then we will use the average of conditional mutual information for each
pair to compute a weight matrix).

After integrating this step into the Algorithm 1, we will have a TAN algorithm which deals with an
incomplete and imbalance data 2:

Algorithm 2 TAN for incomplete and imbalance data
1: var
2: M The number of samples for the majority class
3: N The number of samples for the minority class
4: DT All instances of the majority class, DT ⊂ D
5: DF All instances of the minority class, DF ⊂ D
6: integer division L = M/N
7: Divide DT to L parts, DTk

, k ∈ {1, . . . , L}
8: Foreach DTk

9: Dk = DTk
∪DF

10: EndForeach
11: Compute WeightMatrix Ipk

[n][n] foreach Dk

12: Îp[n][n] = the average of Ipk
[n][n], k ∈ 1, . . . , L . // Îp is the WeightMatrix which wwill be

used in Algorithm 1
13: Continue from line 26 in Algorithm 1 using Îp

7 Results

For each data record classified by a classifier there are four possible classification results. Either the classifier
got a positive example labeled as positive (in our data the positive example is the patient survived) or it
made a mistake and marked it as negative. Conversely, a negative example may have been mislabeled as
a positive one, or correctly marked as negative. Our results are summarized in Figure 2 using the ROC
curves. We use the 10 fold cross validation as the model evaluation method. The ROC curve shows how
the classifier can sacrifice the true positive rate (TP rate: number of positive examples, labeled as such over
total positives) for the false positive rate(FP rate: number of negative examples, labeled as positive over
total negatives) (1-specificity) by plotting the TP rate to the FP rate. In other words, it shows how many
correct positive classifications can be gained as you allow for more and more false positives by changing
the threshold.

In Figure 2 we compare our results with normal TAN ( [8]) and SMOTE algorithm ( [4]) for TAN.
Algorithm 2 has achieved the highest area under the ROC curve (AUC) with 0.82. The results of Algo-
rithm 1 (ROC = 0.77) is better than the normal TAN algorithm (ROC = 0.62). But SMOTE algorithm
with TAN (ROC = 0.802) is better than Algorithm 1.
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Figure 2: ROCs (TAN , TAN SMOTI , Algorithm(1) , Algorithm(2))

8 Conclusions

First, we used medical data on patients with AIM for preliminary statistical analysis. We found a sig-
nificant difference between Syrian patients and Czech patients. Second, Bayesian networks are a tool of
choice for reasoning in uncertainty, with incomplete data. However, often, Bayesian network structural
learning only deals with complete data. We have proposed here an adaptation of the learning process of
the Tree Augmented Naive Bayes classifier from incomplete and imbalanced datasets. This methods have
been successfully tested on our dataset. We have seen that our Algorithm 2 performed better than normal
TAN and TAN-SOMTE.
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