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In literature the references to EM estimation of product mixtures are not very frequent. The
simplifying assumption of product components, e.g. diagonal covariance matrices in case of

Gaussian mixtures, is usually considered only as a compromise because of some computational

constraints or limited dataset. We have found that the product mixtures are rarely used in-

tentionally as a preferable approximating tool. Probably, most practitioners do not \trust" the
product components because of their formal similarity to \naive Bayes models." Another reason

could be an unrecognized numerical instability of EM algorithm in multidimensional spaces. In

this paper we recall that the product mixture model does not imply the assumption of inde-

pendence of variables. It is even not restrictive if the number of components is large enough. In
addition, the product components increase numerical stability of the standard EM algorithm,

simplify the EM iterations and have some other important advantages. We discuss and explain

the implementation details of EM algorithm and summarize our experience in estimating

product mixtures. Finally we illustrate the wide applicability of product mixtures in pattern
recognition and in other ¯elds.

Keywords : Multivariate statistics; product mixtures; naive Bayes models; EM algorithm;

pattern recognition; neural networks; expert systems; image analysis.

1. Introduction

The probabilistic description of data is known to be a powerful tool for solving many

practical problems. Having estimated a multivariate probability distribution from

data in a suitable analytic form, we can derive theoretically well-justi¯ed solutions in

various ¯elds like recognition, prediction, statistical modeling, neural networks,

machine learning, image processing and others. Considering the statistical pattern

recognition we assume Bayesian decision-making based on the class-conditional

probability distributions. The initial decision information is usually contained in

some multidimensional training data and therefore the key problem of statistical
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pattern recognition is to estimate the underlying unknown class-conditional

distributions or density functions from the available datasets.

In practice the real-life multivariate densities are nearly always multimodal

without any simple parametric description. Essentially, there are two possible ways

to estimate the multimodal density in a practically applicable analytic form: the

nonparametric Parzen (kernel) estimates56 or multivariate Gaussian mixtures.

However, in the case of large multidimensional datasets the application of Parzen

estimates becomes clumsy because the training data have to be kept in memory and

the kernel function has to be optimally smoothed. In high-dimensional spaces the

optimal smoothing of Parzen estimates is crucial but computationally demanding.

In this respect the approximating mixtures are clearly preferable because the mixture

model is more handy and all mixture parameters can be e±ciently optimized in full

generality by EM algorithm.

1.1. Mixtures of product components

In this paper we consider approximation of unknown multidimensional probability

distributions by mixtures of components de¯ned as products of univariate discrete

distributions or density functions (brie°y, product mixtures). We recall that the

assumed mixtures of product components do not imply the independence of vari-

ables. On the contrary, we can prove that any discrete distribution can be expressed

as a product mixture18 and, in continuous case, with increasing number of compo-

nents the Gaussian mixtures approach the asymptotic accuracy of the nonparametric

Parzen estimates.23 From the computational point of view, the simplifying as-

sumption of diagonal covariance matrices is counterbalanced by the increased

number of components. In other words, instead of trying to choose the correct

number of components with the most suitable initial parameters (e.g. Refs. 6, 9, 38

and 52) we use su±ciently many simple components in a product form. In this sense

the concept of product mixtures \moves" towards nonparametric kernel estimates

while keeping the computational complexity in bounds. Simultaneously, the opti-

mization of a large number of components facilitates the EM convergence.

The product components simplify the EM iterations, increase the numerical

stability of EM algorithm and have some speci¯c advantages as approximation tools

(cf. Sec. 4). First of all, any marginal distributions are directly available by omitting

super°uous terms in the products. Consequently, in prediction tasks, any conditional

distributions are easily computed and the product mixtures can be estimated directly

from incomplete data without replacing the missing values (Sec. 4.4). The product

components support an important subspace (structural) modi¯cation of multidi-

mensional mixtures (Sec. 4.1), which provides a theoretical background for the

probabilistic neural networks (PNN, Sec. 5.3).

Nevertheless, despite their useful properties, the simplicity of product components

might appear too restrictive in some cases. A natural idea would be to use general

covariance matrices in Gaussian components, but they have to be inverted in each
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EM iteration and, moreover, they become frequently ill-conditioned in high-

dimensional spaces (cf. Sec. 3.4). One possible compromise would be to use mixtures

of dependence trees. The Gaussian dependence tree density function11 corresponds to

a sampled covariance matrix and can explicitly describe the statistical relations of

pairs of variables at the level of a single component. However, we have recently

found31 that, for binary data, the information gain implied by a large number of

dependence tree components is decreasing in the course of EM iterations. In other

words, the dependence tree mixtures spontaneously \degrade" to the more

\advantageous" product mixtures in ¯nal stages of convergence. We recall in this

connection that the proof of asymptotic properties of Parzen estimates also assumes

the kernel function in a product form.56

1.2. Related works

In literature the references to estimation of product mixtures do not appear

frequently. Usually the product components (e.g. diagonal covariance matrices in

Gaussian densities) are considered only as a compromise enforced by computational

constraints or by limited datasets.49,50,68 According to our best knowledge the

product mixtures are rarely used intentionally as a preferable approximating tool.

The only exception are multivariate Bernoulli mixtures, because there is no alter-

native in case of binary vectors.

It appears that, in the past, the approximation power of product mixtures has

been underestimated. The most probable reason is their formal similarity to the

\naive Bayes models," which assume the class-conditional independence of variables.

The resulting distribution is then a mixture of class-conditional product components

but they are estimated separately from labeled training data. We recall that in

product mixtures the independence assumption holds for each single component but

not for the mixture as a whole. In this sense the widely used term \naive Bayes

models" is incorrectly applied to product mixtures.51

Another more serious reason for a limited application of product mixtures could

relate to possible numerical failing of the EM algorithm in multidimensional spaces.

Even when using long-double variables, the evaluation of mixture components in

high dimensions may partly under°ow8 without any visible in°uence on the con-

vergence properties. Thus the ¯nal unsatisfactory results may appear as a conse-

quence of poor learning properties of product mixtures (cf. Sec. 3.4 for more details).

The related literature seems to provide indirect evidence in this respect since the

references to multidimensional mixtures are rather rare (cf. Ref. 6 (dimension

N ¼ 19, real data), Ref. 64 (N ¼ 2/real), Ref. 9 (N ¼ 5, 13, 18, 30, 47/real), Ref. 65

(N ¼ 26/real) and Ref. 48 (N ¼ 400/binary)).

One of the few positive references is the paper of Lowd and Domingos51 comparing

the properties of product mixtures and Bayesian networks. In a series of experiments

on 47 datasets from the UCI repository (dimension N ¼ 5–618) they found that

the \naive Bayes" mixtures learned by EM algorithm perform comparably with
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Bayesian networks, but \they are orders of magnitude faster in inference." The

average log-likelihoods on the benchmark datasets (as a measure of model accuracy)

are comparable for both methods, but in two high-dimensional cases (N ¼ 618/real)

and (N ¼ 168/real) the product mixtures clearly outperformed the Bayesian

networks.

In this paper we refer widely to our results published in recent years. Most of the

references relate to multidimensional problems in various areas like pattern recog-

nition and probabilistic neural networks12,16,19,25–27,32 (dimensionN ¼ 1024/binary),

texture modeling24 (N ¼ 400–3600/real), texture evaluation36 (N ¼ 400–900, real),

preprocessing of screening mammograms34(N ¼ 145/real), image forgery detection39

(N ¼ 63/real) and others.

The remainder of the paper is organized as follows. In Sec. 2 we suggest a novel

simple proof of the monotonic property of EM algorithm. In Sec. 3 we discuss in

detail the di®erent implementation aspects of EM algorithm like weighted likelihood

estimates (Sec. 3.1), choosing the number of components (Sec. 3.2) and initial

parameters (Sec. 3.3) and show a simple way of avoiding the under°ow problems of

EM algorithm in high-dimensional spaces (Sec. 3.4). Section 4 refers to di®erent

modi¯cations of product mixtures. We prove the monotonic property of the struc-

tural modi¯cation of EM algorithm (Sec. 4.1), Bernoulli- and Gaussian-product

mixtures are the subjects of Secs. 4.2 and 4.3 and the missing data problem is

discussed in Sec. 4.4. Section 5 illustrates the application possibilities of product

mixtures.

2. EM Algorithm for Estimating Mixtures

Considering ¯nite mixtures we assume the following linear combination of compo-

nent distributions:

P ðxÞ ¼ P ðxjw;£Þ ¼
X
m2M

wmF ðxjµmÞ; w ¼ ðw1; . . . ;wMÞ;
X
m2M

wm ¼ 1; ð1Þ

where x 2 X are discrete or real data vectors, w is a vector of probabilistic weights,

F ðxjµmÞ are discrete component distributions or continuous densities with para-

meters µm:

£ ¼ fµ1; µ2; . . . ; µMg; µm ¼ f�m1; �m2; . . . ; �mNg;
and M ¼ f1; . . . ;Mg is the component index set.

The problem of estimating mixtures was ¯rst posed by Carl Pearson (in 1894)57 in

connection with dissection of frequency curves, but only since the late 1960s has there

been a widely applicable iterative scheme to compute the maximum-likelihood

estimates of mixture parameters. Formally, given a set S of independent observa-

tions of the underlying N-dimensional random vector:

S ¼ fxð1Þ;xð2Þ; . . .g; x ¼ ðx1;x2; . . . ;xNÞT 2 X ; ð2Þ
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we can maximize the related log-likelihood function

L ¼ Lðw;£Þ ¼ 1

jSj
X
x2S

logP ðxjw;£Þ ¼ 1

jSj
X
x2S

log
X
m2M

wmF ðxjµmÞ
" #

ð3Þ

by means of EM algorithm.5 In a general form, the EM iteration equations can be

expressed as follows10,23,31:

qðmjxÞ ¼ wmF ðxjµmÞP
j2M wjF ðxjµjÞ

; w 0
m ¼ 1

jSj
X
x2S

qðmjxÞ; m 2 M; x 2 S; ð4Þ

QmðµmÞ ¼
X
x2S

qðmjxÞ
w 0

mjSj
logF ðxjµmÞ w 0

mjSj ¼
X
x2S

qðmjxÞ
 !

; ð5Þ

µ 0
m ¼ argmax

µm
fQmðµmÞg ¼ argmax

µm

X
x2S

qðmjxÞ
w

0
mjSj

logF ðxjµmÞ
( )

; ð6Þ

where the prime denotes the new parameter values in each iteration. In Sec. 2.1 we

give a simple proof that the general iteration scheme (4)–(6) produces a nonde-

creasing sequence of values of the maximized criterion (3).

In view of the implicit relation (6), the EM algorithm transforms the analytically

hard maximization of the log-likelihood function (3) to the iterative maximization of

the weighted log-likelihood functions QmðµmÞ. In this way, any new application of

EM algorithm is reduced to the explicit solution of Eq. (6) which is usually available

as a weighted analogy of the standard maximum-likelihood (m.-l.) estimate

(cf. Sec. 3.1). For example, in case of Gaussian components with the component

means ¹m and covariance matrices §m:

F ðxj¹m;§mÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2�ÞN det§m

p exp � 1

2
ðx� ¹mÞT§�1

m ðx� ¹mÞ
� �

; m 2 M;

ð7Þ
we obtain the following explicit solution of Eq. (6):

¹ 0
m ¼ 1

w 0
mjSj

X
x2S

xqðmjxÞ; m 2 M; ð8Þ

§ 0
m ¼ 1

w 0
mjSj

X
x2S

ðx� ¹ 0
mÞðx� ¹

0
mÞT qðmjxÞ: ð9Þ

The standard reference to the EM algorithm is the paper of Dempster et al.,5 at

present one of the \all-time top 10" of statistics.55 The paper introduces the name

EM algorithm and shows its various application possibilities. The primary subject of

the paper is the general problem of incomplete data; the estimation of mixtures is

only included as one of the possible application areas (Ref. 5, pp. 15–17). With

respect to mixtures, the EM iteration scheme has its own history (cf. e.g. the works of

Dempster et al.5 and Grim10 for more details) which is closely related to the standard

Approximation Mixtures of Product Components: A Tutorial

1750028-5



likelihood equations for mixtures. There is no analytical solution of these equations

but they can be rearranged to a form suggesting an iterative scheme. Hasselblad42,43

is credited with ¯rst utilizing the computational advantages of this scheme — today

known as the EM algorithm. According to Hosmer,46 \Iterative m.-l. estimates" were

proposed by Hasselblad and subsequently have been looked at by Day,4 Hosmer46

and Wolfe.69 The recursive likelihood equations have been successfully applied to

multivariate mixtures of di®erent types. Several authors reported that the procedure

increases the likelihood criterion at each iteration but they were not able to prove

it.58 The ¯rst proof of the key monotonic property of EM algorithm was published by

Schlesinger61,62 (cf. the work of Grim10), and further reported in a monograph of

Ajvazjan et al.1 and in a survey paper.47 In the next subsection we reproduce

Schlesinger's61,62 idea in a novel simpli¯ed version.

2.1. Monotonic property of EM algorithm

We show that the sequence of log-likelihood values generated by the general iteration

Equations (4)–(6) is nondecreasing in the sense of the inequality

Lðw 0;£ 0Þ � Lðw;£Þ: ð10Þ
Recall ¯rst that the Kullback–Leibler information divergence is nonnegative66 for

any two discrete probability distributions qm; q
0
m:

Iðqjjq 0Þ ¼
X
m2M

qm log
qm
q 0m

� 0; qm; q
0
m � 0;

X
m2M

qm ¼
X
m2M

q 0m ¼ 1; ð11Þ

and equals zero if and only if qm ¼ q 0m for all m 2 M. Note that the above inequality

can be rewritten in the following equivalent form:X
m2M

qm log q 0m �
X
m2M

qm log qm; ð12Þ

which implies that the left-hand side of (12), as a function of q 01; q
0
2; . . . ; q

0
M , is

uniquely maximized by q 0m ¼ qm;m 2 M.

In view of the general inequality (11) we can write

1

jSj
X
x2S

X
m2M

qðmjxÞ log qðmjxÞ
q 0ðmjxÞ

" #
� 0: ð13Þ

By substitution for qðmjxÞ and q 0ðmjxÞ from (4) we obtain

1

jSj
X
x2S

X
m2M

qðmjxÞ log P
0ðxÞ

P ðxÞ � 1

jSj
X
x2S

X
m2M

qðmjxÞ log w 0
mF ðxjµ 0

mÞ
wmF ðxjµmÞ
� �

� 0; ð14Þ

where the ¯rst sum on the left-hand side is the log-likelihood increment

1

jSj
X
x2S

X
m2M

qðmjxÞ
" #

log
P 0ðxÞ
P ðxÞ ¼ 1

jSj
X
x2S

log
P 0ðxÞ
P ðxÞ ¼ L 0 � L ð15Þ
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and therefore we can write

L 0 � L �
X
m2M

1

jSj
X
x2S

qðmjxÞ
" #

log
w 0

m

wm

þ
X
m2M

1

jSj
X
x2S

qðmjxÞ log F ðxjµ 0
mÞ

F ðxjµmÞ
: ð16Þ

Considering the substitutions (4) and the inequality (11), we can write

X
m2M

1

jSj
X
x2S

qðmjxÞ
" #

log
w 0

m

wm

¼
X
m2M

w 0
m log

w 0
m

wm

� 0; ð17Þ

and therefore the ¯rst sum on the right-hand side of the inequality (16) is nonneg-

ative. Further, by de¯nition (6), we can write for any parameters µm:X
x2S

qðmjxÞ
w 0

mjSj
logF ðxjµ 0

mÞ �
X
x2S

qðmjxÞ
w 0

mjSj
logF ðxjµmÞ; m 2 M: ð18Þ

By summing and rearranging the above inequalities (18) we obtain

X
m2M

1

jSj
X
x2S

qðmjxÞ log F ðxjµ 0
mÞ

F ðxjµmÞ
� 0: ð19Þ

Consequently, in view of the inequalities (17) and (19), the increment of the log-

likelihood criterion is nonnegative:

L 0 � L �
X
m2M

w 0
m log

w 0
m

wm

þ
X
m2M

1

jSj
X
x2S

qðmjxÞ log F ðxjµ 0
mÞ

F ðxjµmÞ
� 0; ð20Þ

and the sequence of the log-likelihood values is nondecreasing in the sense of in-

equality (10).

The inequality (20) implies that, if the criterion (3) is bounded above, the se-

quence of log-likelihood values converges, possibly to a local maximum (or a saddle

point) of the log-likelihood function Lðw;£Þ. We ¯nally remark that, for the sake of

the proof, we only need to guarantee the inequality (18) which is not as strong as the

maximization condition (6). This modi¯cation is called the generalized EM algo-

rithm (GEM5).

Let us note that, in order to prove the monotonic property of EM algorithm, we

do not introduce any additional \latent" variables, there is no need of any statistical

interpretation of EM iteration scheme. Thus in case of any new modi¯cation of EM

algorithm (cf. Sec. 4.1) it is only necessary to derive the new iteration equations in

order to guarantee the basic inequality (19).

3. Implementation of EM Algorithm

For the sake of an e±cient implementation of EM algorithm we need an explicit

solution of Eq. (6) which is often available as a weighted analogy of the standard

maximum-likelihood estimate.10,23
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3.1. Weighted likelihood estimate

Let F ðxjµÞ be a probability density (or discrete probability distribution) with the

corresponding log-likelihood criterion

LðµÞ ¼ 1

jSj
X
x2S

log F ðxjµÞ: ð21Þ

Furthermore, let µ� be the maximum-likelihood estimate of µ de¯ned as an additive

function of x 2 S:

µ� ¼ argmax
µ

1

jSj
X
x2S

log F ðxjµÞ
( )

¼ 1

jSj
X
x2S

bðxÞ: ð22Þ

Denoting by NðxÞ the frequency of x in the data sample S, we can equivalently

rewrite Eqs. (21) and (22) in the form:

LðµÞ ¼
X
x2 ~X

�ðxÞ logF ðxjµÞ; �ðxÞ ¼ NðxÞ=jSj; ~X ¼ X \ S; ð23Þ

µ� ¼ argmax
µ

X
x2 ~X

�ðxÞ logF ðxjµÞ
( )

¼
X
x2 ~X

�ðxÞbðxÞ; ð24Þ

where �ðxÞ stands for the relative frequency of x in S. Note that Eq. (24) is a

weighted version of (22). In view of this analogy an arbitrarily weighted log-likeli-

hood function (23) is maximized by the respective weighted sum (24), (cf. (8) and

(9)), provided that the formula (22) is available (cf. Theorem 5.1 of Ref. 10 for

more details).

Let us simultaneously remark that the relative frequency notation (23) is also

applicable to the log-likelihood function (3):

LðµÞ ¼
X
x2 ~X

�ðxÞ log
X
m2M

wmF ðxjµmÞ
" #

ð25Þ

and to the related EM iteration equations (4) and (6):

w 0
m ¼

X
x2 ~X

�ðxÞqðmjxÞ; ð26Þ

µ 0
m ¼ argmax

µm

X
x2 ~X

�ðxÞqðmjxÞ
w 0

m

logF ðxjµmÞ
( )

: ð27Þ

In this way the EM algorithm can be applied to arbitrarily weighted data, e.g.

to utilize some external knowledge about the meaning or relevance of data. In a

case of discrete distributions de¯ned by tables, we can compute an equivalent

mixture representation by setting S � X and �ðxÞ equal to the respective table

values.11
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3.2. Estimation versus approximation

The statistical problem of identi¯cation of mixtures (as in cluster analysis18) assumes

that the solution is unique. For this reason the mixtures have to be identi¯able and

we have to specify the number of components in the mixture correctly in advance.

Obviously, by ¯tting e.g. a mixture of three components to a dataset containing four

well-separated clusters, we have several di®erent alternatives which may correspond

to di®erent local maxima of the log-likelihood function. In view of possible local

maxima, the EM algorithm depends on its starting point, and the initial mixture

parameters should therefore be reasonably chosen. In literature there are extensive

discussions about initializing mixtures and a proper choice of the number of mixture

components,9,18,52–55 but they are less relevant in the case of approximation

problems.

Recall that, with the increasing dataset S, the log-likelihood criterion can be

viewed as an estimate of the following asymptotic expectation with respect to the

unknown true probability distribution P �:

L ¼ 1

jSj
X
x2S

logP ðxÞ ! EP �flogP ðxÞg: ð28Þ

By maximizing the last expression we minimize Kullback–Leibler divergence

IðP �;P Þ ¼ EP � log
P �ðxÞ
P ðxÞ

� �
¼ EP �flogP �ðxÞg � EP �fP ðxÞg; ð29Þ

which can be viewed as a dissimilarity measure between the true unknown proba-

bility distribution P �ðxÞ and the estimated mixture P ðxÞ. In this sense the maxi-

mum-likelihood criterion is applicable from the point of view of approximation.

In this paper we use the term approximating mixture to emphasize that the

approximation accuracy is of primary importance. This theoretical detail has im-

portant consequences since, unlike estimation problems, in approximation problems

with a large number of components (M � 101–102) the situation is rather di®erent.

First, the approximating mixture need not be identi¯able. On the contrary, non-

identi¯able mixtures are more °exible and less prone to be \trapped" in a local

optimum. Concerning the mixture complexity, the EM algorithm is known to have a

tendency to suppress the weights of super°uous components, but this mechanism is

not strong enough to control the mixture complexity. Nevertheless, the resulting

distribution of component weights is typically sigmoidal and therefore the mixture

contains a large portion of components having very low weights. As these compo-

nents can be omitted without any signi¯cant consequences, the exact initial number

of components usually does not play essential role in multidimensional approxima-

tion problems.

A large number of components has a positive aspect from the point of view of

\over¯tting" since the EM algorithm automatically decreases the in°uence of out-

liers which are typically \covered" by a single component with a low weight. As a
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result, the product mixtures are relatively robust with respect to over¯tting. In the

experiments26,27 we have observed that the optimal mixture model may include

hundreds of thousands of parameters without any relevant loss of generalizing

properties.

3.3. Initial parameters

The optimal number of components is closely related to the problem of initial

parameters. There are many di®erent possibilities to ¯t a mixture of many compo-

nents to a large number of multidimensional measurements but the related local

maxima of the maximum-likelihood function usually do not di®er very much and, in

view of Eqs. (28) and (29), the corresponding approximation quality is comparable.

In this sense the choice of initial parameters does not play an essential role. For the

same reason in approximation tasks the frequently discussed slow convergence in

¯nal iterations can be simply interrupted by a relative increment threshold.

In our experience, the product mixtures can be initialized randomly in many

approximation problems (cf. Sec. 5.1). The initial weights may be uniform and the

initial component parameters may be speci¯ed randomly near the \global" means. In

this way, we can suppress undesirable interference of component \trajectories" with

the course of iterations. In Gaussian components the variances may be identical but

they should be su±ciently large to make all data \visible" to all components at the

beginning. In the case of complex highly multimodal data it may be useful to ini-

tialize the component means by randomly chosen training data vectors — in a way

resembling the Parzen estimates in a certain sense.

In high-dimensional spaces the competitive suppression of component weights

may become too strong and some components may be suppressed before they succeed

to reach a \stable" position. Consequently, in some cases it may be di±cult \to keep

the components in game." A useful idea is to ¯x the uniform component weights in

several starting EM iterations. Note that this approach is similar to the popular

nearest mean algorithm which implicitly assumes the uniform component weights.

It is intuitively clear that all the above suggestions in Secs. 3.2 and 3.3 are data-

dependent and therefore they cannot be generally justi¯ed in a rigorous way.

Nonetheless, they can be helpful in solving practical problems.

3.4. Multidimensional mixtures

Multidimensional spaces are known to be \sparse" in the sense that the distances

between data points become large due to high dimensionality. For this reason the

multidimensional components wmF ðxjµmÞ are often nearly nonoverlapping. Intui-

tively it is clear that a measure of component overlap may contain useful information

about the estimated mixture. Thus the nonoverlapping components imply nearly

binary properties of the conditional weights qðmjxÞ. In other words, for a given x

there is usually one component with a high conditional weight qðmjxÞ � 1 whereas

J. Grim
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the remaining conditional weights are close to zero. In this respect the following mean

value of the maximum conditional weights

�qmax ¼
1

jSj
X
x2S

qmaxðxÞ; qmaxðxÞ ¼ max
m2M

fqðmjxÞg; ð30Þ

provides a useful insight into the properties of the underlying mixture estimate and

may be helpful to balance the relationship between the problem dimension and model

complexity.

In numerical experiments with a large number of components (M � 101–102) in

high-dimensional spaces (N � 102–103) we usually obtain relatively large values

�qmax in ¯nal iterations, typically �qmax � 0:975–0:999.24,34,41 We can conclude that, in

such a case, for most data vectors x 2 S there is only one \dominating" component

characterized by the conditional weight near to one (qðmjxÞ¼: 1) and, in turn, for

each component wmF ðxjmÞ there is a corresponding subset of \dominated" data

vectors x 2 S ðmÞ � S with the same property. Recall now that, considering a general

normal mixture, we compute in each EM iteration the new covariance matrices � 0
m

by Eq. (9) but the summing is actually reduced to the subsets S ðmÞ:

� 0
m ¼

X
x2S

qðmjxÞ
w 0

mjSj
ðx� ¹ 0

mÞðx� ¹ 0
mÞT �

X
x2S ðmÞ

qðmjxÞ
w 0

mjSj
ðx� ¹ 0

mÞðx� ¹ 0
mÞT : ð31Þ

For a small weight wm the subset S ðmÞ may become too small (jS ðmÞj ¼: wmjSj < N)

to get a full-rank covariance matrix §m. Consequently, in the case of a large number

of multidimensional normal components we frequently obtain ill-conditioned (nearly

singular) covariance matrices in EM iterations which may cause numerical di±cul-

ties in matrix inversion. As this problem is inherent in multidimensional Gaussian

mixtures with many components, it can be viewed as a computational argument for

using diagonal covariance matrices.

In the case of high-dimensional real spaces, say for N > 50, the Gaussian com-

ponents F ðxjµmÞ may yield very small values, often below the usual representation

bounds. In this way some of the components may under°ow, even when using

variables of the long-double type. The small values are lost and cannot be

\recovered" by norming in Eq. (4). The problem is obviously data-dependent, may

occur in binary- or discrete-data spaces and may go unrecognized since the EM

algorithm need not necessarily collapse. Thus, possible unsatisfactory results may be

interpreted as an instance of \poor learning". Surprisingly, any related references in

the literature are rare,8 but the relatively low dimensionality of published numerical

examples (cf. Sec. 1.2) seems to indirectly support this hypothesis.

The limited numerical accuracy of a processor can be easily bypassed since the

computation of qðmjxÞ in Eq. (4) is invariant with respect to multiplication of the

components wmF ðxjµmÞ by arbitrary constant. Evaluating the components in
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logarithmic form we simply ¯nd the corresponding maximum value

logC0ðxÞ ¼ max
m

flog½wmF ðxjµmÞ�g ð32Þ

which can be used to compute the \normalized" values of wmF ðxjµmÞ and P ðxÞ:
1 � C�1

0 ðxÞwmF ðxjµmÞ ¼ expf� logC0ðxÞ þ logwm þ logF ðxjµmÞg: ð33Þ
It can be seen that the constant C0ðxÞ is reduced in formula (4) for qðmjxÞ and the

related log-likelihood values can be computed by the equation

logP ðxÞ ¼ log C�1
0 ðxÞ

X
m2M

wmF ðxjµmÞ
" #

þ logC0ðxÞ: ð34Þ

Obviously, the \normalized" component values (33) may under°ow too, but the

maximum of the expression C�1
0 ðxÞwmF ðxjµmÞ is equal to one. Therefore the

small component values may be neglected without any relevant loss of accuracy in

Eqs. (4) and (5).

4. Product Mixtures and Their Modi¯cations

Considering mixtures of product components, we approximate the unknown prob-

ability distributions in the form of the following conditional independence model

P ðxjw;£Þ ¼
X
m2M

wmF ðxjµmÞ; x 2 X ; N ¼ f1; . . . ;Ng; ð35Þ

F ðxjµmÞ ¼
Y
n2N

fnðxnj�mnÞ; µm ¼ f�m1; �m2; . . . ; �mNg; ð36Þ

where x 2 X are discrete or real data vectors, w is the vector of probabilistic weights

and the component distributions F ðxjµmÞ with the parameters µm are de¯ned as

products. Here fnðxnj�mnÞ are univariate discrete probability distributions or density

functions with the parameters �mn and N is the index set of variables.

Let us remark that, in the case of product components, Eq. (5) can be speci¯ed for

each variable independently (n 2 N ;m 2 M):

Qmnð�mnÞ ¼
X
x2S

qðmjxÞ
w 0

mjSj
log fnðxnj�mnÞ; � 0

mn ¼ argmax
�mn

fQmnð�mnÞg: ð37Þ

As mentioned earlier, the product mixture does not imply the statistical inde-

pendence of the variables (cf. Sec. 1.2) and therefore the term \naive Bayes models"

is incorrectly applied to product mixtures. It can be easily veri¯ed that in case of

discrete variables the product mixtures are universal approximators in the sense

that any discrete distribution can be expressed as a product mixture (cf. Ref. 18,

Remark 1, p. 643). In the case of continuous variables the Gaussian product mixtures

approach the universality of nonparametric Parzen estimates56 with the increasing

number of components. Simultaneously, the diagonal covariance matrices in
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Gaussian components avoid matrix inversions in EM iterations and increase the

computational stability of EM algorithm (cf. Secs. 1.2 and 3.4). In the following

subsections we show that, in addition, the mixtures of product components have

some other useful properties.

4.1. Structural mixture model

One of the most important properties of product mixtures is the possibility of

structural modi¯cation. The structural (subspace) mixture model has been proposed

within the framework of statistical pattern recognition12 as a more general alterna-

tive to feature selection. In particular, making the substitution

F ðxjµmÞ ¼ F ðxjµ0ÞGðxjµm;ÁmÞ; m 2 M; ð38Þ
in (35), we introduce the structural mixture

P ðxjw;£;ÁÞ ¼ F ðxjµ0Þ
X
m2M

wmGðxjµm;ÁmÞ; ð39Þ

where F ðxjµ0Þ is a ¯xed nonzero \background" probability distribution, and the

component functions Gðxjµm;ÁmÞ include binary structural parameters

�mn 2 f0; 1g:

Gðxjµm;ÁmÞ ¼
Y
n2N

fnðxnj�mnÞ
fnðxnj�0nÞ
� �

�mn

; Ám ¼ ð�m1; . . . ; �mNÞ 2 f0; 1gN : ð40Þ

A convenient ¯xed choice of the background distribution is the product of the global

univariate marginalsa:

F ðxjµ0Þ ¼
Y
n2N

fnðxnj�0nÞ; fnðxnj�0nÞ � P �
nðxnÞ; n 2 N :

Setting a structural parameter �mn ¼ 0, we can replace any component-speci¯c

distribution fnðxnj�mnÞ by its respective background distribution fnðxnj�0nÞ, i.e. we
can write

F ðxjµmÞ ¼
Y
n2N

fnðxnj�mnÞ�mnfnðxnj�0nÞ1��mn : ð41Þ

Obviously, Eq. (41) and the structural mixture model in (38) and (39) can be viewed

formally as a product mixture again.

Let us note that the component functions Gðxjµm;ÁmÞ may be de¯ned on dif-

ferent subspaces. The number of involved parameters and the \structure" of the

¯nite mixture (39) can be controlled by means of the binary parameters �mn. In other

words, we can estimate product mixtures of high dimensionality while keeping the

number of estimated parameters reasonably small, e.g. appropriate to the size of the

available dataset. Simultaneously, by including only the most relevant speci¯c

aIn a more general version the background distribution can be optimized too.12
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parameters into components, we suppress the in°uence of the less informative

\noisy" variables.

The structural mixture (39) can be optimized in full generality, including the

structural parameters �mn, by means of EM algorithm12,16,24,32:

L ¼ 1

jSj
X
x2S

log
X
m2M

wmF ðxjµ0ÞGðxjµm;ÁmÞ
" #

:

Again, in the following general EM iteration equations, the prime denotes the

new parameter values ðm 2 M;n 2 N ;x 2 SÞ:

qðmjxÞ ¼ wmGðxjµm;ÁmÞP
j2M wjGðxjµj;ÁjÞ

; w 0
m ¼ 1

jSj
X
x2S

qðmjxÞ; ð42Þ

Qmnð�mnÞ ¼
X
x2S

qðmjxÞ
w 0

mjSj
log fnðxnj�mnÞ w 0

mjSj ¼
X
x2S

qðmjxÞ
 !

; ð43Þ

� 0
mn ¼ argmax

�mn

Qmnð�mnÞf g ¼ argmax
�mn

X
x2S

qðmjxÞ
w 0

mjSj
log fnðxnj�mnÞ

( )
; ð44Þ

and � 0
mn is the structural criterion given by

� 0
mn ¼ 1

jSj
X
x2S

qðmjxÞ log fnðxnj� 0
mnÞ

fnðxnj�0nÞ
; m 2 M; n 2 N : ð45Þ

Assuming a ¯xed number of component-speci¯c parameters,X
m2M

X
n2N

� 0
mn ¼ �; ð46Þ

we de¯ne the optimal subset of nonzero parameters � 0
mn by choosing the largest �

values such that � 0
mn > 0.

It can be veri¯ed12,16 that the iteration scheme (42)–(46) guarantees the mono-

tonic property of the EM algorithm. Recall that, for this purpose, we cannot refer to

the general proof given in Sec. 2 because the optimization of the structural para-

meters �mn depends on all other parameters. Instead we have to prove that the basic

inequality (20) follows from the above Eqs. (42)–(46). In particular, in view of Eqs.

(20) and (38), it is su±cient to prove the inequality

X
m2M

1

jSj
X
x2S

qðmjxÞ logGðxjµ 0
m;Á

0
mÞ

Gðxjµm;ÁmÞ
� 0; ð47Þ

which can be rewritten as follows (cf. (40)):

X
m2M

X
x2S

qðmjxÞ
jSj

X
n2N

� 0
mn log

fnðxnj� 0
mnÞ

fnðxnj�0nÞ
� �mn log

fnðxnj�mnÞ
fnðxnj�0nÞ

� �
� 0;
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X
m2M

X
n2N

X
x2S

qðmjxÞ
jSj ð� 0

mn � �mnÞ log
fnðxnj� 0

mnÞ
fnðxnj�0nÞ

þ �mn log
fnðxnj� 0

mnÞ
fnðxnj�mnÞ

� �
� 0:

Considering the de¯nition (45) of the structural criterion � 0
mn, we can equivalently

write the last inequality in the form:

X
m2M

X
n2N

ð� 0
mn � �mnÞ� 0

mn þ
X
m2M

X
n2N

�mn

X
x2S

qðmjxÞ
jSj log

fnðxnj� 0
mnÞ

fnðxnj�mnÞ
� 0: ð48Þ

Recall that the de¯nition (44) implies the inequalities ðn 2 N ; m 2 MÞ:
X
x2S

qðmjxÞ
w 0

mjSj
log fnðxnj� 0

mnÞ �
X
x2S

qðmjxÞ
w 0

mjSj
log fnðxnj�mnÞ; 8 �mn; ð49Þ

and consequently, for any ¯xed structural parameters �mn, we can write

X
m2M

X
n2N

�mn

X
x2S

qðmjxÞ
jSj log

fnðxnj� 0
mnÞ

fnðxnj�mnÞ
� 0; 8 �mn: ð50Þ

For the same reason the structural criterion � 0
mn is nonnegative and thereforeX

m2M

X
n2N

� 0
mn�

0
mn �

X
m2M

X
n2N

�mn�
0
mn ð51Þ

because the binary structural variables � 0
mn are nonzero only for the � largest values

of � 0
mn (cf. (46)). Thus, in view of the last two inequalities (50) and (51) the in-

equality (48) as well as (47) is valid and therefore the monotonicity condition (20) is

guaranteed for the structural modi¯cation of EM algorithm (42)–(46).

Let us remark that, in Eq. (46), we can ¯x the number of speci¯c parameters in

each component individually, i.e. we can writeX
m2M

X
n2N

�
0
mn ¼ �m; m 2 M: ð52Þ

For this case the above proof can be easily modi¯ed by omitting the sum for m 2 M
in Eq. (47).

Note that the reduced background probability distribution F ðxjµ0Þ in the for-

mula (42) makes the EM iterations more e±cient. On the other hand, in each iter-

ation, the values of the structural criterion � 0
mn are always evaluated for all

m 2 M;n 2 N and ordered. From the computational point of view, it is therefore

more convenient to specify the structural parameters by simple thresholding:

� 0
mn ¼ 1; � 0

mn > �

0; � 0
mn � �

�
� ¼ �

MN

X
m2M

X
n2N

� 0
mn; � � 0

 !
; ð53Þ

The monotonic property seems to hold in this case too, but the above proof is not

more applicable.
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The structural mixture model can be viewed as a more general alternative to

standard feature-selection techniques. By estimating the structural parameters we

are not con¯ned to a single subset of features. The computation of class-conditional

distributions may be reduced to optimal subsets of the most informative variables

which are speci¯c for each component. In other words we obtain a speci¯c subset of

features for each component. Simultaneously, the structural model is less prone to

over¯tting because in the components the unused variables are usually noisy and

unreliable.27

The structural model (39) can be used to solve the feature-selection problem

globally for multimodal densities,59 (see also Ref. 12, Remark 4.2, p. 150). Recently a

similar model has apparently been independently proposed by Graham and Miller9

to control the mixture model complexity in combination with the minimum de-

scription length criterion (see also Markley and Miller52 and Bouguila et al.3). We

remark in this connection that the structural mixture alone includes a speci¯c in-

ternal mechanism to reduce the mixture complexity. As a consequence of structural

optimization, some components can \lose" all speci¯c parameters and the resulting

identical \nonspeci¯c" components can be replaced by a single one. In this way the

¯nal number of components may decrease according to a suitably chosen parameter

� in Eq. (53).

In statistical pattern recognition the \structural" computation can be viewed as

\dimension-independent" because any variable xn which is nonspeci¯c in all com-

ponents (i.e. �mn ¼ 0 for allm 2 M) can be omitted and, in turn, we can include any

new variable xNþ1 given the corresponding background distribution.22

4.2. Mixtures of multivariate Bernoulli distributions

In the case of binary data the product mixture model is known as a multivariate

Bernoulli mixture (cf. Refs. 19, 25–27, 32 and 60) having the components

F ðxjµmÞ ¼
Y
n2N

pnðxnj�mnÞ; xn 2 f0; 1g; ð54Þ

with the univariate distributions de¯ned by the equation

pnðxnj�mnÞ ¼ ð�mnÞxnð1� �mnÞ1�xn ; 0 � �mn � 1:

Here and in equations that follow, we use the notation pnðxnj	Þ instead of fnðxnj	Þ to
emphasize that the univariate distributions are discrete.

Note that the maximization task (6) can be solved separately (cf. (37)) for each

parameter �mn and, considering Eq. (24), we can write ðn 2 N ; m 2 MÞ:

� 0
mn ¼ argmax

�mn

X
x2S

qðmjxÞ
w 0

mjSj
log pnðxnj�mnÞ

( )
¼
X
x2S

xn

qðmjxÞ
w 0

mjSj
: ð55Þ

The EM algorithm for estimating Bernoulli mixtures can be easily transformed to

the structural version of Sec. 4.1 by introducing the binary structural variables �mn.
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It can be seen that the corresponding structural criterion � 0
mn (cf. (45)) can be

rewritten in the form:

� 0
mn ¼ w 0

m

X1
�¼0

p 0
nð�jmÞ log p

0
nð�jmÞ
pnð�j0Þ

¼ w 0
mIðp 0

nð	jmÞjjpnð	j0ÞÞ: ð56Þ

In other words, the structural criterion � 0
mn can be expressed in terms of Kullback–

Leibler information divergence Iðp 0
nð	jmÞjjpnð	j0ÞÞ between the component-speci¯c

distribution p 0
nðxnjmÞ and the corresponding univariate \background" distribution

pnðxnj0Þ. Thus, only the most distinct (i.e. speci¯c and informative) distributions

p 0
nðxnjmÞ are included in the components.

4.3. Gaussian mixtures of product components

In order to approximate continuous multivariate and multimodal densities we

can use mixtures of Gaussian components with diagonal covariance matrices

(cf. Refs. 20, 24, 34, 36, 39 and 41):

P ðxjw;¹;¾Þ ¼
X
m2M

wmF ðxj¹m;¾mÞ; x 2 RN ;

¹m ¼ ð	m1; . . . ; 	mNÞ; ¾m ¼ ð
m1; . . . ; 
mNÞ;
ð57Þ

i.e. the components are de¯ned as products of univariate Gaussian densities

F ðxj¹m;¾mÞ ¼
Y
n2N

fnðxnj	mn; 
mnÞ; ð58Þ

fnðxnj	mn; 
mnÞ ¼
1ffiffiffiffiffiffi

2�
p


mn

exp � ðxn � 	mnÞ2
2ð
mnÞ2

� �
: ð59Þ

The corresponding weighted log-likelihood function (cf. (37)) is given by the

equation

Qmnð	mn; 
mnÞ ¼
X
x2S

qðmjxÞ
w 0

mjSj
log fnðxnj	mn; 
mnÞ; m 2 M; n 2 N :

Again, the implicit equation (37) has a simple solution which can be derived as a

weighted analogy of the well-known maximum-likelihood estimates (cf. Eq. (24)):

	 0
mn ¼

X
x2S

xn

qðmjxÞ
w 0

mjSj
; w 0

mjSj ¼
X
x2S

qðmjxÞ
 !

; ð60Þ

ð
 0
mnÞ2 ¼

X
x2S

ðxn � 	 0
mnÞ2

qðmjxÞ
w 0

mjSj
¼
X
x2S

x2
n

qðmjxÞ
w 0

mjSj
� ð	 0

mnÞ2: ð61Þ

As mentioned earlier, the Gaussian mixture model (57) is suitable for approxi-

mating unknown multimodal densities. The mixture parameters can be initialized

with uniform weights and su±ciently large identical variances 
mn to keep the data

\visible" for all components. The components' means ¹m can be chosen randomly as
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a slight variation of the global means to avoid undesirable interference of the

component parameter \trajectories" (cf. Sec. 3.3).

Recall that diagonal covariance matrices in Gaussian mixture components sim-

plify the EM algorithm and decrease the risk of frequently occurring ill-conditioned

matrices. In view of the obvious similarity to Parzen (kernel) estimates, the ap-

proximation capability of the conditional independence model (57) can be improved

by increasing the number of components (cf. Sec. 1.1). We remark that the basic

proof of asymptotic unbiasedness and consistency of the kernel estimates56 also

assumes the kernel function in a product form.

The diagonal covariance matrices could appear unsuitable when the Gaussian

components should conform with narrow elongated \skew" clusters of data points.

For this reason the variables are often normalized to zero means and unity variances.

However, such a preprocessing of data is super°uous because the EM estimate of a

Gaussian mixture density with the components (58) is invariant with respect to an

arbitrary linear transform of variables (cf. Ref. 34, Appendix I).

The EM iteration equations (60) and (61) can be easily modi¯ed12,24 to estimate

the structural mixture model

P ðxjw;¹;¾;ÁÞ ¼ F ðxj¹0;¾0Þ
X
m2M

wmGðxj¹m;¾m;ÁmÞ ð62Þ

by introducing the \background" probability density in the form:

F ðxj¹0;¾0Þ ¼
Y
n2N

fnðxnj	0n; 
0nÞ; ð63Þ

	0n ¼ 1

jSj
X
x2S

xn; ð
0nÞ2 ¼
1

jSj
X
x2S

ðxn � 	0nÞ2: ð64Þ

The related structural criterion (45) can be expressed (cf. (60) and (61)) in the form:

� 0
mn ¼ w 0

m

2

ð	 0
mn � 	0nÞ2 þ ð
 0

mnÞ2
ð
0nÞ2

� 1� 2 log

 0
mn


0n

� �
ð65Þ

which is equivalent to the following continuous version of the Kullback–Leibler in-

formation divergence:

� 0
mn ¼ w 0

m

Z
Xn

fnð�j	0
mn; 


0
mnÞ log

fnð�j	 0
mn; 


0
mnÞ

fnð�j	0n; 
0nÞ
d�

¼ w 0
mIðfnð	j	 0

mn; 

0
mnÞjjfnð	j	0n; 
0nÞÞ: ð66Þ

We recall that the structural optimization criterion �mn in the general form (45) has

been derived from the condition (47), which guarantees the monotonic property of

EM algorithm.16,32 From Eqs. (56) and (66) it follows that, in the case of both

Bernoulli and Gaussian product mixtures, the structural criterion has a theoretical

interpretation in terms of Kullback–Leibler information divergence. In this sense, at

each iteration of EM algorithm only the most informative conditional distributions
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p 0
nð	jmÞ or density functions f 0

nð� 	 j	mn; 
mnÞ are included in the components. The

in°uence of the less relevant \noisy" variables is suppressed by introducing the

corresponding terms of the common background.

4.4. The EM algorithm for missing data

The problem of missing data is a traditional domain of mathematical statistics, since

most statistical methods cannot be applied to incomplete data vectors. The data can

be made complete by simply omitting the incomplete vectors or variables but by

doing this, we could lose a large part of the available information. Another possibility

is to replace the missing values with some estimates.5,70 However, as the estimated

values have to be typical in a certain sense, the natural variability of data would be

partly suppressed. In this situation, the product mixture model provides us with a

simple possibility to apply the EM algorithm directly to incomplete data. It is not

necessary to substitute for the missing values since the product components can

be reduced to an arbitrary subspace currently available in x. In other words, we

estimate the mixture parameters using only the available data (cf. Ref. 28 for an

example).

In order to modify the EM algorithm for incomplete data we denote byNðxÞ � N
the subset of indices of the de¯ned variables in a given vector x and Sn � S the

subset of vectors with the de¯ned value xn:

NðxÞ ¼ fn 2 N : xn is defined in xg; Sn ¼ fx 2 S : n 2 NðxÞg; n 2 N :

The modi¯ed EM iteration equations can be expressed in the form (m 2 M;x 2 S):

qðmjxÞ ¼ wm

Q
n2NðxÞ fnðxnj�mnÞPM

j¼1 wj

Q
n2N ðxÞ fnðxnj�jnÞ

; w 0
m ¼ 1

jSj
X
x2S

qðmjxÞ; ð67Þ

Qmnð�mnÞ ¼
X
x2Sn

qðmjxÞ
w

0
mjSj

log fnðxnj�mnÞ; m 2 M; n 2 N ; ð68Þ

� 0
mn ¼ argmax

�mn

fQmnð�mnÞg; m 2 M; n 2 N : ð69Þ

Roughly speaking, we calculate the values qðmjxÞ in Eq. (67) only for the variables

xn currently available in x and the new parameters �
0
mn in Eq. (69) only from the

data vectors x 2 Sn with the de¯ned variable xn. It can be seen that the proof of the

monotonic property (cf. Sec. 2.1) is also applicable to Eqs. (67)–(69).

Obviously, there is a standard trade-o® between the percentage of missing values

and the estimation accuracy. The most suitable type of missing values is random

with reasonable bounds:

Nmin ¼ min
x2S

fjN ðxÞjg; Smin ¼ min
n2N

fjSnjg;

whereby the completely missing variables and \empty" vectors must be omitted.
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The incomplete-data modi¯cation of EM algorithm has been used to compute the

interactive statistical model of the Czech census data28 containing about 1.5 million

incomplete data records (questionnaires) with about 3 million missing answers

(cf. Sec. 5.5).

5. Applications of Product Mixtures

The concept of structural product mixtures12 has been proposed in the framework of

statistical pattern recognition with the aim of Bayesian decision-making. Consider-

ing a statistical decision problem fP ðxj!Þpð!Þ; ! 2 �g with the a priori probabilities

pð!Þ, we assume the class-conditional distributions P ðxj!Þ in the form of structural

product mixtures (cf. (38)–(40)):

P ðxj!Þ ¼ P ðxj!;w;£;ÁÞ ¼
X

m2M!

wmF ðxjµ0ÞGðxjµm;ÁmÞ; ! 2 �; x 2 X ;

whereM! denotes the respective component index sets. The background probability

density F ðxjµ0Þ can be reduced in the Bayes formula

pð!jxÞ ¼ P ðxj!;w;£;ÁÞpð!ÞP
#2� P ðxj#;w;£;ÁÞpð#Þ ¼

pð!ÞPm2M!
wmGðxjµm;ÁmÞP

#2� pð#ÞPm2M#
wmGðxjµm;ÁmÞ

; ð70Þ

and therefore any decision-making may be con¯ned to just the relevant variables. In

other words, the Bayes decision function can be expressed as a weighted sum of

component functions Gðxjµm;ÁmÞ which can be de¯ned on di®erent subspaces:

!� ¼ dðxÞ ¼ argmax
!2�

fpð!jxÞg ¼ argmax
!2�

pð!Þ
X

m2M!

wmGðxjµm;ÁmÞ
( )

: ð71Þ

The primary motivation for the structural mixture model has been the problem of

biologically unnatural complete interconnection of probabilistic neurons. We recall

that all class-conditional probability distributions P ðxj!Þ in the Bayes formula must

be normed in the same space and therefore they must be de¯ned in the same set of

input variables.32 To the best of our knowledge, the above mixture model is the only

statistically correct way to remove this structural limitation. In the following

subsections we illustrate the computational advantages of structural mixtures

(cf. Sec. 4.1).

5.1. Recognition of numerals in binary representation

In recent years we have repeatedly applied multivariate Bernoulli mixtures for

recognition of handwritten numerals from the NIST Special Database 19 (SD19) in

order to verify di®erent decision-making aspects.25,26 The NIST benchmark database

containing about 400,000 handwritten numerals in binary raster representation

(about 40,000 for each numeral) has been normalized to a 32
 32 binary raster to

obtain 1024-dimensional binary data vectors. We have used the odd samples of each
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class for training and the even samples for testing to guarantee the same statistical

properties of both datasets.26 With the aim to increase the variability of the input

binary patterns, we extended the training datasets four times by making three dif-

ferently rotated variants of each pattern (by �4�, �2� and þ2�) with the resulting

80,000 training data vectors for each class. The marginal probabilities of classes in

raster arrangement (\mean images") can be seen in Fig. 1.

For the sake of this paper we have solved the classi¯cation problem several times

to document the limited in°uence of the randomly chosen initial values of para-

meters. In all experiments the initial number of components was set to M ¼ 200 for

each class and the component parameters were initialized randomly with uniform

weights. In the ¯rst ten experiments I–X (cf. Table 1) the component parameters �mn

were set with equal probability of either �mn ¼ 0:51 or �mn ¼ 0:49. In the experi-

ments XI–XX the parameters were speci¯ed according to randomly chosen training

numerals. For a given x 2 S we set: �mn ¼ 0:51 for xn ¼ 1 and �mn ¼ 0:49 for xn ¼ 0.

By using the randomly generated initial parameters we estimated in each ex-

periment the ten class-conditional Bernoulli mixtures (in the subspace modi¯cation

(39)) and then the accuracy of the resulting Bayes decision function (71) was

characterized by the classi¯cation error matrix. Note that the number of components

and the number of component-speci¯c parameters may change in the course of EM

iterations (cf. Secs. 4.1 and 4.2). The error matrix of Table 2 shows in the o®-diagonal

¯elds the mean values of false negative decisions along with the standard

Fig. 1. Marginal probabilities of classes in raster arrangement (\mean images").

Table 1. In all experiments I–XX the initial number of components was M ¼ 200 and the mixture
parameters were initialized randomly. Components denotes the resulting number of all components,

Parameters denotes the resulting total number of mixture parameters in thousands and Error the

resulting classi¯cation error in %. In the ¯rst ten experiments I–X the component parameters have been

set with equal probability of either �mn ¼ 0:51 or �mn ¼ 0:49. In the experiments IX–XX the parameters
were speci¯ed by randomly chosen training numerals: xn ¼ 1 ) �mn ¼ 0:51; and xn ¼ 0 ) �mn ¼ 0:49.

The global mean error was 2.70%.

Experiment I II III IV V VI VII VIII IX X

Components 1645 1647 1653 1655 1664 1665 1672 1699 1758 1816

Parameters (in 103) 1460 1457 1464 1470 1469 1472 1476 1489 1491 1524

Error in % 2.75 2.77 2.75 2.71 2.69 2.78 2.73 2.76 2.80 2.74

Experiment XI XII XIII XIV XV XVI XVII XVIII XIX XX

Components 1984 1985 1988 1994 1997 1998 1999 1999 2000 2000

Parameters (in 103) 1731 1735 1742 1760 1764 1765 1769 1768 1862 1862

Error in % 2.67 2.74 2.72 2.73 2.60 2.67 2.71 2.62 2.57 2.61
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deviations — as obtained in the 20 experiments. Despite the di®erent randomly

initialized parameters the classi¯cation results are very similar.

5.2. Sequential recognition

The sequential decision-making is a traditional problem of statistical pattern rec-

ognition.7,2,63 Unlike in the standard classi¯cation scheme, the features are not

considered all at once but only successively, one at a time. With the aim to reduce the

number of feature measurements that are necessary for the ¯nal decision, we have to

choose the most informative feature at any stage of classi¯cation. Consequently, the

key problem of sequential recognition is the optimal online ordering of features, given

a subset of available feature measurements. In the case of dependent variables the

optimal choice of the most informative feature can be strongly in°uenced by the

preceding measurements; therefore, it is of basic importance to know the underlying

conditional probability distributions of the remaining features.

In statistical pattern recognition there are various methods to estimate the un-

known class-conditional distributions or densities but, from the computational point

of view, it is usually prohibitive to derive online the conditional marginals of the

unobserved features, given a subset of previous feature measurements. Approxi-

mating the unknown class-conditional distributions by product mixtures we have a

unique possibility to solve the online feature ordering problem by computing the

individual Shannon informativity of the unobserved features for any given subset of

preceding measurements.21 In literature a comparable explicit solution of the online

feature ordering problem is available only for the \naive Bayes" model2 assuming the

class-conditional independence of features. The general case of dependent features

has been solved only approximately.7,63

Table 2. Mean classi¯cation error matrix obtained in the randomly initialized estimation experiments
I–XX from Table 1. The matrix illustrates the low variability of the resulting classi¯er properties. In each

row the diagonal contains the mean number of correctly recognized numerals, the o®-diagonal elements

contain the mean numbers of the corresponding false negative decisions � standard deviations. The last

row contains the mean ¯nal numbers of components in the respective classes � standard deviations.

C 0 1 2 3 4 5 6 7 8 9

0 19,853 10� 5 61� 13 19� 6 33� 6 43� 8 50� 10 4� 4 66� 13 36� 12

1 7� 3 21,824 45� 10 10� 4 70� 15 12� 7 59� 21 172� 42 82� 14 19� 7
2 36� 11 51� 12 19,642 71� 11 39� 8 10� 4 14� 6 30� 8 125� 11 24� 6

3 25� 7 22� 8 86� 8 19,848 4� 2 149� 9 4� 3 33� 7 288� 20 64� 6

4 38� 12 19� 12 19� 6 4� 3 18,948 7� 5 47� 10 74� 12 76� 9 358� 27

5 41� 11 26� 14 15� 6 206� 16 9� 3 17,775 53� 11 10� 6 174� 17 51� 9
6 98� 12 23� 10 24� 10 10� 6 54� 13 142� 16 19,522 2� 2 77� 9 6� 5

7 14� 5 20� 7 117� 10 27� 8 88� 8 3� 1 0� 1 20,264 41� 8 338� 26

8 40� 12 33� 19 56� 14 130� 10 21� 7 87� 11 19� 8 23� 12 19,315 70� 16

9 19� 6 20� 9 27� 5 96� 8 161� 16 34� 7 4� 2 200� 33 186� 13 19,034
M 181� 19 146� 49 197� 3 198� 2 192� 9 194� 7 179� 22 174� 27 196� 4 182� 20
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In particular, assuming the class-conditional probability distribution P ðxj!Þ in

the form (35), a given subset of feature measurements

xC ¼ ðxi1 ;xi2 ; . . . ;xikÞ 2 XC ; C ¼ fi1; . . . ; ikg � N ; ð72Þ
and an arbitrary unobserved variable xnðn 2 N nCÞ, we can write21 the explicit

formulae for the conditional distributions PnjCðxnjxCÞ;PnjC!ðxnjxC ; !Þ as

PnjCðxnjxCÞ ¼
Pn;Cðxn;xCÞ

PCðxCÞ
¼
X
!2�

X
m2M!

�W
!
mðxCÞfnðxnjmÞ; ð73Þ

PnjC!ðxnjxC ; !Þ ¼
Pn;Cj!ðxn;xC j!Þ

PCj!ðxC j!Þ
¼
X

m2M!

W !
mðxCÞfnðxnjmÞ; ð74Þ

where

W !
mðxCÞ ¼

wmFCðxC jmÞP
j2M!

wjFCðxC jjÞ
; �W

!
mðxCÞ ¼

pð!ÞwmFCðxC jmÞP
#2� pð#ÞPj2M#

wjFCðxC jjÞ
:

By using Eqs. (73) and (74) we can write the Shannon formula for the conditional

information IxC
ðXn;�Þ about � contained in the variable xn given the subvector

xC 2 XC :

IxC
ðXn;�Þ ¼ HxC

ð�Þ �HxC
ð�jXnÞ ¼ HxC

ðXnÞ �HxC
ðXnj�Þ: ð75Þ

Here HxC
ðXnÞ and HxC

ðXnj�Þ are the respective Shannon entropies:

HxC
ðXnÞ ¼

X
xn2Xn

�PnjCðxnjxCÞ logPnjCðxnjxCÞ; ð76Þ

HxC
ðXnj�Þ ¼

X
!2�

P�jCð!jxCÞ
X
xn2Xn

�PnjC!ðxnjxC ; !Þ logPnjC!ðxnjxC ; !Þ: ð77Þ

Finally we can choose the next most informative feature measurement xn0
:

n0 ¼ arg max
n2N nC

fIxC
ðXn;�Þ: ð78Þ

which guarantees the maximum expected decrease of uncertainty of the posterior

probability distribution pð!jxC ;xnÞ expressed by the entropy HxC
ð�jXnÞ (cf. (75)).

On the base of the solution from Sec. 5.1, Fig. 2 illustrates the proposed method of

sequential recognition of numerals on the binary 32
 32-raster. Note that the

expected image of the numeral two may strongly change in the case of an unexpected

value of the uncovered raster ¯eld.

One of the most natural application domains of sequential pattern recognition is

medical diagnostics. The computer-aided medical decision-making usually includes a

large number of possible diagnoses and diagnostic features, and therefore the main

purpose of a sequential procedure is to choose the maximum possible diagnostic

information. In this respect the information-controlled sequential questioning is ca-

pable of e±ciently ¯nding the diagnostically relevant features. The resulting
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posterior distribution pð!jxCÞ can be used as input information of a medical expert

for the sake of a ¯nal diagnosis.22

5.3. Probabilistic neural networks

Within the framework of statistical pattern recognition, we have developed the

concept of probabilistic neural networks in a series of papers15,16,19,25–27,30,32 as one of

the most appealing applications of the structural mixture model. In particular, in a

statistical decision problem fP ðxj!Þpð!Þ; ! 2 �g, we assume the class-conditional

structural mixtures in the form (cf. (70)):

P ðxj!Þ ¼ P ðxj!;w;£;ÁÞ ¼
X

m2M!

wmF ðxjµ0ÞGðxjµm;ÁmÞ; ! 2 �; x 2 X :

As the background probability density F ðxjµ0Þ can be reduced in the Bayes formula

(70), we can express the Bayes decision function as a weighted sum of component

functions de¯ned on di®erent subspaces (cf. (71)). Thus, within the framework of

multilayer neural networks, the input connections of neurons can be con¯ned to

arbitrary subsets of input neurons whereby the structural optimization of neural

networks can be included in the EM algorithm in full generality (cf. Sec. 4.1).

The basic principle of PNN is the interpretation of product components in terms

of functional properties of biological neurons. We have shown that the estimated

product mixtures (39) can be used to de¯ne an information-preserving transform in

terms of a posteriori probabilities qðmjxÞ (cf. (42)):
T : X ! Y; Y � RM ; y ¼ T ðxÞ ¼ ðT1ðxÞ;T2ðxÞ; . . . ;TMðxÞÞ 2 Y; ð79Þ
ym ¼ TmðxÞ ¼ log qðmjxÞ; x 2 X ; m 2 M: ð80Þ

The vector transform T maps the space X of neural inputs into the space of

neural outputs Y and can be constructed repeatedly to design multilayer PNN.

Fig. 2. Sequential recognition of the numeral two. Note that only seven raster ¯elds are su±cient to

recognize the numeral. The ¯rst row shows the changing expectation of the classi¯er. The second row
shows the informativity of raster ¯elds corresponding to the currently uncovered (white or black) raster

¯elds and ¯nally the input image.

J. Grim

1750028-24



Roughly speaking, the transform in (79) and (80) uni¯es the points x 2 X with

identical posterior distributions qðmjxÞ and therefore the decision information with

respect to both components IðX ;MÞ and the classes IðX ;�Þ is preserved19,67:
IðX ;MÞ ¼ IðY;MÞ; IðX ;�Þ ¼ IðY;�Þ: ð81Þ

Simultaneously the entropy HðYÞ of the output space is minimized. In view of the

structural mixture model described in Sec. 4.1 the incomplete interconnection

structure of the transformation T can be optimized in a statistically correct way16,32

by maximizing the log-likelihood criterion. Moreover, the transform (80) is fault-

tolerant in the sense that small inaccuracies of the components may cause only

bounded information loss. In particular, if the estimated parameters ~wm~qðmjxÞ
satisfy the condition

jTmðxÞ � lnð~qðmjxÞ þ ~wm�Þj < �; m 2 M; x 2 X ; ð82Þ
for some � > 0 and � > 0, then the resulting information loss is bounded by the

inequality

IðX ;MÞ� IðY;MÞ < � þ 2�: ð83Þ
From the point of view of neurophysiological interpretation, the posterior prob-

ability qðmjxÞ is a natural measure of excitation of the mth neuron, given the vector

of input stimuli x 2 X . Thus, in view of Eq. (80), the output signal ym of the mth

neuron is de¯ned as a logarithm of its excitation and we can write

ym ¼ logwm þ
X
n2N

�mn log
fnðxnj�mnÞ
fnðxnj�0nÞ

� log
X
j2M

Gðxjµj; �jÞwj

 !
: ð84Þ

The ¯rst term in the last formula may correspond to spontaneous activity of the

neuron and the second term sums up the a®erent contributions of the neural inputs

xn. Here the nonzero structural parameters �mn ¼ 1 de¯ne the set of input variables,

i.e. the receptive ¯eld of the mth neuron. Consequently, the term

gmnðxnÞ ¼ log
fnðxnj�mnÞ
fnðxnj�0nÞ

¼ log fnðxnj�mnÞ � log fnðxnj�0nÞ ð85Þ

represents the synaptic weight of the contribution xn on the input of themth neuron.

The e®ectiveness of the synaptic transmission gmnðxnÞ combines the statistical

properties of the stimulus xn with the activity of the \postsynaptic" neuron m. It is

high when the input signal xn frequently \supports" the excitation of the mth

neuron, and it is low when xn does not take part in its excitation. Finally, the last

norming term in Eq. (84) corresponds to SC lateral inhibition and is responsible for

the competitive properties of neurons. In this sense, Eq. (84) can be viewed as a

statistical justi¯cation of the following classical Hebb's postulate of learning45:

When an axon of cell A is near enough to excite a cell B and repeatedly or

persistently takes part in ¯ring it, some growth process or metabolic
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changes take place in one or both cells such that A's e±ciency as one of the

cells ¯ring B, is increased.

In a series of papers we have shown that: independently trained PNN can be

combined both horizontally and vertically,30 weighting of data is compatible with

PNN33 in a way allowing for selective evaluation of training data (\emotional"

learning) and the design of PNN can be explained in terms of strictly modular

sequential learning,29 as discussed in the next subsection. An important

\neuromorphic" feature of PNN is the invariance of structural mixtures with respect

to the arbitrary permutation of variables.30 Recall that in biological neural networks

the information about the topological arrangement of input-layer neurons is not

available at higher levels.

5.4. Learning by sequential version of EM algorithm

The concept of machine learning can be traced back to the early neural network

models like Rosenblatt's perceptron — with a clearly de¯ned sequential adaptation

of input neural weights. In recent decades the term \learning" has become vastly

in°ated because essentially any data-oriented complex algorithm can be repeatedly

applied to an extending dataset and therefore can be viewed as an instance of ma-

chine learning.

In connection with the probabilistic neural networks we refer to modular learn-

ing17,19,29 to emphasize that, assuming an in¯nite sequence of data: (a) the learning is

decentralized and sequential, without any necessity of storing input data; (b) the

probabilistic neuron may adapt only its internal parameters; and (c) the adaptation

information must be available at the neurons' interior or at its inputs.

The modular learning of probabilistic neurons is based on a sequential modi¯-

cation of EM algorithm which can be viewed as a single \in¯nite" iteration with

intermediate updating of parameters. In its original form, the EM algorithm is a

typical o²ine procedure repeatedly using all data in each iteration. However,

assuming an in¯nite sequence of data

fxðtÞg1
t¼0; xðtÞ ¼ ðx1;x2; . . . ;xNÞ 2 X ; t ¼ 0; 1; 2; . . . ;

we can write ðm 2 MÞ:

qðmjxðtÞÞ ¼ ~wmF ðxðtÞj~¹m; ~¾mÞP
j2M ~wjF ðxðtÞj~¹j; ~¾jÞ

; mðxðtÞÞ ¼ qðmjxðtÞÞP t
i¼1 qðmjxðiÞÞ ; ð86Þ

where ~wm; ~¹m; ~¾m are the current component parameters and the EM iteration

equations can be rewritten in the following sequential form ðt ¼ 1; 2; . . .Þ:

w ðtÞ
m ¼ ½1� �ðtÞ�w ðt�1Þ

m þ �ðtÞqðmjxðtÞÞ; �ðtÞ ¼ 1

t
; ð87Þ

¹ ðtÞ
m ¼ ½1� mðxðtÞÞ�¹ ðt�1Þ

m þ mðxðtÞÞxðtÞ; m 2 M; ð88Þ
¾ ðtÞ

m ¼ ½1� mðxðtÞÞ�¾ ðt�1Þ
m þ mðxðtÞÞðxðtÞ � ~¹mÞ2; ð89Þ
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where the sequentially computed parameters w
ðtÞ
m ;¹

ðtÞ
m ;¾

ðtÞ
m are substituted

periodically at some instants Tj:

~w 0
m ¼ w

ðTjÞ
m ; ~¹ 0

m ¼ ¹
ðTjÞ
m ; ~¾ 0

m ¼ ¾
ðTjÞ
m ; j ¼ 1; 2; 3; . . . : ð90Þ

It is easily veri¯ed that, for a periodically repeating set of K data vectors y 2 S:

fxðtÞg1
t¼0; xðtÞ ¼ yðkÞ 2 S; k ¼ ðt mod KÞ þ 1; t ¼ 0; 1; 2; . . . ; ð91Þ

and periodical substitution instants Ti ¼ iK, the scheme (86)–(90) is equivalent to

the standard EM algorithm if we replace the index t by the respective index k, and

the vector xðtÞ by the corresponding yðkÞ. Note that for k ¼ 1 we obtain

mðyð1ÞÞ ¼ �ð1Þ ¼ 1, i.e. the corresponding initial values w
ð0Þ
m ;¹

ð0Þ
m ;¾

ð0Þ
m are multi-

plied by zero and therefore irrelevant.

Let us remark that the above sequential scheme is applicable to the general EM

algorithm, but it is data-dependent and therefore the basic monotonic property of

EM iterations is not guaranteed. However, in some cases, the sequential scheme

yields even better results than the standard EM procedure because the underlying

sequential computation includes more data than the standard EM algorithm which is

con¯ned to a given ¯nite training set (cf. Ref. 29).

Generally, in the case of a long data sequence the substitution intervals ðTiþ1–Ti)

should increase in the course of iterations to suppress random °uctuations. In our

numerical experiments we have observed that the substitution intervals increasing

with a coe±cient chosen from the interval h1:2; 1:4i yield good results without es-

sential di®erences.29

The above periodical substitution principle has a plausible neurophysiological

interpretation because, according to the Hebb's postulate of learning, the neural

adaptation follows from some growth process or metabolic changes and therefore a

delay can be expected between the primary activity of a neuron and the corre-

sponding adaptive changes.

5.5. Probabilistic expert systems

Recently the product mixture model was applied to reproduce the results of the

Czech census.28 The source database containing 10,230,060 vectors (questionnaires)

of 24 categorical variables (questions) has been used to estimate the discrete product

mixture distribution. The estimated mixture is directly applicable as a knowledge

base of the probabilistic expert system (PES)13,14 and, by using the probabilistic

inference mechanism, we can derive the statistical properties of various subpopula-

tions in terms of conditional probability distributions (conditional histograms). In

particular, given a subpopulation speci¯ed by the values of several variables

(answers) xi1 ;xi2 ; . . . ;xik :

xC ¼ ðxi1 ;xi2 ; . . . ;xikÞ 2 XC ; C ¼ fi1; . . . ; ikg � N ; ð92Þ
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we can compute the conditional distributions PnjCðxnjxCÞ for any of the remaining

variables xnðn 62 CÞ by Eq. (73). The discrete conditional distributions can be dis-

played as histograms (one- or two-dimensional) playing the role of basic communi-

cation means. The estimated product mixture does not contain the original protected

data and therefore the interactive user software can be distributed without any

con¯dentiality concerns.

The original census database included 1,524,240 incomplete data records (ques-

tionnaires) with about 3 million missing values. For this reason we have used the

\missing data" modi¯cation of EM algorithm (cf. Sec. 4.4) to estimate a large

mixture model of M ¼ 10 000 components. We recall that there is no risk of

\over¯tting" if we try to reproduce the statistical properties. The main issue of the

paper28 was the model accuracy. By comparing the empirical frequencies with the

estimated model probabilities we obtained the mean relative error of 4% which

corresponds to the accuracy of any displayed histogram column. The resulting in-

teractive model is available at the website http://ro.utia.cas.cz/census/.

The purpose of the proposed interactive method is to reproduce the statistical

properties of arbitrary subpopulations without any risk of con¯dentiality violation.

However, the estimated product mixture provides additional tools to analyze the

data. Thus, the system automatically creates a virtual list including a large number

of subpopulations which can be ordered according to di®erent criteria like condi-

tional probability of a value, conditional entropy of a variable or mutual informa-

tivity of a pair of variables. In this sense, qualitatively new possibilities arise to

identify causal relations between values and variables. The proposed tools of infor-

mation analysis are actually enabled by the statistical model of data in the form of a

product mixture since any comparable evaluation of the original data would be

exceedingly time-consuming.

5.6. Image processing

A feature common to both image processing and application of product mixtures to

textures is the estimation of local properties. The concept of texture intuitively

suggests some local shift-invariant statistical properties and simultaneously a global

homogeneity in a certain sense. Motivated by this idea we describe the local statis-

tical dependencies between pixels in terms of joint probability density of grey-levels

in a suitably chosen (square or roughly square) shifting window. The unknown

probability density can be estimated in the form of a multivariate Gaussian product

mixture from a large set of data vectors obtained by shifting the window within the

original image. Recall that, by using the EM algorithm, we implicitly assume inde-

pendent data but, in the case of a shifting window, this assumption is violated

because the neighboring windows overlap. This theoretical detail has speci¯c con-

sequences,24,41 especially for texture modeling.
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5.6.1. Texture synthesis

More speci¯cally, let x ¼ ðx1;x2; . . . ;xNÞ 2 RN be a vector of grey-levels of the

window in a speci¯ed order. Having estimated the Gaussian mixture model (57):

P ðxjw;¹;¾Þ ¼
X
m2M

wmF ðxj¹m;¾mÞ; x 2 RN ; ð93Þ

we can synthesize arti¯cial textures by sequential prediction. In particular, let xA ¼
ðxi1 ;xi2 ; . . . ;xikÞ be a given part of texture in the window then the remaining empty

part xB ¼ ðxj1 ;xj2 ; . . . ;xjrÞ can be estimated by means of the conditional expectation

formula. We can compute the conditional density

PBjAðxBjxAÞ ¼
PB;AðxB;xAÞ

PAðxAÞ
¼
X
m2M

WmðxAÞFBðxBj¹mB;¾mBÞ; ð94Þ

WmðxAÞ ¼
wmFAðxAj¹mA;¾mAÞP
j2M wjFAðxAj¹jA;¾jAÞ

; ¹mA ¼ ð	m;i1 ; . . . ; 	m;ikÞ; ð95Þ

FBðxBj¹mB;¾mBÞ ¼
Y

n2N B

fnðxnj	mn; 
mnÞ; ¹mB ¼ ð	m;j1 ; . . . ; 	m;jrÞ;

and the unknown part of the window xB can be estimated as a conditional

expectation

EfxBg ¼
Z
RN

xBPBjAðxBjxAÞdxB ¼
X
m2M

WmðxAÞ¹mB: ð96Þ

Thus, the estimated part of the window EfxBg can be expressed as a weighted sum

of the corresponding parts of the component means ¹mB. In numerical experiments

the resulting dimension is usually large and therefore the weighted sum (96) can be

reduced to a single term in view of the nearly binary properties of the component

weights WmðxAÞ. In this way, starting with a single piece of texture (a seed), we can

synthesize arbitrarily large textures by prediction, e.g. by shifting the square window

stepwise left-to-right and top-to-down (cf. Fig. 3). The resulting texture is \smooth"

because the component means ¹m correspond to weighted sums of window \patches"

(cf. (8)). In order to recover the high-frequency details of the original texture we

replaced the component means ¹m by the most similar patches from the original

texture image. It can be seen that the resulting image looks more realistic (cf. Fig. 3,

right lower part). Analogously we can synthesize color textures or even BTF tex-

tures.41

Obviously, the principle of local prediction can be applied analogously to any

missing part of the image. In case of this type of problems called image inpainting we

only need to specify, at any position of the window, the missing part to be estimated.

Figure 4 illustrates the inpainting of a color picture containing several di®erent types

of textures. We have used a window of 13
 13 pixels with trimmed corners
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containing 145 pixels in three spectral values. It can be seen that the resulting 435-

dimensional mixture model having 223 product components automatically identi¯es

the di®erent types of textures.40

5.6.2. Log-likelihood evaluation of images

The texture synthesis by local prediction provides a unique possibility to verify the

quality of the underlying statistical model visually. Comparing the original and

synthesized texture in numerous experiments we have found that the Gaussian

product mixtures are capable of describing the local image properties to a high degree

of accuracy. Motivated by the good experimental results we have proposed to apply

the estimated mixture model to the original data, our goal being to evaluate the

\typicality" of di®erent locations in the original image. In particular, at each position

of the shifting window we compute the estimated density P ðxÞ, which can be viewed

Fig. 3. Synthesis of the texture \ratan." In the upper part is the original texture image (left, 512
 512
pixels) and the typical component means of the estimated mixture (right) in window arrangement (win-

dow size of 30
 30 pixels, dimension N ¼ 900 and number of components M ¼ 87). In the lower part is

the \smooth" synthesized texture (left) and the \realistic" texture model based on the component-related

\centroids" (right).
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as a measure of typicality of the window interior, and the log-likelihood value

logP ðxÞ is displayed at the central pixel of the window in suitable scaling. The

resulting log-likelihood image is statistically well justi¯ed and easily interpretable

since the dark places correspond to \unusual" or \atypical" parts and light pixels

re°ect the more typical or more probable locations. The log-likelihood mapping has

been applied to the evaluation of screening mammograms20,34,44 (cf. Fig. 5) and to

image forgery detection.39 The local statistical model is also applicable to segmen-

tation of images.37

Alternatively we could display the log-likelihood ratio values logP ðxÞ=P0ðxÞ
where P0ðxÞ is the product of univariate global marginals. The log-likelihood ratio

image avoids a direct dependence on grey-levels and is more sensitive to structural

irregularities.36 The function logP ðxÞ=P0ðxÞ can also be used to identify di®erent

properties in one-class classi¯ers.26

Fig. 4. Example of image inpainting. In the upper part is the ¯nal \inpainted" image (1280
 960 pixels,

model dimension N ¼ 435 and M ¼ 223 components) and in the lower part is the damaged source image

containing some missing parts.
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6. Concluding Remarks

The estimation of multivariate distribution mixtures in spaces of high dimensionality

ðN � 102Þ is a di±cult task, from both the theoretical and computational points of

view. Even if we succeed in managing the computational instability of EM algorithm

(as discussed in Sec. 3.4), we are still confronted with the speci¯c properties of the

estimated mixtures in high-dimensional spaces.

As the components usually correspond to small separated subsets of data points in

the sparse high-dimensional spaces, the \generalizing properties" of high-dimen-

sional mixtures are often poor. We have obtained good results in recognition of

handwritten numerals on a binary raster with large training datasets,25,26,32 but the

synthesis of arti¯cial textures based on a local statistical model often fails.24,41 We

recall that, in the case of texture synthesis, the training dataset is obtained by

shifting a square window through the source texture image, and therefore the data

vectors de¯ned by overlapping windows are not independent. Actually, the training

data in the log-likelihood function correspond to a speci¯c \trajectory" in the sample

space produced by the shifting window. As the data points generated by prediction

may happen to be \atypical," the corresponding component values are often very low

and the prediction becomes unreliable. For this reason we can achieve more suc-

cessful applications when the estimated high-dimensional mixture model is applied to

Fig. 5. Original image of the mammogram C-0143-1 (left) from the DDSM database. In the original

mammogram there is a circumscribed malignant mass. In the log-likelihood image (right) the pixel values
are de¯ned by the respective log-likelihood values log P ðxÞ where x is the 145-dimensional vector de¯ned

by the shifting search window. The malignant lesion is partly emphasized by contour lines resulting as a

side-e®ect from the pixel-wise evaluation of the mammogram.
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the original data, e.g. with the goal of reproducing the statistical properties of

databases28 or to evaluate local statistical properties of a given image.20,34,36,39

As noted in Sec. 3.3, the EM iterations can be stopped by thresholding the relative

increment of the log-likelihood criterion without any substantial loss of approxi-

mation accuracy. Nevertheless, the estimation of high-dimensional mixtures with

many components from large datasets may become time-consuming. In this respect

we remark that the EM algorithm can be easily parallelized by a suitable decom-

position of the available dataset.
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