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Abstract 

The paper is devoted to the least weighted squares estimator, which is one of highly robust 

estimators for the linear regression model. Novel tests of heteroscedasticity are proposed, which 

have the form of a permutation Goldfeld-Quandt test and a permutation Breusch-Pagan test. 

Moreover, the asymptotic behavior of these permutation tests is investigated. Newly formulated 

theorems study the convergence of the tests to asymptotic tests based on the least weighted 

squares as well as to the test based on the least squares. A numerical experiment on a real 

economic data set on gross domestic product is presented, which also shows how to perform a 

robust prediction model under heteroscedasticity. The results are very different from those 

obtained with a standard estimation procedure. Various tests yield however rather similar 

results. Thus, taking the heteroscedasticity into account is very desirable, while the choice of a 

particular testing or estimation approach is not so crucial. Theoretical results may be simply 

extended to the context of multivariate quantiles. 
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Introduction  

Robust statistical estimators in the linear regression model are well known to require their own 

diagnostic tools (Víšek, 2010). One of promising highly robust estimator in the linear regression 

context is the least weighted squares (LWS) estimator of Víšek (2002), which does not trim 

away (i.e. ignore) outliers, but rather only downweights potential candidates for outliers. The 

estimator possesses a high breakdown point, which can be interpreted as a high resistance 

(insensitivity) against outlying measurements in the data and one of crucial measures of 

robustness of statistical estimators (Jurečková et al., 2012).  

       In our previous work, we proposed and investigated asymptotic diagnostic tests for the 

LWS including tests of heteroscedasticity (Kalina, 2009), which is one of the assumptions on 

random regression errors in the linear regression model. Other results include hypothesis tests 
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for the LWS estimator or a corresponding robust correlation coefficient (Kalina & Schlenker, 

2015). However, it remains open to propose permutation tests for the same tasks and to study 

their asymptotic behavior. Permutation tests can be described as simple and comprehensible 

Monte Carlo procedures, which however require intensive computations. They can also be 

interpreted as an important class of resampling methodology (without replacement), which 

contains a wide range of different flexible tools (Efron & Tibshirani, 1994). In addition, 

permutation tests can be considered a nonparametric technique as investigated theoretically by 

Pesarin & Salmaso (2010). The only (but crucial) assumption is the exchangeability of 

individual observations. Sometimes, permutation tests are also called invariance tests or 

conditional tests, where the latter concept stresses conditioning of the procedure by the observed 

data.  

       This paper is devoted to the question of verifying the assumption of homoscedasticity for 

the LWS estimator.  A possible violation of homoscedasticity influences the least squares as 

well as robust estimators. A permutation approach to testing is considered to propose new 

heteroscedasticity tests for the LWS estimator in Sections 2 and 3. There, also the asymptotic 

behavior of the permutation test statistics is investigated. Both tests are illustrated on a real data 

set in Section 4. Finally, Section 5 concludes the paper. 

 

1 Least weighted squares  

Throughout this paper, the standard linear regression model 

                                   𝑌𝑖 =  𝛽0 +  𝛽1𝑋𝑖1 + ⋯ +  𝛽𝑝𝑋𝑖𝑝 + 𝑒𝑖,   𝑖 = 1, … , 𝑛,                              (1) 

is considered, where 𝑌1, … , 𝑌𝑛 are values of a continuous response variable and 𝑒1, … , 𝑒𝑛 are 

random errors (disturbances). The task is to estimate the regression parameters 𝛽 =

(𝛽0, 𝛽1, … , 𝛽𝑝)𝑇. While the classical least squares estimator denoted as 𝑏𝐿𝑆  is very well known 

to be too vulnerable to the presence of outlying measurements (outliers) in the data,  robust 

statistical methods are available as alternative estimation procedures for this task.  

       The definition of the LWS estimator first requires the user to specify a sequence of 

magnitudes of weights 

                                                          𝑤1 ≥ 𝑤2 ≥ ⋯ ≥ 𝑤𝑛,                                                      (2) 

which are assigned to individual observations only after some permutation. While the selection 

of the weights influences the result, it may a good choice to use linearly decreasing weights or 

to allow some percentage of observations to have a zero weight to ensure high robustness. The 
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LWS estimator remains consistent for weights generated by any weight function which is 

continuous and nonincreasing (Víšek, 2010). 

       Let us denote the squared residuals corresponding to a given estimator 𝑏 of 𝛽 as 

                                                𝑢(1)
2 (𝑏) ≤ 𝑢(2)

2 (𝑏) ≤ ⋯ ≤ 𝑢(𝑛)
2 (𝑏).                                          (3)   

The LWS estimator 𝑏𝐿𝑊𝑆 is defined as 

                                                    arg min
𝛽∊ℝ𝑝+1

∑ 𝑤𝑖𝑢(𝑖)
2 (𝑏).𝑛

𝑖=1                                              (4)  

The computation of the LWS estimator is intensive and an approximate algorithm can be 

obtained as a weighted version of the FAST-LTS algorithm proposed for the least trimmed 

squares (LTS) regression (Kalina, 2009). 

       Čížek (2011) proposed a two-stage LWS estimator denoted as 2S-LWS and proved it to 

possess a high breakdown point and at the same time a 100 % asymptotic efficiency of the least 

squares under Gaussian errors. Further, he evaluated its relative efficiency to be high (over 85 

%) compared to maximum likelihood estimators in a numerical study under various 

distributional models for samples of several tens of observations. The computation of the 

estimator starts with an initial highly robust estimator and proceeds to proposing values of the 

weights based on comparing the empirical distribution function of squared residuals with its 

theoretical counterpart assuming normality. 

        

2 A permutation Goldfeld-Quandt test for the LWS estimator   

Standard tests of heteroscedasticity for the least squares include e.g. those of Goldfeld-Quandt 

or Breusch-Pagan (Greene, 2002). An approximation to the permutation Goldfeld-Quandt test 

is proposed in this section, particularly a convergence of the 𝑝-value will be investigated.  

       Asymptotic tests for the LWS estimator were presented by Kalina (2009), who derived 

asymptotic test statistics for the LWS residuals. Analogous results were presented for regression 

quantiles (Kalina, 2011). In both these contexts, there were however two different versions of 

the approximation described and the level of convergence for both of them seems rather slow 

as indicated by numerical simulations. So far, we are not aware of a permutation (exact) test of 

heteroscedasticity for the LWS. There seems neither any combination of permutation tests with 

the asymptotic approximation in this context. 

     The Goldfeld-Quandt test considers the null hypothesis  
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                                                    𝐻0: 𝑣𝑎𝑟 𝑒𝑖 =  𝜎2,    𝑖 = 1, … 𝑛,                                             (5) 

and divides the observations to three groups. We consider a (one-sided) alternative hypothesis 

𝐻1 that the third part of the data has a larger variability than the first part. Assuming (1), let 𝑟1 

denote the number of observations in the first group and 𝑟3 in the third group. Residuals 

corresponding to the LWS estimator 𝑏𝐿𝑊𝑆 of 𝛽 will be denoted as 

                                                    𝑢𝐿𝑊𝑆 = (𝑢1
𝐿𝑊𝑆, … , 𝑢𝑛

𝐿𝑊𝑆)𝑇 .                                                 (6) 

       The residual sum of squares in the first group of the data will be denoted by 𝑆𝑆𝐸1, while 

the residual sum of squares computed in the third group by 𝑆𝑆𝐸3  These quantities  

                      𝑆𝑆𝐸1 = ∑ (𝑢𝑖
𝐿𝑊𝑆)

2𝑟1
𝑖=1     and   𝑆𝑆𝐸3 = ∑ (𝑢𝑖

𝐿𝑊𝑆)
2𝑟3

𝑖=𝑟1+𝑟2+1                                (7) 

representing a natural extension from the least squares case allow to form the test statistic 

                                                                 𝐹𝐿𝑊𝑆 =
𝑆𝑆𝐸3

𝑆𝑆𝐸1
 
𝑟1−𝑝

𝑟3−𝑝
.                                                                 (8) 

      The permutation test will be based on a repated random generation of i.i.d. random variables 

𝐸1, … , 𝐸𝑛 following the normal distribution 𝑁(0,1). These will be used to replace the errors 

𝑒1, … , 𝑒𝑛 within (7). For the 𝑗-th simulation (𝑗 = 1, … , 𝑚 for some 𝑚), residuals of the LWS fit 

will be computed and used to construct the statistic (8) denoted by 𝐹𝑗
∗, where the   star 

corresponds to the common way for denoting a resampling context already since Efron & 

Tibshirani (1994). The averaged value of these test statistics converges as follows. 

 

Theorem 1. Let us assume (1) with i.i.d. errors 𝑒1, … , 𝑒𝑛 following 𝑁(0, 𝜎2) distribution with a 

specific 𝜎2 > 0. Let 𝐹𝐿𝑊𝑆 denote the test statistic (8) computed with the LWS residuals and let 

𝐹1
∗, 𝐹2

∗, … denote values of (8) for independent realizations of independent random variables 

𝐸1, … , 𝐸𝑛 following a 𝑁(0,1) distribution. Then, it holds for 𝑚 → ∞ that 

                                    𝑃 (
1

𝑚
∑ 𝐹𝑗

∗𝑚
𝑗=1 ≤ 𝑥) → 𝑃(𝐹𝐿𝑊𝑆 ≤ 𝑥)    ∀𝑥 ≥ 0.                                    (9) 

 

Theorem 2. Let us assume (1) with i.i.d. errors 𝑒1, … , 𝑒𝑛 following 𝑁(0, 𝜎2) distribution with a 

specific 𝜎2 > 0. Let 𝐹 denote the test statistic (8) computed with the least squares residuals and 

let 𝐹1
∗, 𝐹2

∗, … denote values of (8) for independent realizations of independent random variables 

𝐸1, … , 𝐸𝑛 following the 𝑁(0,1) distribution. Then, it holds for 𝑚 → ∞ that 
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                                    𝑃 (
1

𝑚
∑ 𝐹𝑗

∗𝑚
𝑗=1 ≤ 𝑥) → 𝑃(𝐹 ≤ 𝑥)    ∀𝑥 ≥ 0.                                   (10) 

       While the proof of Theorem 1 follows directly from elementary principles of permutation 

tests, Theorem 2 is a consequence of asymptotic results of Kalina (2009) and the asymptotic 

representation of the LWS estimator given by Víšek (2002).  

       We can understand the approach of Theorem 2, which stands on stronger asymptotic results 

than Theorem 1, as an exact version of the asymptotic test, exploiting the convergence of the 

test to the p-value of the exact test for the least squares residuals. The test based on Theorem 2 

does not require an additional simulation for assessing the null distribution of 𝐹𝐿𝑊𝑆, but can use 

a simple approach exploiting the known null distribution of 𝐹 to be Fisher’s 𝐹 distribution with 

𝑟3 − 𝑝 and 𝑟1 − 𝑝 degrees of freedom. 

       Let us give a remark to the normal distribution of 𝐸1, … , 𝐸𝑛. The result of the permutation 

test is invariant to the choice of variance of this normal distribution and the unit variance may 

be chosen without loss of generality. 

 

3 A permutation Breusch-Pagan test for the LWS estimator   

In the same spirit as the Goldfeld-Quandt test, also the permutation (exact) version of the 

Breusch-Pagan test for the LWS estimator can be constructed.  

Breusch-Pagan test requires to specify the alternative hypothesis of heteroscedasticity as 

                            𝑣𝑎𝑟 𝑒𝑖 = 𝛼0 + 𝛼1𝑍𝑖1 + ⋯ + 𝛼𝐾𝑍𝑖𝐾 ,   𝑖 = 1, … , 𝑛,                            (11) 

for some variables  

                                        𝑍1 = (𝑍11, … , 𝑍𝑛1)𝑇 , … , 𝑍𝐾 = (𝑍1𝐾, … , 𝑍𝑛𝐾)𝑇 .                              (12) 

The null hypothesis corresponds to 

                                                            𝐻0: 𝛼1 = 𝛼2 = ⋯ = 𝛼𝐾 = 0,                                      (13) 

which is tested against a general alternative hypothesis that the null hypothesis is not true. 

Often, one or more regressors from (1) are selected as the auxiliary variables (12). 

       The test statistic is obtained as the statistic 𝜒2 of the score test (i.e. Lagrange multiplier 

test) in the model 

                                   𝑢𝑖
2 𝑠2 = 𝛼0 + 𝛼1𝑍𝑖1 +⁄ … + 𝛼𝐾𝑍𝑖𝐾 + 𝑣𝑖 ,   𝑖 = 1, … , 𝑛,                       (14) 
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where 𝑠2 is the estimator of 𝜎2. The score test is one of general asymptotic tests based on the 

likelihood function, in our case under the presence of nuisance parameters. Just like the standard 

Breusch-Pagan for least squares, the new test assumes normal distribution of 𝑒. The following 

theorems represents an analogy of Theorems 1 and 2 (with analogous proofs), exploits the score 

test statistics of the Breusch-Pagan test.  

 

Theorem 3. Let us assume (1) with i.i.d. errors 𝑒1, … , 𝑒𝑛 following 𝑁(0, 𝜎2) distribution with a 

specific 𝜎2 > 0. Let 𝜒𝐿𝑊𝑆
2  denote the test statistic of the Breusch-Pagan test computed with the 

LWS residuals and let 𝜒1
2∗, 𝜒2

2∗, … denote test statistics of the Breusch-Pagan test for 

independent realizations of independent random variables 𝐸1, … , 𝐸𝑛 following the 𝑁(0,1) 

distribution. Then, it holds for 𝑚 → ∞ that 

                                  𝑃 (
1

𝑚
∑ 𝜒𝑗

2∗𝑚
𝑗=1 ≤ 𝑥) → 𝑃(𝜒𝐿𝑊𝑆

2 ≤ 𝑥)    ∀𝑥 ≥ 0.                                  (15) 

 

Theorem 4. Let us assume (1) with i.i.d. errors 𝑒1, … , 𝑒𝑛 following 𝑁(0, 𝜎2) distribution with a 

specific 𝜎2 > 0. Let 𝜒2 denote the test statistic of the Breusch-Pagan test computed with the 

least squares residuals and let 𝜒1
2∗, 𝜒2

2∗, … denote test statistics of the Breusch-Pagan test for 

independent realizations of independent random variables 𝐸1, … , 𝐸𝑛 following the 𝑁(0,1) 

distribution. Then, it holds for 𝑚 → ∞ that 

                                   𝑃 (
1

𝑚
∑ 𝜒𝑗

2∗𝑚
𝑗=1 ≤ 𝑥) → 𝑃(𝜒2  ≤ 𝑥)    ∀𝑥 ≥ 0.                                    (16) 

 

Like in Section 3, the test based on Theorem 4 exploiting the asymptotic behavior of the LWS 

estimator can use directly that 𝜒2 follows Pearson’s 𝜒2 distribution with 𝐾 degrees of freedom 

(in our notation) under the null hypothesis. 

 

4 Example: A heteroscedastic model for GDP  

The performance of the novel permutation tests will be now illustrated on a real economic data 

set. If the LWS regression fit in the original model is significantly heteroscedastic, a specific 

heteroscedastic regression model will be condidered. 

     A GDP data set is analyzed which contains quarterly data from the first quarter of 1995 to 

the third quarter of 2007 measured in the USA in 109 USD, i.e. with 𝑛 = 50. The data set, 
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which comes originally from the Federal Reserve Bank of St. Louis, was analyzed by Špaková 

(2011), but only by standard (non-robust) methods.   

       The linear regression model has the form 

                            𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + 𝛽3𝑋𝑖3 + 𝛽4𝑋𝑖4 + 𝑒𝑖,   𝑖 = 1, … , 𝑛,                  (17) 

where 𝑌 is the GDP considered as a response of four regressors. Particularly, 𝑋1 represents 

consumption, 𝑋2 government expenditures, 𝑋3 investments and 𝑋4 represents the difference 

between import and export. A graphical analysis reveals a relationship close to linear between 

the response and each of the regressors. 

     We estimate parameters of the model (17) by means of the least squares and the LWS. 

Residuals of the least squares do not contain severe outliers but their distribution is far from 

unimodal. Also the Shapiro-Wilk test of normality is rejected. Tests of significance for both 

estimators reveal 𝛽4 not to be significantly different from zero. Therefore, we reduce the model 

(17) to a more suitable submodel. 

 

Tab. 1: Results of the example of Section 7.  

 𝛽0 𝛽1 𝛽2 𝛽3 

Least squares estimator 

Linear regression model (15) −3123 1.67 1.31 −8.04 

Heteroscedastic model (16) −52 0.32 0.27 −2.16 

LWS estimator 

Linear regression model (15) −2402 1.98 0.61 −10.88 

Heteroscedastic model (16) −57 0.39 0.14 −2.33 

Source: own computation 

       The model under consideration has the form 

                               𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + 𝛽3𝑋𝑖3 + 𝑒𝑖,   𝑖 = 1, … , 𝑛,                             (18) 

while it remains important to check the assumption of homoscedasticity of the random errors. 

The results of the least squares and the LWS with linearly decreasing weights in (17) are shown 

in Table 2. Let us now perform both the asymptotic and exact version of the Breusch-Pagan 

test. The test statistic 𝜒2 for the LWS is equal to 11.94 and is significant with a p-value of 

0.0010. The permutation test yields a p-value of 0.0009.  
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       Because the heteroscedasticity turns out to be significant, we consider the following model 

as a replacement of (18). The model 

                                 
𝑌𝑖

√𝑘𝑖
=

𝛽0

√𝑘𝑖
+

𝛽1𝑋𝑖1

√𝑘𝑖
… +

𝛽𝑝𝑋𝑖𝑝

√𝑘𝑖
+

𝑒𝑖

√𝑘𝑖
,   𝑖 = 1, … , 𝑛,                                   (19) 

is used with the choice 𝑘𝑖 = 𝑢𝑖
2 exploiting values 𝑢1

2, … , 𝑢𝑛
2  of (14). Such heteroscedastic model 

for the LWS is an analogy of a model described by Greene (2002). In our example, the general 

approach (19) uses 𝑝 = 3 and the three regressors were chosen to play the role of 𝑍1, 𝑍2 and 𝑍3 

for the model (14). Further, the parameters in this heteroscedastic model were estimated and 

the results are shown again in Table 2. Further, asymptotic and exact tests of heteroscedasticity 

are performed again, which both yield unsignificant results. The 𝑝-value of the permutation 

Goldfeld-Quandt test equals 0.09 and of the Breusch-Pagan 0.07. 

       To summarize the computations, the standard linear regression model is not adequate due 

to a severe heteroscedasticity of the random regression errors. Not even a robust regression 

estimator is able to improve the quality of the model. Only in a specific model tailor-made for 

heteroscedastic errors, the assumption of homoscedasticity of the errors is fulfilled by means of 

both versions of the Breusch-Pagan test. The final model (19) considers weighted values of the 

response as well as regressors and therefore the interpretation of its parameters remains 

uncomparable to that of the original models (17) or (18). 

 

5 Conclusions 

This paper is devoted to diagnostic tools for the LWS estimator in the linear regression model. 

While robust regression diagnostics has been declared as an important problem for in linear 

regression (Salini et al., 2016) as well as in related models (Kalina, 2012), asymptotic 

approximation for heteroscedasticity tests have been available so far (Kalina, 2009). This paper 

fills the gap of permutation versions of the Goldfeld-Quandt and Breusch-Pagan test for the 

LWS estimator. 

       Permutation tests are proposed in Sections 2 and 3 for heteroscedasticity tests based on 

LWS residuals. These can be described as approximations to exact Goldfeld-Quandt and 

Breusch-Pagan tests. While theoretical results are obtained for the probability of type I error, 

numerical simulations would be necessary to investigate the performance of the tests under the 

alternative hypothesis.  

       A permutation test gives only a 𝑝-value without a direct possibility to estimate the  power 

of the test, which would be feasible in the asymptotic setup. This limits the usage of the tests to 
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situations when testing is the very aim of the analysis. The example described in Section 4 has 

its main to predict the response rather than to perform testing, but a suitable estimation method 

is presented as a tool for an improved prediction compared to a standard model ignoring the 

heteroscedasticity structure. 

       As an alternative, there remains also another possibility to use the White test of hetero-

scedasticity, which exploits a covariance matrix estimator of regression coefficients estimates. 

Víšek (2010) showed this estimator within the White test to be reasonably robust to 

heteroscedasticity. Still another possibility to modelling heteroscedasticity is to use the 

methodology of regression quantiles, which may be used not only for a subjective detection but 

also for rigorous testing of heteroscedasticity (Gutenbrunner and Jurečková, 1992). 

       Nevertheless, the approach of the current paper can be interpreted as a preparation for 

a generalization to the context of elliptical quantiles. Such generalization of the Goldfeld-

Quandt and Breusch-Pagan tests to elliptical quantiles may be performed in a rather 

straightforward way. Such future tests may find applications in testing heteroscedasticity for 

linear regression models with a multivariate response, which have recently penetrated to 

econometric modelling. To the best of our knowledge, there have been however no diagnostic 

tools for linear regression with a multivariate response available. The use of any form of 

multivariate quantiles seems a promising tool as the quantiles are heavily influenced by 

a possible heteroscedasticity. Such idea may be especially valuable if elliptical quantiles studied 

by Hlubinka and Šiman (2015) are used and volume of the constructed ellipses is used to build 

statistical decision rules for detecting heteroscedasticity and its subsequent modelling. 
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