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1 Introduction

1.1

Stochastic approximation was originally introduced as a procedure for sequentially
finding a zero or an extremum point of a function which can be observed only with a
random measurement error; it has found many applications e.g. to recursive estimation,
adaptive control or learning algorithms, see the books [BMP, BPP, Bo, Che2, KC] or [KY]
for a thorough information about the stochastic approximation methods. The seminal
Robbins-Monro procedure may be roughly described as follows: Let R : R → R be a
function which is known to have a unique root x0 but the observation of R(x) at time
k ∈ N is corrupted by a noise ek(x). Let αn > 0 be such that

∞∑
n=0

αn =∞,
∞∑
n=0

α2
n <∞

and set
Yn+1 = Yn + αn

(
R(Yn) + en+1(Yn)

)
.

Then under suitable assumptions upon the function R and the random variables ek(x)

it may be shown that Yn → x0 almost surely as n → ∞. M. B. Nevel’son and R. Z.
Khas’minskĭı in their book [NCh] studied a continuous-time version of stochastic approxi-
mation. In particular, they introduced a continuous-time analogue of the Robbins-Monro
procedure: Consider a stochastic differential equation

dX = α(t)
(
R(X) dt+ σ(t,X) dW

)
, X0 = x, (1.1)
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Stochastic approximation in infinite dimesions

where W is a Wiener process and α is a strictly positive function in L2(R≥0) \ L1(R≥0).
Sufficient conditions for Xt to converge to the zero set of R almost surely as t→∞ were
found in terms of existence of a suitable Lyapunov function for (1.1). One may consult the
book [Ko] or the papers [Pf, Che, La1, La2, La3, La4] for further results in this direction.
Due to powerful tools from stochastic analysis, proofs in the continuous-time case may
be presented in a very lucid way (cf. also [Che] for a discussion of this point).

The aim of this note is to extend the stochastic analysis approach, in the form
proposed by Nevel’son and Khas’minskĭı, to infinite-dimensional Hilbert spaces. Several
results on discrete-time stochastic approximation in infinite-dimensional spaces are
available, cf. e.g. [BRS, Go, KS, Ni, Yi, YZ], but the only paper using infinite-dimensional
stochastic analysis to study stochastic approximation we are aware of is [BYY, § 4].
However, [BYY] treats stochastic delay equations, whilst we are interested in stochastic
partial differential equations. We confine ourselves to procedures of the Robbins-Monro
type in the case of a unique root, since we see our task in indicating how the ideas
from [NCh] may be combined with techniques from the theory of stochastic evolution
equations, not in obtaining the strongest possible results. A typical example we can
cover is the following: Consider a nonlinear elliptic equation

∆u+ r(u) = f in D, u = 0 on ∂D, (1.2)

where D ⊆ Rd is a bounded domain with a smooth boundary ∂D, and a stochastic
parabolic equation

dX = α(t)
(
∆X + r(X)− f

)
dt+ α(t)σ(t,X) dW, X|R>0×∂D = 0, X0 = y (1.3)

in L2(D), driven by an infinite-dimensional Wiener process W , where α ∈ L2(R≥0) \
L1(R≥0) is again a strictly positive function. Sufficient conditions on r will be found for
the solution X of (1.3) to converge almost surely to the (unique) solution u0 ∈W 1,2

0 (D)

of (1.2) (see Example 3.1 below).
A common approach to equations like (1.3) is to interpret them in the mild sense, as

an equation

Xt = U(t, 0)y +

∫ t

0

U(t, s)r(Xs) ds+

∫ t

0

α(s)U(t, s)σ(s,Xs) dWs,

where U is the evolution operator generated by α(·)∆. However, our proofs rely heavily
on the use of Lyapunov functions, while mild solutions are not semimartingales and the
Itô formula cannot be applied directly to them, approximations of a rather technical
nature being needed. Thence we decided to use the theory of variational solutions, going
back to [Pa] and [KR] (see e.g. the books [Cho, Chapter 6] and [LR, Chapters 4 and 5]
for a more recent presentation). Moreover, this choice makes it possible to deal with
quasilinear problems (see Examples 3.2, 3.3).

Before stating our main results we have to introduce some notation and recall a
few basic facts about variational solutions we shall need. This is done in the next two
subsections; the main results are stated and proved in Section 2, in Section 3 some
illustrative examples are provided.

1.2

Let E and F be Banach spaces, we shall denote by L (E,F ) the space of all bounded
linear operators from E to F . If both spaces are Hilbert, by L2(E,F ) the ideal of Hilbert-
Schmidt operators in L (E,F ) will be denoted. Ck(G) will stand for the space of k-times
continuously differentiable real-valued functions on an open set G ⊆ E. If f : G→ R, we
shall denote by Df(x) and D2f(x) the first and second Gâteaux derivative of f at the
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Stochastic approximation in infinite dimesions

point x, respectively, provided they exist. Analogously, if f : R≥0 ×G→ R, Dxf(t, x) and
D2
xf(t, x) will stand for the first and second Gâteaux derivative of f(t, ·) at the point x.

For spaces of (Bochner) integrable functions and Sobolev spaces we shall use standard
notation; finally, by λ the Lebesgue measure on R≥0 will be denoted.

1.3

Let H and K be real separable Hilbert spaces, B a reflexive Banach space embedded
continuously and densely in H. Upon identifying H with its dual H∗ we get a Gelfand
triple B ⊆ H ⊆ B∗; note that – in this representation – the restriction of the dual pairing
〈·, ·〉B∗,B to H ×B coincides with the scalar product 〈·, ·〉H in H. Assume that

(A) f : R≥0 ×B −→ B∗ and σ : R≥0 ×B −→ L2(K,H) are Borel functions, µ is a Borel
probability measure on H,

and consider a stochastic evolution equation

dX = f(t,X) dt+ σ(t,X) dW, X0 ∼ µ. (1.4)

Definition 1.1. ((Ω,F , (Ft),P ),W,X) is called a (variational) solution to the stochastic
evolution equation (1.4) provided (Ω,F , (Ft),P ) is a filtered probability space whose
filtration satisfies the usual conditions and on which a standard cylindrical (Ft)-Wiener
process W on K and a B∗-valued (Ft)-progressively measurable process X are defined
such that

i) X(0) has distribution µ,

ii) there exists an (Ft)-progressively measurable B-valued process X̃ satisfying
‖X̃‖B ∈ Lploc(R≥0) P -almost surely for some p ∈ (1,∞), X = X̃ λ⊗P -almost everywhere
on R≥0 ×Ω,

iii) ‖f(·, X̃(·))‖p/(p−1)B∗ + ‖σ(·, X̃(·))‖2L2
∈ L1

loc(R≥0) and

X(t) = X(0) +

∫ t

0

f(s, X̃(s)) ds+

∫ t

0

σ(s, X̃(s)) dWs in B∗

for all t ≥ 0 P -almost surely.

Since the process X solving (1.4) is in general only B∗-valued, the Itô formula cannot
be used to compute ϕ(X) for an arbitrary ϕ ∈ C2(H) and extra assumptions on ϕ are
needed. We state here two Itô formula-type results which we shall need later.

First, let (Ω,F , (Ft),P ) be a filtered probability space satisfying the usual conditions
and carrying a standard cylindrical (Ft)-Wiener process W on K. Assume that:

1◦ u0 : Ω −→ H is an F0-measurable random variable,

2◦ Z : R≥0×Ω −→ L2(K,H) is a progressively measurable process such that ‖Z‖L2 ∈
L2
loc(R≥0) P -almost surely,

3◦ v : R≥0×Ω −→ B∗ is a progressively measurable process with ‖v‖B∗∈Lp/(p−1)loc (R≥0)

P -almost surely for some p ∈ (1,∞),

4◦ if u is the B∗-valued process defined by

u(t) = u0 +

∫ t

0

v(s) ds+

∫ t

0

Z(s) dWs, t ≥ 0, (1.5)

then there exists a B-valued process ũ such that ũ ∈ Lploc(R≥0;B) P -almost surely
and u = ũ λ⊗ P -almost everywhere on R≥0 ×Ω.
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Stochastic approximation in infinite dimesions

Then u has sample paths in C(R≥0;H) P -almost surely and

‖u(t)‖2H = ‖u0‖2H +

∫ t

0

{
2〈v(s), ũ(s)〉B∗,B + ‖Zs‖2L2

}
ds

+ 2

∫ t

0

〈Z(s)∗u(s), ·〉K dWs

for all t ≥ 0 P -almost surely, see [Pa, Théorème 3.1 on p. 57], [KR, Theorem 2.17] or [LR,
Theorem 4.2.5].

Comparing this result with Definition 1.1 we see that any solution X of (1.4) has
continuous sample path in H P -almost surely.

In order to establish the Itô formula for functions more general than ‖ · ‖2H one needs
an additional hypothesis

(C) Both B and B∗ are uniformly convex.

Let I be the set of all functions ϕ ∈ C1(H) such that the second Gâteaux derivative
D2ϕ(x) exists at all points x ∈ H, the functions ϕ, Dϕ and D2ϕ are bounded on bounded
sets in H, the mapping x 7−→ D2ϕ(x) is continuous from H to (L (H),weak∗), the
restriction Dϕ|B maps continuously (B, ‖ · ‖) to (B,weak) and there exists a constant
k < ∞ such that ‖Dϕ(x)‖B ≤ k(1 + ‖x‖B) for every x ∈ B. If the process u defined by
(1.5) satisfies the hypotheses 1◦–4◦ above and ϕ ∈ I then

ϕ(u(t)) = ϕ(u0) +

∫ t

0

{〈
v(s), Dϕ(ũ(s))

〉
B∗,B

+
1

2
Tr
(
D2ϕ(u(s))Z(s)Z∗(s)

)}
ds

+

∫ t

0

〈
Z(s)∗Dϕ(u(s)), ·

〉
K

dWs

for all t ≥ 0 P -almost surely, see [Pa, Théorème 4.2 on p. 65], cf. also [Kry, Theorem
3.1]. In particular, ϕ(u) is a continuous real-valued semimartingale, hence the process
ψ(t, ϕ(u(t))) may be expressed by means of the real-valued case of the Itô formula,
provided ψ belongs to the set C1,2 of all functions ζ ∈ C1(R≥0 × R) such that ζ(t, ·) ∈
C2(R) for all t ≥ 0 and (t, x) 7−→ ∂2ζ

∂x2 (t, x) is a continuous function on R≥0 ×R. We shall
denote by K the set of all functions ξ on R≥0×H of the form ξ(t, x) = ψ(t, ϕ(x)), ψ ∈ C1,2,
ϕ ∈ I. For ξ ∈ K one gets the expected equality

ξ(t, u(t)) = ξ(0, u0) +

∫ t

0

{∂ξ
∂s

(s, u(s)) +
〈
v(s), Dxξ(s, ũ(s))

〉
B∗,B

+
1

2
Tr
(
D2
xξ(s, u(s))Z(s)Z∗(s)

)}
ds

+

∫ t

0

〈
Z(s)∗Dxξ(s, u(s)), ·

〉
K

dWs.

Note that Dxξ(t, x) = ∂ψ
∂x (t, ϕ(x))Dϕ(x), so the term 〈v(t), Dxξ(t, ũ(t))〉B∗,B remains well

defined. A special case, following from the product rule for semimartingales, is used
repeatedly in the considerations below:

d
(
g(t)ξ(t, u(t))

)
= g′(t)ξ(t, u(t)) dt+ g(t) dξ(t, u(t)) (1.6)

whenever g ∈ C1(R≥0), or, more generally,

d
(
g(t)ξ(t, u(t))

)
= ξ(t, u(t)) dg(t) + g(t) dξ(t, u(t)) (1.7)

if g ∈ C(R≥0) is locally of finite variation.
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Stochastic approximation in infinite dimesions

Remark 1.2. a) The hypothesis (C) is obviously satisfied if B is a Hilbert space. Let us
emphasize that (C) can be omitted if ϕ = ‖ · ‖2H or, more generally, if processes of the
form ψ(t, ‖u(t)‖2H) with ψ ∈ C1,2 are considered.

b) An Itô formula for the process χ(t, u(t)), where χ is a suitable smooth function
on R≥0 ×H, is proved in [Cho, Theorem 7.2.1], but under rather restrictive additional
assumptions on u.

2 Main results

Following [NCh], we derive the convergence of a Robbins-Monro type procedure as
an immediate corollary to a theorem providing sufficient conditions for the convergence
of path of any solution of (1.4) to a singleton {x0}, which will be established first. (In
applications to stochastic approximation, x0 will be the unique root of the drift coefficient,
but on an abstract level, it may be an arbitrary point in H.) Hence, let us consider the
equation (1.4), that is

dX = f(t,X) dt+ σ(t,X) dW, X0 ∼ µ,

and denote by L the Kolmogorov operator associated with it, namely, if h ∈ K, then we
set

Lh(t, x) =
∂h

∂t
(t, x) +

〈
f(t, x), Dxh(t, x)

〉
B∗,B

+
1

2
Tr
(
D2
xh(t, x)(σσ∗)(t, x)

)
,

t ∈ R≥0, x ∈ B.
Further, let us consider the following conditions:

(H1) ϕ : R≥0 ×H −→ R≥0 is a Borel function and x0 ∈ H a point such that

inf
t≥0

inf
‖x−x0‖H≥ε

ϕ(t, x) > 0 for any ε > 0. (2.1)

(H2) V ∈ K is a function satisfying

lim
x→x0

sup
t≥0

V (t, x) = 0 in H, (2.2)

inf
t≥0

inf
‖x−x0‖H≥ε

V (t, x) > 0 for any ε > 0, (2.3)

x0 being the point introduced in (H1), and∫
H

V (0, y) dµ(y) <∞. (2.4)

(H3) α, γ : R≥0 −→ R>0 are Borel functions such that α ∈ L1
loc(R≥0) \ L1(R≥0), γ ∈

L1(R≥0).

Now we are prepared to state and prove the main theorem.

Theorem 2.1. Suppose that (A) and (C) are satisfied and there exist functions ϕ, V , α
and γ satisfying (H1)–(H3) and

LV (t, x) ≤ −α(t)ϕ(t, x) + γ(t)
[
1 + V (t, x)

]
for all t ≥ 0, x ∈ B. (2.5)

Let ((Ω,F , (Ft),P ),W,X) be any solution to (1.4), then

lim
t→∞

‖Xt − x0‖H = 0 P -almost surely. (2.6)
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Stochastic approximation in infinite dimesions

Remark 2.2. Tracing the proof below one may check easily that – as in the finite-
dimensional case – it suffices to assume instead of (2.1)–(2.3) that V ≥ 0, there exists
τ ≥ 0 such that

lim
x→x0

sup
t≥τ

V (t, x) = 0,

and that for any ε > 0 there exists τ ′ = τ ′(ε) such that

inf
t≥τ ′

inf
‖x−x0‖H≥ε

V (t, x) > 0, inf
t≥τ ′

inf
‖x−x0‖H≥ε

ϕ(t, x) > 0.

Remark 2.3. The singleton {x0} may be replaced with an arbitrary closed set Γ ⊆ H.
Let (2.1)–(2.3) be modified in the following way:

lim
dist(x,Γ )→0

sup
t≥0

V (t, x) = 0 in H,

inf
t≥0

inf
dist(x,Γ )≥ε

V (t, x) ∧ ϕ(t, x) > 0 for all ε > 0

and let V = 0 on R≥0 × Γ . Then dist(Xt, Γ ) −→ 0 as t→∞ P -almost surely. The proof
requires only very straightforward changes; unfortunately, this result is usually too weak
to be applied to equations with multiple roots (cf. the discussion in [NCh, Chapter 5]).

Proof. a) The first two steps of the proof are essentially known from stability theory of
stochastic PDEs, but we provide them for completeness and as we shall refer to parts of
the argument in the sequel. Set

U(t, x) = exp
(∫ ∞

t

γ(r) dr
)[

1 + V (t, x)
]
, (t, x) ∈ R≥0 ×H.

Since γ ∈ L1(R≥0), U is obviously well defined and U ≥ 0 on R≥0×H. To avoid overcom-
plicated formulae, we shall proceed as if γ were also continuous, i.e. exp(

∫∞
· γ(r) dr) ∈

C1(R≥0), the general case may be handled in the same way by using (1.7) instead of
(1.6). If γ is continuous, U ∈ K and an easy calculation shows that

LU(t, x) ≤ −α(t)ϕ(t, x) for all t ≥ 0, x ∈ B, (2.7)

in particular LU ≤ 0 on R≥0 ×B.
b) We aim at proving that (U(t,Xt), t ≥ 0) is a supermartingale. Towards this end, set

τn = inf
{
t ≥ 0; ‖Xt‖H ≥ n

}
∧ inf

{
t ≥ 0;

∫ t

0

‖σ(r, X̃r)‖2L2
≥ n

}
, n ∈ N

(with the convention inf ∅ = +∞), where X̃ is the process introduced in Definition 1.1.
Plainly, τn ↗∞ as n→∞ P -almost surely. Using the Itô formula and (2.7) we get

U(t ∧ τn, X(t ∧ τn))− U(0, X0) =

∫ t∧τn

0

LU(r, X̃r) dr+

∫ t∧τn

0

〈σ(r, X̃r)
∗DxU(r,Xr), ·〉K dWr

≤
∫ t∧τn

0

〈σ(r, X̃r)
∗DxU(r,Xr), ·〉K dWr.

Note that

E

∫ t∧τn

0

‖σ(r, X̃r)
∗DxU(r,Xr)‖2K dr <∞

for any t ≥ 0 due to the definition of τn and boundedness of DxU on bounded subsets of
R≥0 ×H, as∫ t∧τn

0

‖σ(r, X̃r)
∗DxU(r,Xr)‖2K dr ≤ sup

0≤r≤t
‖z‖H≤n

‖DxU(r, z)‖2H
∫ t∧τn

0

‖σ(r, X̃r)‖2L2
dr.
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We see that ∫ ·∧τn
0

〈σ(r, X̃r)
∗DxU(r,Xr), ·〉K dWr

is a martingale, hence

EU(t ∧ τn, X(t ∧ τn)) ≤ EU(0, X0) ≤ e‖γ‖L1EV (0, X0) <∞

for all t ≥ 0 and n ∈ N by (2.4). Since U ∈ C(R≥0×H) and the paths of X are continuous
in H we obtain

EU(t,Xt) = E lim
n→∞

U(t ∧ τn, X(t ∧ τn)) ≤ lim inf
n→∞

EU(t ∧ τn, X(t ∧ τn))

≤ EU(0, X0)

by the Fatou lemma, thus U(t,Xt) ∈ L1(P ) for every t ∈ R≥0. Analogously, for any
0 ≤ s ≤ t we have

U(t ∧ τn, X(t ∧ τn))− U(s ∧ τn, X(s ∧ τn)) ≤
∫ t∧τn

s∧τn
〈σ(r, X̃r)

∗DxU(r,Xr), ·〉K dWr;

so

E
[
U(t ∧ τn, X(t ∧ τn))

∣∣ Fs

]
− U(s ∧ τn, X(s ∧ τn)) ≤ 0.

The Fatou lemma for conditional expectations now implies that

E
[
U(t,Xt)

∣∣ Fs

]
≤ lim inf

n→∞
E
[
U(t ∧ τn, X(t ∧ τn))

∣∣ Fs

]
≤ lim inf

n→∞
U(s ∧ τn, X(s ∧ τn))

= U(s,Xs)

P -almost surely, which is the supermartingale property. For further use, let us note that
proceeding as above we get

−E
∫ t∧τn

0

LU(r, X̃r) dr = EU(0, X0)−EU(t ∧ τn, X(t ∧ τn))

≤ EU(0, X0),

whence

−E

∫ ∞
0

LU(r, X̃r) dr ≤ EU(0, X0) <∞, (2.8)

again by the Fatou lemma.
Since U(t,Xt) is a continuous nonnegative supermartingale, the martingale conver-

gence theorem yields a random variable U∞ ∈ L1(P ) such that

lim
t→∞

U(t,Xt) = U∞ P -almost surely.

From the definition of U it follows that there exists Ωs ∈ F , P (Ωs) = 1, such that
1 ≤ U∞(ω) <∞ and

lim
t→∞

V (t,X(t, ω)) = V∞(ω) ≡ U∞(ω)− 1

for any ω ∈ Ωs.
c) Since ∫ ∞

0

α(r)ϕ(r, X̃r) dr ≤ −
∫ ∞
0

LU(r, X̃r) dr on Ω
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Stochastic approximation in infinite dimesions

by (2.7), the integral on the right-hand side is a nonnegative random variable with a
finite expectation by (2.8), and X = X̃ λ-almost everywhere on R≥0 P -almost surely,
there exists Ωi ∈ F , P (Ωi) = 1, such that∫ ∞

0

α(r)ϕ(r,X(r, ω)) dr <∞

for every ω ∈ Ωi.
d) Now we check that

lim inf
t→∞

‖X(t, ω)− x0‖H = 0 (2.9)

for all ω ∈ Ωi. Striving for a contradiction assume that ω ∈ Ωi but

lim inf
t→∞

‖X(t, ω)− x0‖H > 0.

Then there exists t0 ∈ R≥0 and ε > 0 such that ‖X(t, ω) − x0‖H ≥ ε for any t ≥ t0; by
(H1) we may find δ > 0 satisfying ϕ(t,X(t, ω)) ≥ δ for all t ≥ t0, therefore∫ ∞

t0

α(r)ϕ(r,X(r, ω)) dr ≥ δ
∫ ∞
t0

α(r) dr = +∞

by (H3), however, this contradicts the definition of Ωi.
e) It remains to prove that

lim
t→∞

‖X(t, ω)− x0‖H = 0 for all ω ∈ Ωi ∩Ωs. (2.10)

Assume that ω ∈ Ωi ∩Ωs but (2.10) fails. Then there exist tn ↗∞ and ε > 0 such that
‖X(tn, ω) − x0‖H ≥ ε. By (2.3), a η > 0 may be found such that V (tn, X(tn, ω)) ≥ η,
consequently

η ≤ lim
n→∞

V (tn, X(tn, ω)) = V∞(ω).

On the other hand, by (2.9) there exist sn ↗ ∞ such that ‖X(sn, ω) − x0‖H → 0 as
n→∞, hence

0 ≤ V∞(ω) = lim
n→∞

V (sn, X(sn, ω)) ≤ lim
n→∞

sup
r≥0

V (r,X(sn, ω)) = 0

by (2.2). This contradiction proves (2.10) and the proof of Theorem 2.1 is completed.

Remark 2.4. By (2.2) and Theorem 2.1,

lim
t→∞

V (t,Xt) = 0 P -almost surely. (2.11)

The estimate

EV (t,Xt) = e−
∫∞
t
γ drEU(t,Xt)− 1 ≤ EU(0, X0) <∞, t ≥ 0,

was established in the course of the proof. Therefore, if ν ∈ (0, 1) then the set
{V (t,Xt)

ν , t ≥ 0} is uniformly integrable and (2.11) implies that

lim
t→∞

EV (t,Xt)
ν = 0.

Now we may proceed to a theorem on stochastic approximation.

Corollary 2.5. Let (C) be satisfied, let R : B −→ B∗ and σ : R≥0 × B −→ L2(K,H)

be Borel function and µ a Borel probability measure on H. Let x0 ∈ B be such that
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R(x0) = 0. Suppose that there exist V ∈ I ∩ L1(µ) and a Borel function ϕ : H −→ R≥0
satisfying

V (x0) = 0, inf
‖x−x0‖H≥ε

{
V (x) ∧ ϕ(x)

}
> 0 for any ε > 0,〈

R(x), DV (x)
〉
B∗,B

≤ −ϕ(x) for all x ∈ B, (2.12)

and

Tr
(
D2V (x)(σσ∗)(t, x)

)
≤ K

(
1 + V (x)

)
for some K <∞ and all (t, x) ∈ R≥0 ×B.

Let α : R≥0 −→ R>0 be a Borel function such that∫ ∞
0

α(r) dr =∞,
∫ ∞
0

α2(r) dr <∞.

Then any solution (Ω,F , (Ft),P ),W,X) of the equation

dX(t) = α(t)R(X(t)) dt+ α(t)σ(t,X(t)) dW (t), X(0) ∼ µ, (2.13)

satisfies
lim
t→∞

‖X(t)− x0‖H = 0 P -almost surely.

If, moreover, V (x) ≥ $‖x− x0‖2H for some $ ∈ R>0 and all x ∈ H, then

lim
t→∞

E‖X(t)− x0‖ν = 0

for any ν ∈ (0, 2).

Remark 2.6. a) Note that (2.12) may be satisfied only if x0 is the unique root of R.
b) As in Theorem 2.1, we do not assume that there exists a unique solution of (2.13),

we only claim that if a solution exists, then it converges to the root of R. Of course, in
examples the problem of existence and uniqueness of solutions gains prominence.

3 Examples

Example 3.1. Let Λ ⊆ Rd be a bounded open set with a sufficiently smooth boundary
∂Λ, g : R −→ R a Borel function and f a (generalized) function on Λ. Let us consider a
nonlinear elliptic equation

∆u+ g(u) = f in Λ, u = 0 on ∂Λ. (3.1)

Set H = L2(Λ), B = W 1,2
0 (Λ) and denote by G the superposition operator defined by g.

Assume that G is a continuous mapping from B to H and that there exists % ∈ R such
that 〈

G(u)−G(v), u− v
〉
H
≤ %‖u− v‖2H , (3.2)〈

G(u), u
〉
H
≤ %
(
1 + ‖u‖2H

)
, ‖G(u)‖H ≤ %

(
1 + ‖u‖B

)
for all u, v ∈ B. Note that (3.2) is surely satisfied if g is either Lipschitz continuous or
nonincreasing. Let σ : R≥0 ×B −→ L2(K,H) be a Borel function such that

sup
0≤t≤T

sup
x∈B

‖σ(t, x)‖L2

1 + ‖x‖H
+ sup

0≤t≤T
sup
x,y∈B
x 6=y

‖σ(t, x)− σ(t, y)‖L2

‖x− y‖H
<∞ (3.3)
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for any T ∈ R≥0. Finally, let α : R≥0 −→ R>0 satisfy

α ∈ L2(R≥0) \ L1(R≥0) and 0 < inf
[0,T ]

α ≤ sup
[0,T ]

α <∞ (3.4)

for any T ∈ R≥0, let f ∈ B∗ and let µ be a Borel probability measure on H with
a finite second moment, i.e. ‖ · ‖H ∈ L2(µ). Then it may be checked easily that all
hypotheses of Theorem 4.2.4 in [LR] are satisfied and hence there exists a unique
solution ((Ω,F , (Ft),P ),W,X) to the stochastic parabolic equation

dX = α(t)
(
∆X +G(X)− f

)
dt+ α(t)σ(t,X) dW (t), X(0) ∼ µ,

the Dirichlet Laplacian ∆ being interpreted as an operator in L (B,B∗) in a natural way.
Assume that there exists a weak solution u0 ∈ B of (3.1); one may consult e.g. [BS],
[Pr, Chapter 9] or references therein for results in this direction. We want to apply
Corollary 2.5 with V = ‖ · −u0‖2H . Since u0 solves (3.1),〈

∆u+G(u)− f,DV (u)
〉
B∗,B

= 2
〈
∆(u− u0) +G(u)−G(u0), u− u0

〉
B∗,B

and it is known that 〈
∆(u− u0), u− u0

〉
B∗,B

≤ −κ‖u− u0‖2H
for some κ > 0 and all u ∈ B, so Corollary 2.5 implies that

lim
t→∞

‖X(t)− u0‖H = 0 P -almost surely and lim
t→∞

E‖X(t)− u0‖2−ε = 0 (3.5)

for all ε ∈ (0, 2), provided〈
G(u)−G(u0), u− u0

〉
H
≤ (κ − η)‖u− u0‖2H (3.6)

for some η > 0 and all u ∈ B, and

sup
t≥0

sup
x∈B

‖σ(t, x)‖L2

1 + ‖x‖H
<∞. (3.7)

As we have already mentioned, (3.6) is satisfied if g is either nonincreasing, or Lipschitz
continuous with a sufficiently small Lipschitz constant.

Example 3.2. Let Λ ⊆ Rd be a bounded domain with a sufficiently smooth boundary
and p ∈ (2,∞). Set B = W 1,p

0 (Λ) and H = L2(Λ), we shall consider the p-Laplacian

∆pu = div
(
|∇u|p−2∇u

)
,

that is, rigorously, an operator ∆p : B −→ B∗ defined by

〈∆pu, v〉B∗,B = −
∫
D

|∇u(r)|p−2〈∇u(r),∇v(r)〉dr, u, v ∈ B.

Let f ∈ H. It follows from [BS, Theorem 2.6.8] that the quasilinear elliptic equation

∆pu = f in Λ, u = 0 on ∂Λ (3.8)

has a unique weak solution u0 ∈ B. Likewise, the stochastic equation

dX = α(t)
(
∆pX − f

)
dt+ α(t)σ(t,X) dW (t), X(0) ∼ µ

has a unique variational solution ((Ω,F , (Ft),P ),W,X) if α and σ satisfy (3.4) and (3.3),
respectively, and µ is a Borel probability measure on H with a finite second moment, see
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the discussion in [LR, Example 4.1.9]. Again we shall use Corollary 2.5 with V = ‖·−u0‖2H .
Due to the inequality〈

‖t‖p−2t− ‖s‖p−2s, t− s
〉
≥ cp‖t− s‖p for a cp > 0 and all s, t ∈ Rd (3.9)

(see e.g. [Si, p. 210]) the operator −∆p is strongly monotone,

〈∆pu−∆pv, u− v〉B∗,B = −
∫
G

〈
‖∇u(r)‖p−2∇u(r)− ‖∇v(r)‖p−2∇v(r), u(r)− v(r)

〉
dr

≤ −cp‖u− v‖pB

for all u, v ∈ B, whence we have

〈∆pu− f,DV (u)〉B∗,B = 2〈∆pu−∆pu0, u− u0〉B∗,B
≤ −2cp‖u− u0‖pB
≤ −c̃‖u− u0‖pH

for some constant c̃ > 0 and all u ∈ B. Therefore, if σ satisfies (3.7) then (3.5) holds true
for all ε ∈ (0, 2).

Example 3.3. In this example equations involving the porous medium operator will be
considered. Let Λ ⊆ Rd be a bounded domain with a sufficiently smooth boundary and
p ∈ (2,∞), set B = Lp(Λ), H = (W 1,2

0 (Λ))∗ and Ψ(s) = s|s|p−2 for s ∈ R, and define

A : B −→ B∗, u 7−→ ∆Ψ(u).

Details may be found e.g. in [LR, Example 4.1.11]; note that the dualities appearing in this
example must be handled with some care, in particular, 〈∆u, v〉B∗,B = −〈u, v〉Lp/(p−1),Lp

for all u ∈ Lp/(p−1)(D), v ∈ Lp(D). Let σ : R≥0 × B −→ L2(K,H) and α : R≥0 −→ R>0

satisfy (3.3) and (3.4), respectively, let f ∈ B∗ and let µ be a Borel probability measure
on H with a finite second moment. Then there exists a unique solution X of

dX = α(t)
(
A(X)− f

)
dt+ α(t)σ(t,X) dW (t), X(0) ∼ µ.

Using the inequality (3.9) with d = 1 one may check that −A is strongly monotone:

〈A(u)−A(v), u− v〉B∗,B = 〈∆(Ψ(u)− Ψ(v)), u− v〉B∗,B

= −
∫
D

(Ψ(u(r))− Ψ(v(r)))(u(r)− v(r)) dr

≤ −cp‖u− v‖pB .

It follows, first, that the problem Au = f has a unique solution u0 ∈ B and, secondly,
choosing V = ‖ · −u0‖2H we get

〈A(u)− f,DV (u)〉B∗,B ≤ −ĉ‖u− u0‖pH

for some ĉ > 0 and any u ∈ B. Therefore, (3.5) holds provided (3.7) is satisfied.
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