
PARTITIONED HIERARCHICAL ALTERNATING LEAST SQUARES ALGORITHM

FOR CP TENSOR DECOMPOSITION

Anh-Huy Phan1, Petr Tichavský2 and Andrzej Cichocki1

1Brain Science Institute, RIKEN, Wakoshi, Japan
2Institute of Information Theory and Automation,

P.O.Box 18, 182 08 Prague 8, Czech Republic

ABSTRACT

Canonical polyadic decomposition (CPD), also known as

PARAFAC, is a representation of a given tensor as a sum

of rank-one tensors. Traditional method for accomplishing

CPD is the alternating least squares (ALS) algorithm. This

algorithm is easy to implement with very low computational

complexity per iteration. A disadvantage is that in difficult

scenarios, where factor matrices in the decomposition contain

nearly collinear columns, the number of iterations needed to

achieve convergence might be very large. In this paper, we

propose a modification of the algorithm which has similar

complexity per iteration as ALS, but in difficult scenarios it

needs a significantly lower number of iterations.

Index Terms— CANDECOMP/PARAFAC, tensor de-

composition, partitioning ALS

1. INTRODUCTION

Canonical polyadic decomposition (CPD), also known as

PARAFAC, is a representation of a given tensor as a sum

of rank-one tensors. This tensor decomposition has found

numerous applications in signal processing, including the

identification of independent components in multivariate data

through the decomposition of higher order cumulant tensors,

retrieval of signals in CDMA telecommunications, extraction

of hidden components from neural data, training a dictionary

in supervised learning systems, image completion and signal

tracking. For a review see [1–3] and references therein.

The traditional method for accomplishing CPD is the al-

ternating least squares (ALS) algorithm. This algorithm is

easy to implement with very low computational complexity

per iteration. A disadvantage is that in difficult scenarios,

where factor matrices in the decomposition contain nearly

collinear columns, the number of iterations needed to achieve

convergence might be very large [4, 5]. Therefore, several

other methods of the CP decomposition have been proposed,

e.g., enhanced line search (ELS) [6], rotational ALS [7], all-

This work was supported by the Czech Science Foundation through

Project No. 17-00902S.

at-once optimisation algorithms [8–10], joint diagonalization

based methods [11–15].

Most recently, the partitioned ALS algorithm has been

proposed [16]. Different from the other alternating algo-

rithms, which update one or all components in the same

factor matrix, the PALS algorithm jointly updates compo-

nents in different factor matrices. For a decomposition of

tensor of size R × R × R and of rank R, the complexity per

iteration of ALS is O(R4), but that of the PALS is typically

O(R6).

In this paper, we propose a modification of the PALS al-

gorithm, which has similar complexity per iteration as ALS,

O(R4), but in difficult scenarios it shows to need a signifi-

cantly lower number of iterations. The algorithm is somewhat

similar to the Hierarchical ALS algorithm [17].

The paper is organised as follows. First, we review ALS,

HALS and PALS algorithms for easy reference. Second, we

present the new algorithm called PHALS, and analyse its

computational complexity. Simulation section and Conclu-

sions section follow.

2. ALS, HALS AND PALS

We consider an approximation problem of a tensor Y of size

I1 × I2 × I3 by a tensor of rank-R. The following symbols

“◦′′, “⊗′′, “⊙′′ and “⊛′′ represent the outer product, the Kro-

necker product, the Khatri-Rao and element-wise Hadamard

products, respectively.

2.1. Alternating least squares (ALS) algorithm

Fitting a tensor Y by a rank-R tensor can be achieved by min-

imising the Frobenius norm of the error given in a form as

min D = ‖Y −

R
∑

r=1

ar ◦ br ◦ cr‖
2
F . (1)

The simplest way to update components ar is to rewrite the

objective function as a quadratic form of the factor matrix

A = [a1, . . . , aR], e.g.,

min D = ‖Y(1) − A(C ⊙ B)T ‖2F

where Y(1) denotes mode-1 matricization of the tensor Y. By

this way, A can be updated in closed-form as

A = Y(1)(C ⊙ B)((CT C) ⊛ (BT B))−1 .

2542978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017

When columns of either one or two factor matrices B and

C are highly collinear, the matrix Γ2 = (CT C) ⊛ (BT B)

becomes ill-conditioned. Hence the ALS update faces the

problem of numerical instability, and the algorithm converges

slowly. For such a case, updating all factor matrices using

the second-order optimisation method becomes useful, as

in the fast damped Gauss-Newton algorithm [9]. The algo-

rithm costs O(R6) for order-3 tensor [9, 18], and might be

computationally demanding when the rank R is high.

2.2. Hierarchical ALS

Alternatively, one can avoid updating all components in one

factor matrix. For example, updating only one component per

iteration as in the Hierarchical ALS algorithm [17]. In this

algorithm, the global cost function (1) for the rank-R tensor is

converted to local cost functions for R rank-1 tensors

min D = ‖ vec(Yr) − (cr ⊗ br ⊗ II1
) ar‖

2
F

where r = 1, 2, . . . ,R and Yr = Y −
∑

k,r ak ◦ bk ◦ ck. As a

result, the component ar can be updated in closed-form as

ar =
1

γr

(Y(1)(cr ⊗ br) − Ar̄ γ1,r̄) , (2)

where γr = (cT
r cr)(bT

r br), and γr̄ = (BT
r̄ br) ⊛ (CT

r̄ cr), r̄ =

[1, . . . , r − 1, r + 1, . . . ,R]. The algorithm need not matrix in-

versions in the ALS algorithm, and is particularly useful for

the constrained CPD, when closed-form update for the fac-

tor matrix does not exist, e.g., for the nonnegative CPD [17].

However, the algorithm requires more iterations, and there-

fore, it becomes less efficient for the non-constrained CPD

with highly collinear components.

2.3. Partitioned ALS

Another method is the Partitioned ALS algorithm (PALS)

[16], which jointly updates R components of different fac-

tor matrices, Ar1
, Br2

and Cr3
, where r1, r2 and r3 =

{1, . . . ,R} \ {r1, r2} are three disjoint index subsets. Note

that one or two sets of r1, r2, and r3 can be empty. The key

observation of the PALS technique is that the tensor is a lin-

ear function of (Ar1
,Br2
,Cr3

) provided that the other part of

the factor matrices are fixed. The algorithm may proceed by

a cyclic update with respect to (Ar1
,Br2
,Cr3

), (Ar3
,Br1
,Cr2

)

and (Ar2
,Br3
,Cr1

). The partitioning (r1, r2, r3) is taken at ran-

dom, after each cycle above. Disadvantage of the algorithm

is, that if the partitioning is balanced, i.e., when the number

of elements in r1, r2, r3 are approximately equal (≈ R/3),

complexity of each iteration is O(R6). The way to reduce the

complexity is to consider unbalanced partitioning only.

3. JOINT UPDATE RULES OF COMPONENTS

In this paper, our aim is to improve the HALS algorithm us-

ing the update method of PALS. The basic idea behind our

proposed algorithm is that while the component of a factor

matrix, e.g., ar, is jointly updated with components in an-

other factor matrix, e.g., Br̄. We will show that the update

rule of R joint components has a similar cost as that of the

ALS algorithm.

For a column index r in [1,R], we will derive update

rules for the r-th column ar = A(:, r) and (R − 1) columns

Br̄ = B(:, r̄), while C, Ar̄ and br are fixed. This is a particular

case of the Partitioning ALS (PALS) [16] with a partition of

r1 = 1, r2 = [2, . . . ,R], and r3 = ∅. We rewrite the objective

function in (1) as

D = ‖ vec(Y) − (cr ⊗ br ⊗ II1
) ar −

∑

k∈r̄

(ck ⊗ II2
⊗ ak) bk‖

2
F ,

i.e., in quadratic form of the interest variables θ =

[

ar

vec(Br̄)

]

∈ RI1+(R−1)I2 . Hence, θ can be updated in closed-form as

θ = H−1 g , (3)

where the Hessian H = JT J, the Jacobian is given by

J =

[

∂ vec(Y)

∂ar

,
∂ vec(Y)

∂Br̄

]

=
[

(cr ⊗ br ⊗ II1
), . . . , (ck ⊗ II2

⊗ ak) . . .
]

and g = JT vec(Y) comprises gradients of the objective func-

tion with respect to ar and Br̄ , respectively computed as,

g1 =
∂D

∂ar

= Y(1) (cr ⊗ br), G2 =
∂D

∂Br̄

= Y(2) (Cr̄ ⊙ Ar̄). (4)

The Hessian H is of size (I1 + (R− 1)I2)× (I1 + (R− 1)I2),

and its inverse may be expensive when the tensor size is large.

For a simple case when I1 = I2 = I, its inverse has a cost of

orderO(I3R3), which is much more expensive than the cost of

the ALS update to invert matrices of size R×R. Fortunately, H

can be expressed in an adjustment form of rank-2(R− 1), and

thereby R joint components ar and Br̄ can be updated with a

low computational cost.

Theorem 1 (Joint update rules for ar and Br̄).

ar =
1

γr

(

g1 − Ar̄ Dru
)

, (5)

Br̄ =

(

II2
−

br bT
r

bT
r br

)

G2 Γ
−1
r̄ +

br uT

bT
r br

, (6)

where

u =
(

DrΩr̄Dr − (cT
r cr)Γr̄

)−1 (

DrA
T
r̄ g1 − (cT

r cr) GT
2 br

)

Ωr̄ = AT
r̄ Ar̄, Γr̄ = (AT

r̄ Ar̄) ⊛ (CT
r̄ Cr̄), and Dr = diag(CT

r̄ cr).

The proof is in Appendix. Note that due to scaling ambi-

guity, we can always normalise components br, Ar̄ and C to

unit-length vectors. Hence, bT
r br = cT

r cr = 1, and γr = 1.

This will simplify the above update rules. The update rules

in Theorem 1 inverts two matrices of size (R − 1) × (R − 1).

When the rank R exceeds the dimension I1, the update rule for

ar and Br̄ can be replaced by the ones in Theorem 2, which

requires inversions of a matrix Γr̄ of size (R− 1)× (R− 1) and

a matrix ∆ of size (I1 × I1).

2543

Algorithm 1: PHALS

Input: Data tensor Y: (I1 × I2 × I3), and rank R

Output: X = ~A,B,C� of rank R such that min ‖Y −X‖2
F

begin

1 Initialize X

repeat
for r = 1, 2, . . . ,R do

2 Joint update ar and Br̄

3 Joint update br and Cr̄

4 Joint update cr and Ar̄

until a stopping criterion is met

Theorem 2.

ar ← ∆
−1

(

g1 − Ar̄DrΓ
−1
r̄ GT

2 br

)

(7)

Br̄ ←
(

G2 − br ((cT
r Cr̄) ⊛ (aT

r Ar̄)
)

Γ
−1
r̄ (8)

where ∆ = γrII1
− (bT

r br) Ar̄DrΓ
−1
r̄ DrA

T
r̄ .

The update rule for ar in (5) is in similar form as the

HALS update in (2), but different by the term u. This is con-

sidered an improvement of the HALS update of ar , but also

an improvement of the ALS update for B or C by not updating

their all columns.

Computation of the gradients g1 and G2 has a cost of

O(RI1I2I3), which is similar to the update of R components

in the ALS algorithm. Besides this, PHALS inverts two ma-

trices of size (R − 1) × (R − 1), while ALS inverts a matrix of

size R × R. Hence, the computational costs of the proposed

algorithm and ALS are of the same order.

The proposed algorithm is briefly listed in Algorithm 1.

At each inner iteration for r running from 1 to R, the algorithm

jointly updates the component ar and Br̄ , and update br and

Cr̄, then cr and Ar̄. This completes one update round of the

proposed algorithm.

4. SIMULATIONS

4.1. Decomposition of tensors of highly collinear compo-

nents

In this section, we will illustrate efficiency of the proposed

method. The considered tensors were of size I×I×I and rank-

R, where I = 5R or I = 10R and R = 6, 10 or 15. Components

of the second and third factor matrices were highly collinear,

with bT
r bs = cT

r cs = 0.95 for all r , s, whereas aT
r as = 0.9.

All components are unit-length vectors. The factor matri-

ces with specific correlation coefficients were generated using

the subroutine “gen matrix′′ in the TENSORBOX [19] (see

generation of such factor matrices in Appendix F in [20]).

The Gaussian noise was added into the tensor Y so that the

Signal-Noise-Ratios SNR = 20 and 50 dB.

We compare the proposed algorithm with the HALS,

ALS, and ALS with enhanced or exact line search algorithms

(ALS+ELS). Initial values were generated using the DTLD

algorithm [21]. The PHALS algorithm stopped when the

Table 1. Comparison of execution times in second and the

number of iterations of algorithms considered in Example 4.1.
(R, I =) (6,30) (10,50) (15,75) (6,60) (10,100) (15,150)

E
x
ec

u
ti

o
n

ti
m

e
(s

)

SNR = 20 dB

HALS 26.0 58.2 131 54.1 309 656

ALS 1.5 3.1 10.6 3.7 22.3 60.1

PHALS 0.61 1.5 6.1 2.7 16.4 37.9

ALS+ELS 0.41 2.4 16.4 7.3 56.5 113

PHALS+ELS 0.38 1.0 4.5 2.6 14.2 29.9

SNR = 50 dB

HALS 26.6 77.4 268 30.6 307 919

ALS 1.4 3.4 12.6 2.5 22.4 66.3

PHALS 0.54 1.6 7.4 1.7 15.8 42.5

ALS+ELS 0.24 1.6 13.4 3.0 32.7 76.6

PHALS+ELS 0.23 0.98 5.0 1.1 11.1 29.0

N
u

m
b

er
o
f

It
er

a
ti

o
n

s

SNR = 20 dB

HALS 15521 21941 21317 15025 20971 20362

ALS 1524 1886 2170 1299 1701 1931

PHALS 578 701 794 470 615 691

ALS+ELS 391 517 622 328 443 525

PHALS+ELS 338 405 462 271 357 412

SNR = 50 dB

HALS 15915 29385 44190 8701 21169 29095

ALS 1445 2062 2584 899 1697 2173

PHALS 520 756 955 324 621 803

ALS+ELS 226 359 503 142 272 370

PHALS+ELS 207 379 506 128 287 413

relative errors ε =
‖Y − Ŷ‖F

‖Y‖F
were lower than 10−8, while

the other algorithms stopped when their approximation errors

reached the last approximation error achieved by PHALS.

In Table 1, we compare execution times and the number of

iterations of the considered algorithms, which were averaged

over 100 independent runs for each test cases. Here, by “one

iteration” we mean that the algorithm completes the updates

of all parameters, i.e., 3R components. The ALS+ELS algo-

rithm updates all parameters in one iteration using the ALS

updates, then using the ELS update in another iteration. The

PHALS algorithm updates all components for each index r

running from 1 to R, until convergence.

For most the test cases, especially when the rank was

high R = 10, 15 and the tensor size was large I ≥ 50, the

HALS algorithm executed a huge number of iterations, and

was the most time consuming algorithm. The ALS algorithm

required on average 2.65 times more number of iterations than

PHALS, and it was two times slower than PHALS. When us-

ing with ELS, the ALS algorithm converged sooner only for

the test cases with relatively small rank and tensor sizes, e.g.,

(R, I) = (6, 30) or (10, 50). When the tensor size was 60 or

larger, ALS+ELS achieved the target approximation errors

faster with a smaller number of iterations than ALS. However,

this combined algorithm was even slower than ALS. This is

because of high computational cost of the line-search.

The results indicate that PHALS was only slower than

ALS+ELS for decomposition of tensors of small size and low

rank, e.g., (R, I) = (6, 30), despite requiring more number of

iterations then ALS+ELS. An important observation is that

2544

100 101 102 103

Iteration

10-5

R
el

at
iv

e
er

ro
r

ALS
PHALS
ALS+ELS
PHALS+ELS

Fig. 1. Convergence behaviour of the considered algorithms

in decomposition of the multiplication tensor of size 6× 6× 4

of rank-11.

PHALS+ELS was even better than PHALS, and became com-

parable with ALS+ELS when tensors was of small size. For

the test case I = 10R, PHALS+ELS was 2.8 times faster than

ALS+ELS when SNR = 50 dB, and 3.5 times when SNR =

20 dB.

4.2. Decomposition of tensor for the matrix multiplica-

tions (2 × 3) × (3 × 2)

In this example, we consider a tensor Y of size 6×6×4 which

is associated with the multiplication of two matrices A and B

of size (2 × 3) and (3 × 2), respectively. The tensor contains

only zeros and ones, and obeys

vec(AB) = Y ×1 vec
(

AT
)T
×2 vec

(

BT
)T
.

This tensor Y has rank-11 [22], i.e. exceeds the tensor sizes.

The relative errors of the considered algorithms are compared

in Fig. 1. The results indicate that the ALS algorithm needed

2702 iterations, three times more than the PHALS algorithm.

5. CONCLUSIONS

We have presented a novel alternating least squares algo-

rithm for CPD, which is considered a particular case of the

PALS algorithm [16], but has much lower complexity than

the PHALS. The proposed algorithm inverts matrices of size

(R−1)×(R−1) per iteration. Hence, it has at most as the same

computational cost of the ALS algorithm, which needs to in-

vert matrices of size R × R. Simulation results show that our

algorithm needs a smaller number of iterations than the ALS

algorithm in some difficult tensor decompositions. Moreover,

the convergence of PHALS can be improved when using

with ELS. The algorithm can be extended to constrained CP

decompositions.

APPENDIX: Proof of Theorem 1

Proof. From the Hessian H = JT J, it can be shown that H

can be expressed in a low-rank adjustment form as

H = D + Z K ZT (9)

where

D =

[

γr II1

Γr̄ ⊗ II2

]

, Z =

[

Ar̄

IR−1 ⊗ br

]

,

K =

[

diag(CT
r̄ cr)

diag(CT
r̄ cr)

]

∈ R2(R−1)×2(R−1).

The above expression can also be derived by simply eliminat-

ing columns and rows in the full Hessian for all parameters

stated in Theorem 4.2 in [9].

Following the matrix inversion lemma (Woodbury iden-

tity), the inversion of H can be proceeded as

H−1 = D−1 − D−1Z (K−1 + ZT D−1Z)−1 ZT D−1 .

Hence, the update rule for the parameters θ is given by

θ = H−1 g

= D−1 g − (D−1Z)Ψ−1 (ZT D−1 g) (10)

whereΨ = K−1+ZT D−1Z is a matrix of size 2(R−1)×2(R−1).

Inverse of the matrix K is given by

K−1 =

[

D−1
r

D−1
r

]

.

Hence, the matrix Ψ has inversion in block form as

Ψ
−1 =

[

1
γr
Ωr̄ D−1

r

D−1
r (bT

r br)Γ
−1
r̄

]−1

=















γrDrFDr −(cT
r cr)DrFΓr̄

−(cT
r cr)Γr̄ D−1

r DrFDr
1

bT
r br
Γr̄ +

cT
r cr

bT
r br
Γr̄FΓr̄















where

F = (DrΩr̄Dr − (cT
r cr)Γr̄)−1 .

Similarly, we can express D−1 g and ZT D−1 g in block

forms as

D−1 g =













1
γr

g1

vec
(

G2 Γ
−1
r̄

)













,

w = ZT D−1 g =

[

1
γr

AT
r̄ g1

Γ
−1
r̄ GT

2
br

]

,

and write solution to the linear system Ψ−1 (ZT D−1 g)

Ψ
−1 w =

















DrF
(

DrA
T
r̄ g1 − (cT

r cr) GT
2

br

)

−1

bT
r br
Γr̄FDrA

T
r̄ g1 +

1

bT
r br

GT
2

br +
cT

r cr

bT
r br
Γr̄FGT

2
br

















=













Dru
1

bT
r br

(

GT
2

br − Γr̄u
)













. (11)

By replacing the result in (11) in to (10), and taking into ac-

count that

D−1 ZΨ−1 w =















1
γ1

Ar̄ Dr u
1

bT
r br

(Γ−1
r̄ GT

2
br − u) ⊗ br















,

we obtain the update rules in (5) and (6). This completes the

proof.

�

2545

6. REFERENCES

[1] T.G. Kolda and B.W. Bader, “Tensor decompositions

and applications,” SIAM Review, vol. 51, no. 3, pp. 455–

500, September 2009.

[2] A. Cichocki, R. Zdunek, A.-H. Phan, and S. Amari,

Nonnegative Matrix and Tensor Factorizations: Appli-

cations to Exploratory Multi-way Data Analysis and

Blind Source Separation, Wiley, Chichester, 2009.

[3] A. Cichocki, D. P. Mandic, A.-H. Phan, C. Caifa,

G. Zhou, Q. Zhao, and L. De Lathauwer, “Tensor de-

compositions for signal processing applications. from

two-way to multiway component analysis,” IEEE Sig-

nal Processing Magazine, vol. 32, no. 2, pp. 145–163,

2015.

[4] P. Comon, X. Luciani, and A. L. F. de Almeida, “Ten-

sor decompositions, alternating least squares and other

tales,” Journal of Chemometrics, vol. 23, no. 7-8, pp.

393–405, 2009.

[5] A. Uschmajew, “Local convergence of the alternating

least squares algorithm for canonical tensor approxima-

tion,” SIAM J. Matrix Anal. Appl., vol. 33, no. 2, pp.

639–652, 2012.

[6] M. Rajih, P. Comon, and R. A. Harshman, “Enhanced

line search: A novel method to accelerate PARAFAC,”

SIAM Journal of Matrix Analysis and Applications, vol.

30, no. 3, pp. 1128–1147, 2008.

[7] P. Paatero, C. Navasca, and P. Hopke, “Fast rotation-

ally enhanced alternating-least-squares,” Workshop on

Tensor Decompositions and Applications (TDA 2010),

SIAM, 2010.

[8] P. Paatero, “A weighted non-negative least squares algo-

rithm for three-way PARAFAC factor analysis,” Chemo-

metrics Intelligent Laboratory Systems, vol. 38, no. 2,

pp. 223–242, 1997.

[9] A.-H. Phan, P. Tichavský, and A. Cichocki, “Low com-

plexity damped Gauss-Newton algorithms for CANDE-

COMP/PARAFAC,” SIAM Journal on Matrix Analysis

and Applications, vol. 34, no. 1, pp. 126–147, 2013.

[10] L. Sorber, M. Van Barel, and L. De Lathauwer, “Struc-

tured data fusion,” IEEE J. Selected Topics in Signal

Processing, vol. 9, pp. 586–600, 2015.

[11] P. Comon, “Tensor diagonalization, a useful tool in

signal processing,” in 10th International Federation of

Automatic Control Symposium on System Identification,

1994, pp. 77–82.

[12] L. De Lathauwer, “A link between the canonical decom-

position in multilinear algebra and simultaneous matrix

diagonalization,” SIAM Journal of Matrix Analysis and

Applications, vol. 28, pp. 642–666, 2006.

[13] Florian Roemer and Martin Haardt, “A semi-algebraic

framework for approximate CP decompositions via si-

multaneous matrix diagonalizations (SECSI),” Signal

Processing, vol. 93, no. 9, pp. 2722–2738, 2013.

[14] K. Naskovska, M. Haardt, P. Tichavský, G. Chabriel,

and J. Barrere, “Extension of the semi-algebraic

framework for approximate cp decompositions via non-

symmetric simultaneous matrix diagonalization,” in

Proc. of the IEEE International Conference on Acous-

tics, Speech, and Signal Processing (ICASSP), Shang-

hai, China, 2016, pp. 2971–2975.

[15] P. Tichavský, A.-H. Phan, and A. Cichocki, “Ten-

sor diagonalization-a new tool for PARAFAC and

block-term decomposition,” arXiv preprint, vol.

arXiv:1402.1673, 2014, 2014.

[16] P. Tichavský, A.-H. Phan, and A. Cichocki, “Parti-

tioned alternating least squares technique for canonical

polyadic tensor decomposition,” IEEE Signal Process-

ing Letters, vol. 23, no. 7, pp. 993–997, July 2016.

[17] A. Cichocki and A.-H. Phan, “Fast local algorithms

for large scale nonnegative matrix and tensor factoriza-

tions,” IEICE Transactions, vol. 92-A, no. 3, pp. 708–

721, 2009.

[18] P. Tichavský, A.-H. Phan, and A. Cichocki, “A further

improvement of a fast damped GAUSS-NEWTON al-

gorithm for CANDECOMP-PARAFAC tensor decom-

position,” in Proc. of IEEE Int. Conf. Acoustics, Speech,

Signal Processing, ICASSP-2013, 2013, pp. 5964–5968.

[19] A.-H. Phan, P. Tichavský, and A. Ci-

chocki, “MATLAB TENSORBOX package,”

http://www.bsp.brain.riken.jp/ phan/tensorbox.php,

2012.

[20] A.-H. Phan, P. Tichavský, and A. Cichocki, “Tensor

deflation for CANDECOMP/PARAFAC. Part 2: Initial-

ization and Error analysis.,” IEEE Transaction on Signal

Processing, vol. 63, no. 12, pp. 5939–5950, 2015.

[21] E. Sanchez and B.R. Kowalski, “Tensorial resolution: a

direct trilinear decomposition,” J. Chemometrics, vol. 4,

pp. 29–45, 1990.

[22] P. Tichavský, A.-H. Phan, and A. Cichocki, “Numerical

cp decomposition of some difficult tensors.,” J. Com-

putational and Applied Mathematics, vol. 317, pp. 362–

370, 2017.

2546

