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Abstract. In many applications, there is a need to blindly separate
independent sources from their linear instantaneous mixtures while the
mixing matrix or source properties are slowly or abruptly changing in
time. The easiest way to separate the data is to consider off-line esti-
mation of the model parameters repeatedly in time shifting window.
Another popular method is the stochastic natural gradient algorithm,
which relies on non-Gaussianity of the separated signals and is adaptive
by its nature. In this paper, we propose an adaptive version of two blind
source separation algorithms which exploit non-stationarity of the orig-
inal signals. The results indicate that the proposed algorithms slightly
outperform the natural gradient in the trade-off between the algorithm’s
ability to quickly adapt to changes in the mixing matrix and the variance
of the estimate when the mixing is stationary.

1 Introduction

Blind separation of instantaneous mixtures of independent signals or independent
component analysis (ICA) usually assumes that a mixing matrix and source sig-
nals are stationary. In practice, however, the mixing matrix may vary in time - for
example in audio signal separation, the audio scene may change in time, speakers
may move, or there are some other changes in the environment.

Traditional methods of the blind source separation (BSS) can be adapted to
such cases by applying them to time-shifting windows. There is always a trade-
off between adaptability of the algorithms to changes of the mixing systems and
accuracy (stability) of the estimation when the mixing matrix is constant. Such
trade-off can be controlled through one or more tuning parameters, often called
step size or forgetting factor. Some of the first BSS methods were adaptive [1–3].

In this paper, we design algorithms to blindly and adaptively separate lin-
ear instantaneous mixtures of signals that are non-stationary or, more pre-
cisely, piecewise stationary with varying variances in different blocks (also called
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epochs) of data. We compare their performance to the widely used stochastic
natural gradient algorithm (NG) [4], which is adaptive by its nature and sepa-
rates the independent signals based on the assumption of their non-Gaussianity.
In fact, NG is the most popular method applied in the frequency domain BSS
algorithms [5]. The algorithms proposed in this paper are adaptive versions of
BGSEP (Block Gaussian SEParation) [6] and of BARBI (Block AutoRegressive
Blind Identification) [7]. Both BGSEP and BARBI are based on approximate
joint diagonalization of matrices [8]. BARBI is more complex and works with
covariance matrices of lag 1, also.

The cause of the gain in performance is that the piecewise stationary mod-
eling of the speech signals is more appropriate for the blind separation than
the pure non-Gaussianity. We support the above empirical observation by a
theoretical analysis. We compare expressions characterizing the best achievable
separation accuracy (Cramer-Rao-induced bounds) obtained trough separation
based on non-Gaussianity, and similar expressions for separation based on non-
stationarity. However, the performance depends on the degree of non-stationarity
of the separated signals.

Next, we compare the performance of a non-Gaussianity based EFICA [9] and
non-stationarity-based BGSEP and BARBI when they are applied to mixtures of
short speech signals. Then, in Sect. 3, we describe the stochastic natural gradient
algorithm and present details of the proposed algorithms, adaptive BGSEP and
adaptive BARBI. Section 4 contains simulation results and Sect. 5 concludes the
paper.

2 Signal Model and Separation Performance Limits

In this paper, we consider for simplicity squared instantaneous mixtures of inde-
pendent signals

xt = Azt, t = 1 . . . T, (1)

where A is an N × N mixing matrix, which may be constant or slowly varying
in time, and zt = [z1t, . . . , zNt]T is the vector of the separated signals.

Below we consider three models of the separated signals:

1. Non-Gaussianity: znt are i.i.d with zero mean, unit variance. We shall
assume that mean square score function of the probability density exists and
is finite,

κn = E
[(

(∂ log(pn(x))/∂x)2
)]

< ∞, (2)

where pn(x) is the probability density function of the distribution of znt.
2. Non-Stationarity: The observation period t = [1, . . . , T ] can be divided

into M epochs of equal size, T/M, such that on each epoch m, the znt is
Gaussian-distributed with zero mean and variance snm, m = 1, . . . ,M for
t = (m − 1)T/M + 1, . . . , mT/M .

3. Piecewise AR(1) modeling: The observation period is divided into M
epochs, and within each the signal is Gaussian AR(1) process with zero mean,
variance snm and an autoregressive coefficient ρnm = E[zntzn,t+1]/snm for
n = 1, . . . , N and t = (m − 1)T/M + 1, . . . , mT/M .
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There are many methods of the independent component analysis relying on
the source non-Gaussianity, see, e.g., [10–13] and references therein. A few BSS
methods relying on the source non-stationarity exist, see e.g. [14].

The separation performance can be measured in terms of the estimated
interference-to-signal ratio (ISR) matrix, which tells how much energy of the
jth original signal is contained in the kth estimated signal.

The ISR matrix can be estimated by examining statistical properties of the
separated signals. In particular, for the non-Gaussianity model it was shown in
[15] that the ISR matrix elements are lower bounded by the Cramer-Rao-induced
bound as

ISRjk ≥ 1
N

κk

κjκk − 1
. (3)

Note that it was shown that κj ≥ 1 for all distribution functions pj(x), and the
equality holds if and only if (iff) pj(x) is Gaussian. This observation is in accord
with the well known fact that the mixture of two random signals is separable
(ISR is finite) iff at least one of the probability distributions is non-Gaussian.

For the non-stationarity model it can be shown in a similar way as in [16]
that the ISR matrix elements are lower bounded by the Cramer-Rao-induced
bound as

ISRjk ≥ 1
N

φkj

φjkφkj − 1

∑M
m=1 smj

∑M
m=1 smk

, (4)

where

φjk =
1
M

M∑

m=1

smj

smk
. (5)

It can be easily shown that the product φjkφkj is always greater or equal to one,
and it is equal to one if the variances of the separated signals are multiples each
of the other, smj = αsmk for some α and all m = 1, . . . , M . The last fraction in
(4) is the ratio of average powers of the jth and kth signal.

Similarly, for the piecewise AR(1) models, the bound on ISRjk has the same
form as in (4). The difference resides in the definition of φjk, which is

φjk =
1
M

M∑

m=1

smj

smk

1 + ρ2km − 2ρkmρjm

1 − ρ2jm

. (6)

Note that both the models 2 and 3 (non-stationarity and block AR(1) mod-
eling) lead effectively to non-Gaussian signals, so that the principle of non-
Gaussianity is a valid approach to decompose the signals. The overall probability
distribution function of the data in model 2 and 3 is a mixture of Gaussian, and
therefore it is non-Gaussian unless the variances in the blocks are the same. The
statistical dependence of the signal in different times is ignored in this model.
Parameter κ for the mixture of Gaussians is hard to handle analytically, but we
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can compute it by numerical integration. Assume that the signal can be divided
into 100 epochs and that variances of a signal in the epochs are uniformly dis-
tributed in the interval [1 − Δ, 1 + Δ], where Δ is a free parameter from the
interval [0, 1]. We can consider a mixture of two signals of the same type. For
Δ close to zero, the signals are nearly stationary and hard to separate for both
methods. For Δ close to 1, the separation is more accurate, as we can see in
Fig. 1. We can observe the difference in performance about 10 dB.
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Fig. 1. Cramer-Rao bound on ISR for separation of two piecewise stationary signals
with variances uniformly distributed in the interval [1 − Δ, 1 + Δ] versus Δ for the
signal length N = 10000.

Next, we compare performance of one non-Gaussianity-based method and
two non-stationarity-based methods in the following experiment. We consider the
set of 16 speech signals from [17]. Assuming that the mixing can be considered
to be stationary for a second, we take pairs of one second long pieces of different
signals, mix them together with a fixed mixing matrix A = [1,−0.5; 0.5, 1] and
demix them blindly with three BSS algorithms: EFICA, as a representative of
non-Gaussianity based algorithms, BGSEP and BARBI(1), both with the block
length of 200 samples. In total, we did 8 trials (with different beginnings) of all
16.15/2 = 120 pairs of signals. In Fig. 2(a) we plot the cumulative distribution
functions of the achieved ISR for the three methods. We can see that the ISR
varies in the range −20 dB to −100 dB, and statistically, there are gaps between
the ISR of EFICA, BGSEP and BARBI(1) of 5 dB and another 5 dB, respec-
tively. The BARBI(1) achieves the best separation with BGSEP following and
EFICA performing the worst.

Next, we have repeated the same experiment with shorter signals, of the half
length, 0.5 s. The difference in performance becomes smaller, as we can see in
Fig. 2(b).
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Fig. 2. Cumulative distribution function of ISR of blindly demixed pairs of speech
signals: (a) signal length 1 s (16000 samples), (b) signal length: 0.5 s (8000 samples).

3 Adaptive BSS Algorithms

3.1 Scaled Stochastic Natural Gradient Algorithm

Given the current sample of the mixtures xt and an estimate of the demixing
matrix Wt, the natural gradient updates Wt as

Wt+1 = c
(
Wt + μ(I − cf(Wtxt)(Wtxt)T )Wt

)
,

where f( . ) is an appropriately chosen nonlinear function, μ is the step length
parameter and c is a scaling parameter

c =
N

∑N
i,j=1 |(f(Wtxt)(Wtxt)T )ij |

.

The function f( . ) is applied elementwise. In our simulations, we use the com-
monly used nonlinear function

f(Wtxt) = tanh(10Wtxt).

3.2 Adaptive BGSEP

The adaptive BGSEP algorithm is initialized by an estimate of the demixing
matrix W0 and by M sample covariance matrices computed in the past M − 1
epochs of the given mixture, each of the length L, as

RM−m =
1
L

L∑

�=1

W0x�−mL(W0x�−mL)T (7)

m = 1, . . . ,M − 1. RM is set to zero matrix.
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Given a t-th new sample xt, BGSEP updates the M -th covariance as

RM = ((s − 1)RM + Wtxt(Wsxt)T )/s (8)

where s = rem(t, L) is the remainder in the division of t by L, and the demixing
matrix as

Wt+1 = (I − μB)Wt. (9)

Here, B is matrix with a zero diagonal, such that each pair of non-diagonal
elements Bij , Bji is computed separately as a solution to a 2 × 2 set of linear
equations

[
Bij

Bji

]
=

[∑M
m=1

rjjm

riim
M

M
∑M

m=1
riim

rjjm

]−1 [∑M
m=1

rijm

riim∑M
m=1

rijm

rjjm

]

, (10)

where rijm is the (i, j)th element of Rm. The update formula (9) was obtained
by modifying the off-line BGSEP, see [6,7,18]. The step length parameter μ is
chosen so that the estimate varies smoothly while still follows the changes of the
demixing matrix. If t equals a multiple of the length of the blocks L, we discard
R1 and set Ri ← Ri+1 for i = 1 . . . M − 1 and RM = 0, thus resetting the
algorithm. Each update of the demixing matrix depends not only on the actual
sample of the mixtures but also on previous samples, number of which is given
by the block length L and the number of blocks M . Therefore we can expect the
increase in L and/or in M will result in the decreased variance of the estimate
and increased reaction time for the change in the true mixing matrix and vice
versa. The algorithm is summarized in Algorithm 1.

Algorithm 1. Adaptive BGSEP update
Input: xt, W, R1 . . .RM , t, L;
t = t + 1, s ← rem(t − 1, L) + 1;
RM ← ((s − 1)RM + Wxt(Wxt)

T )/s;
Compute elements of B via (10);
W ← (I − μB)W;
if s = L then

for m = 1 : M − 1 do
Rm ← Rm+1;

end for
RM ← 0;

end if
Output: W, R1 . . .RM , t;

3.3 Adaptive BARBI

The online BARBI algorithm works similarly to BGSEP, but in addition to
covariances Rm, its initialization requires also a set of symmetrized sample lag
one covariances
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Sm =
1

2L

L∑

�=1

[W0x�−mL(Wx�−mL−1)T + W0x�−mL−1(W0x�−mL)T ] (11)

for m = 1 . . . M − 1, SM = 0. Given a k-th new sample xk, BARBI updates the
M -th lag one covariance as

SM =
s − 1

s
SM +

Wxt(Wxt−1)T

2s
+

Wxt−1(Wxt)T

2s
.

The updates of lag zero covariance and the demixing matrix are the same as in
BGSEP, except the equations for the non-diagonal elements of B take the form

[
Bij

Bji

]
=

[∑M
m=1 q

T
impjjm M

M
∑M

m=1 q
T
jmpiim

]−1

·
[∑M

m=1 qim
Tpijm∑M

m=1 q
T
jmpijm

]

, (12)

where

qim =
1

riim(r2iim − |siim|2)
[
r2iim + |siim|2
−2siimriim

]
, (13)

pijm =
[
rijm

sijm

]
. (14)

Here sijm is the (i, j)th element of Sm. The update formula (12) was obtained
by modifying the off-line BARBI, see [7,18]. After L iterations the algorithm
is reset as in BGSEP. The update step of adaptive BARBI is summarized in
Algorithm 2.

Algorithm 2. Adaptive BARBI update
Input: xt, xt−1, W, R1 . . .RM , S1 . . .SM , t, L;
t = t + 1, s ← rem(t − 1, L) + 1;
RM ← ((s − 1)RM + Wxt(Wxt)

T )/s;
SM ← ((s − 1)SM + 1/2(Wxt(Wxt−1)

T + Wxt−1(Wx)T ))/s;
Compute elements B via (12);
W ← (I − μB)W;
if s = L then

for m = 1 : M − 1 do
Rm ← Rm+1,Sm ← Sm+1;

end for
RM ← 0, SM ← 0;

end if
Output: W, R1 . . .RM , S1 . . .SM , t, L;

4 Experiments

We examine tracking properties of the natural gradient, adaptive BGSEP and
adaptive BARBI in the following example. Consider a pair of natural speech
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signals taken from the same database as in Sect. 2. We mix them by the mixing

matrix A1 =
[
1 2
2 −1

]
, and change it abruptly to another matrix A2 =

[−1 2
2 1

]

at time instant t = 4.1875 s. For NG the step length parameter μ was set to
0.001. For BGSEP the block length was set to L = 200 samples, the number of
blocks was set to M = 10, and the step length parameter was set μbg = 0.01.
The parameters were manually selected as such that the methods yield best
performances. For adaptive BARBI we have chosen the same block length and
the same number of blocks, and the step length μbarbi = 0.001. The ability of the
algorithms to adapt to the change of the mixing matrix is studied in terms of the
estimated gain matrix Gt = ŴtAt, where At is the mixing matrix at time t and
Ŵt is the estimated demixing matrix. In the ideal case, Gt should be a diagonal
or counter-diagonal matrix. The results for all three algorithms are plotted in
Fig. 3. Gain matrices for all three algorithms switch from near diagonal to near
counter-diagonal following the abrupt change of the true mixing matrix.

Next, we have computed the instantaneous interference to signal ratio ISR
of the separated signals in moving time window of the length of 10000 samples
(0.625 s). The results are plotted in Fig. 4. The BGSEP achieves the same sepa-
ration as NG in the first half of the signal, attaining average ISR of −32.84 dB
and −33.41 dB respectively, both outperforming BARBI with −27.13 dB. In the
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Fig. 3. Evolution of the elements of the gain matrix G for BGSEP, BARBI and NG
algorithms in the case of an abrupt change in the mixing matrix. The gain matrices
switch between diagonal and counterdiagonal in reaction to the change in the true
mixing matrix.
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Fig. 4. Instantaneous SIR for BGSEP, NG and BARBI algorithms in the case of an
abrupt change in the mixing matrix.

second half of the signal, BARBI attains the lowest average ISR of −38.17 dB,
BGSEP being second best with −35.51 dB and NG achieving −33.09 dB.

5 Conclusion

We have proposed two novel adaptive algorithms for the blind separation and
compare their performance with those of the natural gradient technique. The
proposed techniques achieve separation better or comparable to that of natural
gradient algorithm. The next step will be an application of these methods in
frequency domain BSS algorithms and a comparison with adaptive time domain
BSS [19].
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Joint matrices decompositions and blind source separation. IEEE Signal Process.
Mag. 31, 34–43 (2014)
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Z., Tichavský, P. (eds.) LVA/ICA 2015. LNCS, vol. 9237, pp. 304–311. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-22482-4 35
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