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Abstract

Tensor diagonalization means transforming a given tensor to an exactly or
nearly diagonal form through multiplying the tensor by non-orthogonal in-
vertible matrices along selected dimensions of the tensor. It has a link to
an approximate joint diagonalization (AJD) of a set of matrices. In this
paper, we derive (1) a new algorithm for a symmetric AJD, which is called
two-sided symmetric diagonalization of an order-three tensor, (2) a similar
algorithm for a non-symmetric AJD, also called a two-sided diagonalization
of an order-three tensor, and (3) an algorithm for three-sided diagonalization
of order-three or order-four tensors. The latter two algorithms may serve for
canonical polyadic (CP) tensor decomposition, and in certain scenarios they
can outperform traditional CP decomposition methods. Finally, we propose
(4) similar algorithms for tensor block diagonalization, which is related to
tensor block-term decomposition. The proposed algorithm can either out-
perform the existing block-term decomposition algorithms, or produce good
initial points for their application.

Keywords: Multilinear models, canonical polyadic decomposition, parallel
factor analysis, block-term decomposition, joint matrix diagonalization

1. Introduction

The approximate joint diagonalization (AJD) of a set of matrices has been
recently recognized to be instrumental in signal processing, mainly because
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of its importance in practical signal processing problems, such as source
separation, blind beamforming, image denoising, blind channel identifica-
tion for multiple-input, multiple-output (MIMO) telecommunication system,
Doppler-shifted echo extraction in radar, and ICA [10].

Perhaps one of the first such algorithms is the joint approximate diagonal-
ization of eigenmatrices (JADE) algorithm proposed in [8]. In this algorithm,
the matrices under consideration are Hermitian and the considered joint di-
agonalizer is a unitary matrix. More recently, generalizations and/or new
decompositions have been of considerable interest, see [10] and the references
therein. They concern new sets of matrices, a nonunitary joint diagonalizer,
and new decompositions.

The set of given matrices to be diagonalized can be viewed as a tensor.
Hence, the AJD problem can, in its turn, be viewed as a special case of the
tensor diagonalization, as we show later in this paper.

The concept of tensor diagonalization was first introduced by P. Comon
and his co-workers [4, 5]. It works for order-three tensors of a cubic shape.
The tensor diagonalization in those papers was orthogonal: it sought orthog-
onal matrices that would transform the given tensor into a diagonal one. The
method was based on Jacobi rotations.

The tensor diagonalization studied in this paper is non-orthogonal. We
consider two-sided tensor diagonalization of order-three tensors, which can be
symmetric or nonsymmetric, and three-sided diagonalization of order-three
or order-four tensors. All algorithms in this paper are based on the same
principle. The main idea is similar to that of an AJD algorithm UWEDGE
[20], it can be described in words as “diagonalize until further diagonalization
is impossible”, but the implementation and performance are different.

In the case of symmetric diagonalization of order-three tensors, we obtain
a novel method of AJD. Utilizing nonsymmetric two-sided diagonalization of
order-three tensors, on the other hand, we obtain a novel method of canon-
ical polyadic (CP) tensor decomposition, which follows the idea of SECSI
framework for CP decomposition [25].

The cases of three-sided diagonalization of order-three and order-four
tensors represent another method of CP decomposition of order-three ten-
sors, and joint approximate diagonalization of several order-three tensors,
respectively. A generalization to four-sided and more-sided diagonalization
of higher-order tensors is straightforward.

The tensor diagonalization methods considered in this paper can be eas-
ily modified for block diagonalization. In many applications, ordinary diago-



nalization is not appropriate, and like in independent subspace analysis [33],
one rather seeks subspaces of columns that represent multidimensional signal
components that should be separated or eliminated. The joint block diago-
nalization of the set of these matrices was studied e.g., in [11]-[16]. In the
area of tensor decompositions, we speak about block-term decomposition,
promoted by de Lathauwer and his co-workers [7, 8]. This decomposition
means that a given tensor is rewritten as a sum of several tensors of the
same size but a lower multilinear rank. The block term decomposition was
used to propose a blind DS-CDMA receiver in [9].

In practice, initializing a BTD without getting captured in false local
minima of the criterion function is a very challenging problem. Another dif-
ficulty is that the appropriate block sizes might not be known in advance.
In some cases we have empirically found that the tensor diagonalization can
be used to carry out a suitable block-term decomposition, i.e., to find appro-
priate block sizes, provided there is no or little noise. This has already been
observed in [15].

There are a few related conference publications on the topic. The original
version of this paper considered tensor diagonalization through generalized
Jacobi (Givens) rotations [22]. An algorithm for two-sided diagonalization of
an order-three tensor was proposed in a conference paper [30]. An algorithm
for three-sided diagonalization of an order-three tensor was proposed in [31].
This paper presents a different approach to the same problem.

The paper is organized as follows: Section 2 presents the basic principles
of tensor diagonalization and shows its connection to CP decomposition. In
Section 3, iterative algorithms are proposed to perform the three-sided and
two-sided symmetric and nonsymmetric diagonalizations, either in the real
or complex domain. In Section 4, new algorithms for joint block diagonaliza-
tion and block-term decomposition are developed. Section 5 presents some
numerical examples, and Section 6 concludes the paper.

2. Tensor diagonalization principle

The main idea of tensor diagonalization is to find the so-called de-mixing
matrices that transform a given tensor into another one that is diagonally
dominant. In the AJD, we are given a set of matrices R,,, m =1,..., M,
and we seek the so-called de-mixing matrix A such that AR,,A"”, m =
1,..., M are all diagonally dominant. It means that the off-diagonal elements



are significantly smaller in magnitude than the diagonal elements. Here, ¥

denotes the Hermitian transpose.

There are several measures of success and several algorithms that accom-
plish the diagonalization, see [10] for a review. Some of them can be modified
to provide approximate joint block diagonalization.

One possible modification of the problem is the nonsymmetric AJD. Here
we assume again that the given matrices R,,, m = 1,..., M are square,
and we seek invertible matrices A, B such that AR,,B”, m =1,..., M are
all diagonally dominant. The symbol © stands for the matrix transpose. A
tensor formulation of the same problem can be following:

Let T be a tensor of size n x n x m composed of the slices {R,,}, m =
1,..., M. The outcome of the diagonalization is the tensor

E=T x;A%xy,B

where x; denotes the tensor-matrix multiplication along the dimension ¢, 1 =
1,2. A successful diagonalization means that ||offy(€)|| r is small compared to
diagonal elements of £, where || - || is the Frobenius norm, and offy(&) is the
operator that nullifies all diagonal elements of all frontal slices of the tensor.
In other words, if £ has elements &;;;,, then offy(£) has elements (1 —6;;)Eji,
where 0;; is the Kronecker delta.

Similarly, three-sided diagonalization of an order-four tensor 7 of the size
N x N x N x M with elements t;;4m, ¢, 7,k =1,...,N,m =1,..., M consists
of finding three matrices A, B and C of size N x N such that

527'><1A><2B><3(] (1)
is spatially nearly diagonal in the sense
loffs (E)[I7 < [[€]IF

where the operator off; nullifies all elements of £ that lie on the spatial
diagonals of the tensor. To be exact, the operator off; acts on a tensor £
with elements &k, so that off5(€) has elements (1 — 6;;0;%)Eijkm. In the
special case M =1, T and & are order-three tensors because of having only
three variable indices. This diagonalization is illustrated in Fig. 1 for the
case M = 1. The multiplication in (1) can be written as

N

Cijkom = Y, tagymiabisChy (2)
a,B,y=1
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Figure 1: Three-sided tensor diagonalization transforms a tensor 7 to a diagonally domi-
nant tensor £ using demixing matrices A, B and C: 7 x; A x93 B x3 C=¢.

where €;jkm, tagym, Qia, bjp and cg, are elements of tensors £, 7 and matrices
A, B and C, respectively.

The success of the diagonalization can be defined in different ways. The
algorithms proposed in this paper are based on the principle “diagonalize
until further diagonalization is impossible”. Let us explain the principle on
the three-sided diagonalization.

The condition that the resulting tensor £ “cannot be diagonalized any
more” means that

loffs ([ 7 = [loffs(€) ¢ (3)

for all . N B
5/:5X1AX2BX3C (4)

where diagonals of A, B, C are filled with 1’s, symbolically

diag(A) = diag(B) = diag(C) = diag(I) = (1,...,1)" . (5)

The objective function to be minimized is the norm of the gradient of ||off(£')|| ¢
with respect to the vector of off-diagonal elements of A, B, and C at the
point A = B=C=1. Ideally, the norm of the gradient should be zero,
and the corresponding Hessian matrix should be positive definite.

The tensor diagonalization is not unique. Like in the CP decomposition,
there is a permutation ambiguity, meaning that the order of rows in A and
accordingly in B and C can be arbitrary. Moreover, there is also a scale
ambiguity if off3(€) = 0, i.e., when the tensor admits an exact CP decompo-
sition, and all factor matrices are invertible. In that case, we will show that
the tensor diagonalization is essentially unique, and its outcome is equivalent



to that of the CP decomposition. In other cases, the tensor diagonalization
is not unique. The diagonalization might have several (perhaps infinitely
many) possible outcomes, but any of them characterizes the tensor in a spe-
cific sense, and may reveal a hidden block structure in the tensor. Usually
we observe that the output core tensor £ contains many nulls (entries with
negligible magnitudes) and is sparse in this sense.

3. Algorithm TEDIA

Tensor diagonalization can be achieved by cyclic application of elementary
rotations for all pairs of distinct indices 7,7 = 1,..., N, as it was shown in
earlier versions of this paper [22]. Here, however, we present an easier way
to achieve this goal by using a gradient method with an exact line search,
similar to [28]. We explain it in the case of three-sided diagonalization first.

3.1. Three-Sided Diagonalization

Assume that & is a partially diagonalized tensor obtained during the
optimization process. Let G4 be the gradient of the function [Joff(€ x; A)||%
with respect to Aat A =1 Similarly, let Gp and G¢ be gradients o
Joff(€ x2 B)||% with respect to B at B = I, and of ||off(§ x5 C)||% with
respect to C at C= I, respectively. The diagonal elements of G4, Gp, and
G are set to zero, because the diagonals of A, B and C are fixed.

It can be shown (see Appendix A) that

G = offf(offs(£)) &)
Gp = off[(offs(€)) &0 (6)
Ge = off[(offs(€)) )€
where £;) and (off3(€));) are the mode-i matricizations of £ and off3(&),
respectively.

Once G4, Gp and G¢ are computed, we seek a scalar step of size ¢ which
minimizes the following polynomial of degree 6,

(1) = [loffs (€ x1 (T+1Ga) X2 (T+tGp) x5 (T+1Go)| - (7)

Let t,, be the minimizer of ¢(¢). It can be found among the roots of a
polynomial of degree 5, ¢/(t), as the one which minimizes the cost function,
©(t). Then, an update of £ is obtained as

g<—gX1(1+tmGA) X9 (I+tmGB) X3 (I+tch) . (8)
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Table 1: Algorithm TEDIA for three-sided diagonalization
Input: Tensor 7 of size N x N x N x M, stopping constant ¢, initial demixing
matrices, if they exist (identity matrices by default).
Output: Mixing matrices A, B, C, and a core tensor £ :=T x; A x;Bx3C
Repeat:

1) Compute the gradients G, Gg, G¢ in (6)
2) Compute coefficients of the polynomial (7)

o(t) = co+ it + cot? + est® + gt + st + gt
& = off5(Ex1 Ga+E X3 G+ & x5 Ge)
E = off3(€ X1 Ga Xa G+ E X9 G x3Go + & X1 Ga X3 Ge)
E = off5(€ x1 G4 x2 G x3 Gg)
o = <offy(€),E >= [ofhy()]%
o = 2<&,E>

co = |offs(E|5+2< &, E >
g = 2<&E,E>+2<E,E >
ey = |offs(&)||F+2< &, E >
5 = 2<&E,E >
co = |offs(Es)lI%

3) Find the root ¢, of ¢/(t) = ¢1 + 2cot + 3egt? + 4degt® + Sest? + 6egt?
minimizing ¢(t)

4) Update £, A,B,C as in (8) and (9) .
Until ||GAHF + ||GB||F + HGCHF <e

The estimated demixing matrices are updated as

A « (I+t,GaA

B « (I+t,Gp)B 9)

C « (I+tch)C
The algorithm is summarized in Table 1. In this Table, the notation <
&, & > denotes a scalar product of the tensors &;, &;, i.e., a sum of the
entries of the elementwise product of these tensors.

The computational complexity of the TEDIA algorithm is O(N*M) op-
erations per iteration. In the case of M = 1, the complexity per iteration is
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roughly the same as the complexity of one iteration in the Alternating Least
Squares (ALS) algorithm with the Enhanced Line Search (ELS). The con-
vergence of TEDIA appears to be smoother than that of ALS or ALS/ELS,
namely in difficult scenarios, as we show in the simulation section.

3.2. Two-Sided Diagonalization

A modification of TEDIA to two-sided diagonalization is straightforward.
The difference is that

Gy = Off[(offg(g))(l)ga)]
Gp = off[(offy(€)) )& k)] (10)

and the polynomial o(t) is of degree 4,
o(t) = ||offa(€ x1 (T +1tG4) xo (I+tGp)|% . (11)

In order to minimize this polynomial, we need to solve a polynomial equation
¢'(t) = 0, which is of order three. This can be done algebraically and the
method becomes numerically simpler than within the three-sided diagonal-
ization. For large tensor sizes, however, the complexity of the polynomial
rooting is negligible, of order O(1), compared to complexity of computing
the coefficients of the polynomials, which is O(N*).

In the case of symmetric two-sided diagonalization, there is only one de-
mixing matrix A, the corresponding gradient matrix is

GA = OH[(OEQ(S))(l)Eg)],
and the polynomial ¢(t) would be of degree 4 again,

o(t) = |loffo(€ x1 (T+1tG4) xo (IT+tGA)|3 . (12)

4. Application in CP tensor decompositions

A natural utilization of TEDIA is in the CP tensor decomposition. It was
shown in [25] and [26] (so-called SECSI framework) that two-sided tensor
diagonalization can be applied in CP tensor decomposition. Similarly, the
three-sided diagonalization can also be used for this purpose. Let us discuss
this issue in more detail.

First of all, the tensor might have a shape different from N x N x N
or N x N x N x M. A direct tensor diagonalization makes no sense then
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because the diagonalizing matrices must be square and invertible. The Tucker
compression is advised in this case. The Tucker compression is based on
finding orthogonal matrices Q1, Q2, Q3 such that

T = To x1 Q1 X2 Q2 X3 Q3

where 7o is the compressed tensor of the required shape, and x; denotes a
mode-7 tensor-matrix multiplication. The Tucker compression can be achieved
by the HOOI algorithm [17], see [18] for more literature on this topic. Note
that TEDIA can serve as a tool for the Tucker compression as well; it would
only need to be a block version of it (see the next section). However, its
performance in the compression appears to not be as good as that of the
conventional Tucker compression.

Note that higher-order tensors can also be decomposed through the CP
decomposition of order-three tensors through tensor re-shaping [32]. There-
fore we shall focus on CP decomposition of a cube-shaped tensor.

Another remark is on computational accuracy. Tensor diagonalization
is not a statistically efficient procedure of CP decomposition, because it is
not equivalent to the maximum likelihood estimate. The performance of a
TEDIA-based procedure in terms of the CP decomposition cost function can
be improved by a suitable post-processing in which the adequate maximum
likelihood cost function is optimized.

The theoretical CP decomposition might involve rank-deficient factor ma-
trices. In that case, the optimum de-mixing matrices would not be invertible.
This is in conflict with the tensor diagonalization, which is always assumed to
produce invertible demixing matrices. TEDIA therefore might not be useful
in such cases, and either block TEDIA or block term decomposition would
be more appropriate [6].

Assume that a tensor 7T is diagonalized by three matrices A, B and C
such that the product £ = 7 x; A x5 B x5 C cannot be diagonalized any
more in the sense of Section 2. Further, assume that the tensor is of size
N x N x N and its rank is R < N. It may occur that the core tensor £
has only at most R significant nonzero elements, while the magnitudes of the
other elements are negligible. Zeroing other than the R significant elements,
we get a rank-R approximation of the core tensor, which implies a rank-R
approximation of the original tensor. If the significant elements lie on the
main spatial diagonal of the tensor, we have obtained ordinary diagonaliza-
tion and CP decomposition with regular factor matrices. However, if the
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Figure 2: Tensor block diagonalization transforms a tensor 7 to a block diagonal tensor
& by factor matrices A, B and C: 7 x; A X2 B x3 C=¢.

multilinear rank of the tensor is not (N, N, V), such outcome is impossible,
and not all significantly large elements lie on the diagonal. In that case,
some factor matrices in the CP approximation of the tensor would be rank
deficient.

5. Block diagonalization

The tensor block diagonalization is a natural generalization of the di-
agonalization considered in the previous sections. It can have the form of
symmetric or nonsymmetric two-sided block diagonalization, or three-sided
diagonalization, as illustrated in Figure 2. In this section, we assume that
the block structure is known. The block structure of £ can be represented by
an indicator tensor M of the same size as £ which contains zeros in the place
of the desired blocks, and ones elsewhere. In the special case when there is
only a single block, we receive a novel method of the Tucker compression.

We can consider the operator boff,, which nullifies all block elements of
the input tensor,

boff\(E) = € x M (13)

where * stands for the elementwise product. Now, we apply the principle
“diagonalize until further diagonalization is impossible” to get a block diago-
nalization procedure similar to Section 4. In the case of the three-sided block
diagonalization, we define G4, G and G¢ as the gradient of the function
|boffre (€ x1 A)||% with respect to A at A = I, gradient of ||boffr,(€ x2B)||%
with respect to B at B =1, and gradient of ||boffy(€ x3 C)||% with respect
to C at C =1, respectively. The diagonal elements of G4, G, and G¢ are
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set to zero, because the diagonals of A, B and C are fixed. The result is

GA = Off[(./\/l * 5)(1)5(:5)]
G’C’ = Off[(./\/l * 5)(3)5(:2)]

Finally, we find the optimum step-size t,, by minimizing the function
o(t) = |[boffum (€ x1 T+ tGa) xo T+ tGp) x5 (T+tGe))|% . (15)

Then, the core tensor £ and the de-mixing matrices A, B and C are updated
as in (8) and (9), respectively.

6. Blind Block Diagonalization

Blind block diagonalization is understood to be block diagonalization un-
dertaken without knowing the block structure in advance. In [15] it was
shown that an ordinary approximate joint diagonalization algorithm for ma-
trices can be used to obtain a joint block diagonalization of these matrices. It
appears that a similar link exists between the tensor diagonalization and ten-
sor block-term decomposition. A given tensor may not admit full diagonal-
ization, but may still admit block-diagonalization, as is shown schematically
in Fig. 2. We can assume that the diagonal blocks cannot be diagonalized
any further, because their tensor ranks exceed their dimensions, and each of
the blocks separately obeys the zero gradient condition G4 = Gg = G¢ = 0.
It is straightforward to prove that a compound block diagonal tensor obeys
this condition as well.

Note that the diagonalization is invariant under row permutations of ma-
trices A, B and C. In other words, if 7(-) is an arbitrary permutation of
(1,...,N), then

E =T x1 A x9B' x3C’ (16)

is an equivalent diagonalization where &', A’, B’ and C’ have elements

Cjtm = Ex(i)(i)a®)ms Gia = Gnar Vjg = bae, and iy = Cayq, Te-
spectively, for i, 5, k, o, 8,v=1,..., N.

It follows that the block structure may not be revealed after a mixing and
demixing (diagonalization) unless a suitable permutation 7 has been found.
The permutation should be the same in all modes in order to guarantee that
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all diagonal elements of the original tensor will appear on the diagonal of the
permuted tensor.

The degree of diagonality or block diagonality of a tensor £ can be judged
via the matrix F of size N x N, having elements

M N
Fii = 22 lerijm| + |einjm| + €ijm] (17)
m=1 k=1

The tensor £ is said to be diagonal (block diagonal) if and only if F is diagonal
(block diagonal).

The main idea is to cluster the indices {1,..., N} according to their
similarities: the similarity of two indices i, j, defined as f;; + f;;, measures
how likely it is that i and j belong to the same block (both in F and in
E). If fij + fji exceeds a certain threshold, it is inferred that i and j belong
to the same block. In the opposite case, when f;; ~ f;; ~ 0, it is still
possible that 7 and j belong to the same block, because they may be connected
(“communicate”) through a sequence of some other indices. Only if no such
sequence exists, then ¢ and j belong to different blocks.

Assume that there are K clusters, 1 < K < N, each of cardinality x;,
i=1,..., K. We seek a permutation 7 such that 7(1),...,7(x;) belong to
the first cluster, m(k1+1), ..., 7(k1+K2) belong to the second cluster, and so
on. The order of the clusters is arbitrary; one may prefer to have the clusters
sorted according to their cardinalities.

Such permutation can be found, e.g., using the well-known reverse Cuthill-
McKee algorithm (RCM)[21], implemented in Matlab™ as function symrem.
The RCM algorithm, applied to the matrix F, reveals an ordering of the
columns and rows such that the reordered matrix is block diagonal, if such
ordering exists.

In the noisy case, when the blocks of the core tensors are fuzzy, we have
better experience with standard clustering methods, such as hierarchical clus-
tering with the average-linking policy [19], which take F for a similarity ma-
trix. In short, the algorithm begins with a trivial clustering which consists of
N singletons, and in each subsequent step it merges those two clusters that
have the maximum average similarity between their members. The algorithm
is summarized in Table 2.

Note that even if the desired block structure of the core tensor is known in
advance, it might be useful to apply the blind diagonalization and clustering
as a pre-processing step for the ordinary (non-blind) block diagonalization,

12



Table 2: Clustering of components in MATLAB notation
Input: Similarity matrix F of size N x N (destroyed in the procedure)
Output: Permutation J of indices 1,..., N such that F(J,J) is approxi-
mately block diagonal.

F(1:N+1:N*)=0 % nullify diagonal of F, i.e., F(i,i) =0fori=1,...,N
S =repmat((1: N),1,N); % auxiliary array of size N x N, i.e., S(i,j) =1

L = ones(N, 1); % auxiliary array of the clusters lengths
Fort=N:—-1:2 % in the 7 — th step two of i clusters are merged.

[ml, ~] = max(F(1:4,1:1));

[m2, j] = max(ml); % (4, k) be the clusters with the highest similarity
[m3, k] = max(F(:, j)):

if 7>k, aux =j;j=k; k= aux; end % to make sure that k > j

Lnew = L(j) + L(k); % length of the new cluster, union of j, k
Snew = [S(j,1: L(j)), S(k,1: L(k)), zeros(1, N — Lnew)];
% ...indices belonging to the new cluster

ind=[1:7—1,74+1:k—1,k+1:4; % indices of the other clusters
Fnew = (L(j) * F(j,ind) + L(k) x F(k,ind))/Lnew;
% similarities between the new cluster and the other clusters

F = [0, Fnew; Fnew', F(ind,ind)]; % update of the similarity matrix
S = [Snew; S(ind,)]; % update indices in the clusters
L = [Lnew; L(ind)]; % update the cluster lengths

End

J=25(1,:);

End

because it may reduce the number of iterations of the latter algorithm needed
to achieve convergence.

7. Simulations

7.1. Example 1: CP decomposition

In this example, we apply the three-sided tensor diagonalization and other
methods to decompose a cubic tensor of size 20 x 20 x 20 of rank 20 with
collinearity in three modes. First, we generated three orthogonal matrices
of the size 20 x 20, denoted Ay, By and Cy. We divided each of them to
four blocks of size 20 x 5, i.e., Ag = [Ag1, A2, Aps, Ags]. The factor matrix
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A was then built of four blocks A = [A;, Ay, Aj, Ay, where Ay = c Aoi(:
,D)1ixs + V1 — 2Ag for B = 1,2,3,4, ¢ is a free parameter, Ag(:, 1) is
the first column of Ag,, and 1.5 is a row vector of 1’s of the size 1 x 5.
We set ¢ = 0.99. In this setting, the angle between columns in each block
is 8.1°. The condition number of A is 34.99 . Similarly, B and C were
constructed using corresponding blocks of By, and Cy. Finally, we added
an i.i.d. Gaussian noise component to each tensor element so that a chosen
signal-to-noise ratio (SNR) is attained [24]. The tensor has the property that
even with zero noise, traditional iterative CP decomposition methods have
serious difficulties in finding the right global minimum of the cost function
due to the presence of many secondary local minima, unless the iterations
begin in close vicinity of the right solution. Thus, the decomposition is hard
for all existing methods.

If there is no noise, then the true CP decomposition can be found through
the Direct Tri-Linear Decomposition [29], which is based on generalized eigen-
decomposition of a matrix pair. However, DTLD is quite sensitive to additive
noise. Even if the variance of the additive noise is so low that the signal-to-
noise ratio is at 90 dB, the estimates provided by the method are no longer
good enough. If the outcome of DTLD is used to initialize ALS or ALS-ELS,
the latter algorithms frequently remain trapped in secondary local minima.
On the other hand, the TEDIA algorithm, namely its two-sided version,
appears to be robust against the wrong initialization.

In Figure 3 we compare median performance of DTLD and median learn-
ing curves for the four methods: ALS, ELS, TEDIA-2 and TEDIA-3 taken
from 200 independent runs of the algorithms. In each run we generate new
factor matrices to build the tensor, and new additive noise. In the left-
hand-side diagram, the factor/demixing matrices are initialized by identity
matrices (this approach is equivalent to random initialization). In the latter
diagram, the algorithms are initialized by the outcome of the DTLD. We
can see that TEDIA-2 achieves the best median relative fitting error in the
former case, while in the latter case its performance was close to that of ALS-
ELS. Figure 4 presents probability of achieving a given fitting error in the
experiment. It confirms the previous observation that TEDIA-2 is the best
performing method in the sense of global convergence in the given scenario.

To be exact, the DTLD algorithm that we used is based on the generalized
eigendecomposition (GE) of the first two frontal slices of the tensor. In [29], it
was proposed to use the GE of the two frontal slices of the tensor compressed
to the size of N x N x 2. However, in our scenario, the former variant was
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the outcome of DTLD (right diagram) for ¢ = 0.99 and SNR=90 dB.
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Figure 4: Probability of attaining a given fitting error for DTLD, ALS, ALS+ELS, TEDIA
3 and TEDIA 2, (1) initialized by identity matrices (left diagram), and (2) initialized by
the outcome of DTLD (right diagram).

more accurate.

If the input SNR is higher, above 100 dB, DTLD works perfectly and
no margin for improving the results remains. For SNR lower than 80 dB,
performance of TEDIA does not look good in terms of the fitting criterion,
because it optimizes a different criterion.

7.2. Example 2: Approzimate Joint Block AJD

We have compared performance of seven approximate joint block (AJD)
algorithms: (1) U-WEDGE completed by clustering of rows of a demixing
matrix: this algorithm is blind to the assumed block structure. This algo-
rithm is used to initialize all subsequent ones; (2) algorithm JBD NCG [6],
(3) the LLAJD algorithm [13], and finally (4) the block two-sided TEDIA
algorithm proposed in this paper.
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We consider ten target matrices, each having four diagonal blocks of the
size 10 x 10. The blocks were taken at random, different at each simulation
trial: each block is taken as the product kaXfm, where X}, is Gaussian-
distributed with zero mean and variance one, mutually independent entries
and independent in different slices. Here, k is the block index, k = 1,2, 3,4
and m is the slice index, m = 1,...,10. Thus the resultant core tensor &
has dimensions of 40 x 40 x 10 and is composed of four blocks of the size
10 x 10 x 10. The noisy tensors in the simulations are not simply generated
by adding a random noise but they are built of sample covariance matrices
of T' random vectors having the required theoretical covariance values. To be
specific, let R,, be the m—th frontal slice of the original tensor, and R,, =
X, XT X, be block diagonal with blocks X, then the corresponding noisy
tensor slice is R,,, = %XmYTY%XZW where Y7 is a random matrix of the
size N x T with Gaussian i.i.d. entries of zero mean and unit variance. The
resultant tensor is block dominant, but not exactly block diagonal.

The mixing matrix A was taken at random, independently in each sim-
ulation trial. We computed it from a random unitary matrix Ay as A =
cAo(:, 1)11440+ V1 — ?Ay, like in Section 7.1, to obtain mixing matrix with
collinear columns. We set ¢ = 0.8. The mixture is the tensor 7 = Sx; A x5A.
The block structure of the core tensor S implies the tensor 7 decomposition
as a sum

T=T1+T+Ts+Ts. (18)

Each of the tensors 7;, i = 1,2, 3, 4, has the size 40 x 40 x 10 and a multilinear
rank of (10, 10,10). The block-term decomposition has several indetermina-
cies, e.g., the bases of the independent subspaces can be quite arbitrary, but
the decomposition (18) is unique up to the order of the terms in the sum.
Therefore, we shall measure success of the approximate joint block diago-
nalization by mean-squared errors of appropriately sorted estimates of 7;,
1=1,2,3,4.

We studied performance of four JBD algorithms: UWEDGE followed by
collecting the columns so that the block structure is revealed, JBD of [13]
initialized by the outcome of UWEDGE, JBD of Lahat et.al [13] with default
(random) initialization, NGG algorithm of [12], and Block TEDIA initialized
by the outcome of UWEDGE. Results are presented in Figure 5. First, we
observe that the best performance is obtained by the algorithm of Lahat [13]
that has been initialized by the outcome of UWEDGE. It is because the data
generation model is in accord with this algorithm. The second best algorithm
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Figure 5: Mean-squared fitting error in dB of separated tensors of multilinear rank
(10,10,10) for UWEDGE, JBD [13], JBD [13] with random initialization, NCG algorithm
[12] and symmetric block TEDIA versus the sample size T'.

is the block TEDIA. The running times were 0.32 s, 0.99 s, 4.1 s and 0.98 s
for UWEDGE, JBD [13], NCG [12] and TEDIA, respectively.

7.3. Example 3: Three-sided block diagonalization

The initial tensor of the size 20 x 20 x 20 was block diagonal, with four
random blocks along its main diagonal, each of the size 5 x 5 x 5. These
blocks were computed as a diagonal tensor having 1’s on its main diagonal
plus Gaussian random noise with zero mean and unit variance.

The initial tensor was the desired core tensor £. The factor matrices A,
B, C were taken at random, as in the previous example. We compute them
from random unitary matrices Ay, B, Cp as A = cAq(:, 1)11x20+V 1 — ?Ay,
e.t.c, like in Section 7.1, We set ¢ = 0.5 and ¢ = 0.9, respectively. The mixture
is the tensor 7 = £ x; A x5 B x5 C. The block structure of the core tensor
S implies the tensor 7 decomposition as in (18).

Each of the tensor T;, i = 1,2,3,4, has a multilinear rank of (5,5,5).
The block-term decomposition has several indeterminacies, e.g., the bases
of the independent subspaces can be quite arbitrary, but the decomposition
(18) is unique up to the order of the terms in the sum. Therefore, we shall
measure success of the approximate joint block diagonalization by mean-
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Figure 6: Median error of separated tensors of a multilinear rank of (5,5,5) and cumulative
distribution function of the error for (1) blind TEDIA with 1000 iterations, (2) for block
TEDIA with 5000 iterations, (3) block TEDIA with 1000 iterations but initialized by
outcome of the blind TEDIA, and (4) block ALS with 100 iterations initialized by the
blind TEDIA. Left diagram: ¢ = 0.5, SNR=20 dB; right diagram: ¢ = 0.9, SNR=30 dB.

squared errors of appropriately sorted estimates of 7;, i = 1,2, 3, 4. Gaussian
noise is added into the tensor T according to pre-specified SNR values.

We have tested four BTD algorithms: (1) Blind TEDIA with 1000 itera-
tions, i.e., three-sided diagonalization followed by permuting the columns so
that the block structure is revealed, (2) Fixed block-size TEDIA with 5000
iterations and random initialization (3) Fixed block-size TEDIA with 1000
iterations after being initialized by outcome of the blind TEDIA (4) Block
Alternating Least Squares with 100 iterations after it is initialized by the
blind TEDIA. Results of 100 independent trials are presented in Figure 6.

We can see that convergence of block TEDIA is relatively slow, 5000
iterations are not enough unless the algorithm is initialized properly, e.g.,
by the outcome of the blind TEDIA. All three of these algorithms work
relatively well even at low SNR values. We note, however, that the block
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TEDIA without proper initialization has a certain probability of failure, and
this probability increases with growing SNR. On the other hand, block ALS
fails in the difficult scenario with ¢ = 0.9 and low SNR, despite having been
initialized by the blind TEDIA. If the algorithm is initialized randomly, it
usually fails.

Note that one run of the blind TEDIA (1000 iterations) takes 1.36 sec-
onds, the additional 1000 iterations of the block TEDIA requires an addi-
tional 1.44 seconds. The 5000 iterations of the block TEDIA takes 9.35 sec-
onds, and one run of the block ALS with 100 iterations requires 71.9 seconds:
it is very slow compared to TEDIA.

8. Conclusions

TEDIA is a technique of non-orthogonal tensor diagonalization and block
diagonalization. In difficult scenarios with many local minima and a little
additive noise it can outperform traditional methods of CP tensor decompo-
sition such as the alternating least squares (ALS), and ALS with the exact
line search. This happens because TEDIA optimizes a different cost function
than the other methods. In particular, the two-sided version of TEDIA ap-
pears to be less sensitive to the presence of local minima of the cost function
than the traditional methods. Complexity of TEDIA is similar to that of
ALS, O(N*) operations per iteration.

In the area of the block term decomposition, the situation is similar. We
have shown that TEDIA allows fitting the assumed block structure of the
tensor directly, but usually it is useful to begin the separation with the blind
TEDIA first.

Potential applications can be found in DS-CDMA systems or in tensor
deconvolution, in particular in feature extraction and other areas.

Matlab code of the proposed technique is posted on the website of the
first author.

Appendix A

In this Appendix we derive the expression (6) for G4. The other gradi-
ents, Gg and G¢ follow from the symmetry of the problem.
Let
=€ X1 A
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The (k, ¢, m)-th element of the tensor is
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The multiplication factor two is immaterial, because we take the optimum
step size. A similar computation holds true for the gradient G4 (14) in the
block TEDIA.
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