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Studentská 2, 461 17 Liberec, Czech Republic. E-mail: zbynek.koldovsky@tul.cz

‡Institute of Information Theory and Automation, Pod vodárenskou věžı́ 4,
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Abstract—This paper deals with the Cramér-Rao Lower Bound
(CRLB) for a novel blind source separation method called
Independent Component Extraction (ICE). Compared to Inde-
pendent Component Analysis (ICA), ICE aims to extract only
one independent signal from a linear mixture. The target signal
is assumed to be non-Gaussian, while the other signals, which
are not separated, are modeled as a Gaussian mixture. A CRLB-
induced Bound (CRIB) for Interference-to-Signal Ratio (ISR)
is derived. Numerical simulations compare the CRIB with the
performance of an ICA and an ICE algorithm. The results show
good agreement between the theory and the empirical results.

I. INTRODUCTION

In the fundamentals of Independent Component Analysis
(ICA), the instantaneous linear mixing model

x = Au (1)

is studied [1], [2]. Here, x is a d × 1 vector of d mixed
signals, A is a d × d non-singular mixing matrix, and u is
a d × 1 vector of the original signals that are assumed to
be mutually independent. The jth signal uj (the jth element
of u) is modeled as a random variable with the probability
density function (pdf) pj(·). The goal is to estimate A−1 from
x through finding a square de-mixing matrix W such that
y = Wx are as independent as possible. In this paper, we
will assume real-valued signals and parameters.

Many algorithms to solve this problem have been developed;
see, e.g., [3]. It is known that if, at most, one original signal
has Gaussian pdf while the other signals are non-Gaussian,
then A−1 can be identified up to the order and scales of
its rows [4]. It means that the de-mixing matrix W can be
estimated as such that G = WA ≈ PΛ, where P and Λ
is, respectively, a permutation and a diagonal matrix. The
elements of G determine the accuracy of the separation. Its
ijth element, Gij , determines the presence of uj in the ith
separated signal yi. The Cramér-Rao Lower Bound (CRLB) on
the variance of Gij provides an algorithm-independent bound

for the estimation accuracy (for unbiased estimators). Using
the CRLB theory, it is known, for the non-Gaussian ICA, that

E[G2
ij ] ≥

1

N

κj

κiκj − 1
, i �= j, (2)

where E[·] stands for the expectation operator, N is the
number of samples of x (assuming identically and indepen-
dently distributed samples), and κi = E[ψ2

i ] where ψi(x) =
−∂/∂x log pi(x), which is called the score function of pi
where pi is the pdf of the ith signal. For normalized variables
with unit variance it holds that κi ≥ 1 where κi = 1 if and
only if the ith pdf is Gaussian; see, e.g., [5], [6].

Recently, we have introduced a novel approach called
Independent Component Extraction (ICE) in [7]. Here, the
goal is to separate only one independent signal from x using
a priori knowledge such as an initial guess (to determine which
signal should be extracted). Without any loss of generality, let
the signal of interest be s = u1. In ICE, the mixing model
(1) is re-parameterized for the extraction of s in the way
that the rest of the mixture is not object of any particular
decomposition, as compared to ICA. The motivation behind is
that ICE algorithms could solve the simpler problem (to extract
only one signal) faster that ICA methods; their complexities
grow linearly with d while the complexities of ICA methods
grow, at least, quadratically.

In this paper, we derive a lower bound on the achievable
separation accuracy by ICE and compare it with (2). We
consider a particular statistical model of signals. The signal of
interest s is assumed to be non-Gaussian while the rest of the
mixture is modeled as Gaussian. The latter is motivated by the
fact that the other signals are never separated from each other
(up to very special cases), so their joint distribution is close
to Gaussian even if the pdfs of u2, . . . , ud are non-Gaussian.

The ICE mixing model parametrization and the statistical
model of signals are described in Section 2. Section 3 is
devoted to the computation of the Fisher Information Matrix,
which is used in Section 4 to derive the Cramér-Rao Induced
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Bound (CRIB) for the achievable Interference-to-Signal Ratio
(ISR). Section 5 is devoted to simulations and comparisons.
Conclusions are drawn in Section 6.

The following notation will be used throughout the article.
Plain letters denote scalars, bold letters denote vectors, and
bold capital letters denote matrices. The Matlab convention
for matrix/vector concatenation and indexing will be used, e.g.,
[1; g] = [1, gT ]T , and (A)j,: is the jth row of A.

II. PROBLEM STATEMENT

A. Mixing Model

ICE is based on a “model of model” as it is derived through
a re-parameterization of (1). Let the mixing matrix A be
partitioned as A = [a, A2], and let x be written as x = Au =
as + y, where y = A2u2 and u2 = [u2, . . . , ud]

T . Since, in
ICE, neither the identification of A2 nor the decomposition
of y into independent signals is needed, the mixing matrix is
considered as AICE = [a, Q] where Q is, for now, arbitrary,
and the mixture is written as

x = AICEv, (3)

where v = [s; z], and y = Qz. It holds that z belongs to the
same subspace as u2 but is not explicitly determined yet.

The latter formulation, in fact, corresponds to a special
case of Multidimensional ICA [8] (MICA) where the goal
is to find two independent subspaces of dimensions 1 and
d− 1, namely, s and z. However, ICE reduces the ambiguity
of MICA through the following parameterization of the de-
mixing matrix, denoted as WICE.

Let a and WICE be partitioned, respectively, as a = [γ; g]
and WICE = [wT ; B]. B is required to be orthogonal to
a, which ensures that the signals separated by the lower part
of WICE, that is Bx, do not contain any contribution by s.
A straightforward selection is B = [g − γId−1] where Id
denotes the d×d identity matrix. The free variables of WICE

are therefore represented by the elements of a and w; let w =
[β; h]. Hence

WICE =

(
wT

B

)
=

(
β hT

g −γId−1

)
. (4)

The next condition is that WICE should be the inverse matrix
of AICE, which guarantees that s = wTx. This way Q and z
can be determined. The reader can verify that the choice

AICE = [a, Q] =

(
γ hT

g 1
γ

(
ghT − Id−1

)) , (5)

where β and γ are constrained to satisfy βγ = 1 − hTg,
guarantees that WICEAICE = Id.

The scales of s and of a are ambiguous in the sense that
they can be substituted, respectively, by αs and α−1a where α
is arbitrary such that α �= 0. This ambiguity can be removed
by fixing β or γ. It is practical to select γ = 1 as in [7],
because then the scale of s corresponds to the image of that
source on the first sensor.

By adopting the idea of ICA, that is, taking the assumption
that s and z are independent, ICE can be formulated as

follows: Find vectors g and h such that wTx and Bx, where
w = [1 − hTg; h] and B = [g, −Id−1], are independent
(or as independent as possible).

B. Statistical Model

Several stochastic models have been considered in BSS/ICA
to model the signals’ independence, e.g., relying on one or
more signal properties such as non-Gaussianity, nonstation-
arity or nonwhiteness [9]. The non-Gaussian ICA model (1)
where all (but one) signals are non-Gaussian i.i.d. sequences
is the most popular one. In ICE, there are only two variables:
s, which coincides with u1, and z, which is a vector variable
having an unspecified structure (it is a mixture of u2, . . . , ud).

As in [7], we will assume that (1) s has a non-Gaussian pdf
denoted as p(s), while (2) z has multivariate Gaussian pdf
with covariance Cz. The latter assumption can be justified by
the fact that, up to very special cases, z is a mixture of u2.
Even if u2, . . . , ud are non-Gaussian, their mixture tends to
have distribution close to Gaussian due to the Central Limit
Theorem [6]. The ICA and the ICE models coincide when
u2, . . . , ud are Gaussian.

Hence, from (3), the pdf of x is

px(x) = ps(w
Tx)pz(Bx)| det(WICE)|, (6)

where WICE, w, and B depend on g and h as described
by (4), and pz corresponds to N (0,Cz). A straightforward
calculus, not shown here to save space, can show that for
γ = 1, | det(WICE)| = 1. Hence, the log-likelihood function
for one signal sample is equal to

L(x|ξ) = log ps(w
Tx)− 1

2
xTBT C−1

z Bx− 1

2
log (|Cz|)

− (d− 1) log
√
2π, (7)

where ξ = [g;h; c] is the parameter vector, in which c denotes
the d(d − 1)/2 × 1 vector stacking the elements of C−1

z ;
|Cz| denotes the determinant of Cz. Note that c is a nuisance
parameter whose value cannot be treated as being known.

III. FISHER INFORMATION MATRIX

The Fisher information matrix F is defined as [10]

F(ξ) = E

[
∂L
∂ξ

(
∂L
∂ξ

)T
]
. (8)

Let F be partitioned as

F(g,h, c) =

⎛⎝ Fg,g Fg,h Fg,c

Fh,g Fh,h Fh,c

Fc,g Fc,h Fc,c

⎞⎠ . (9)

The derivatives of the log-likelihood function (7) are:

∂L(x|g,h, c)
∂g

= ψ(s)hx1 − x1C−1
z z, (10)

∂L(x|g,h, c)
∂h

= ψ(s)z, (11)

∂L(x|g,h, c)
∂ci,j

= −1

2
zT Ji,jz+

1

2
tr

(
Ji,jCz

)
, (12)
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where Ji,j is the d− 1× d− 1 matrix of zeros up to the ijth
elements, which is equal to one; ψ(·) is the score function of
p(·). The blocks of F are as follows:

Fg,g = E[ψ2(s)x2
1hh

T − ψ(s)x2
1hz

T C−1
z −

− ψ(s)x2
1zh

T C−1
z + x2

1C−1
z zzT C−1

z ] =

= E[ηhhT + κy21hh
T − 2ψ(s)sy1hz

T C−1
z −

− 2ψ(s)sy1C−1
z zhT + (s2 + y21)C

−1
z zzT C−1

z ] =

= ηhhT + κ(hT Czh)hh
T − 4hhT + σ2

sC−1
z +

+ E[C−1
z (hT z)2zzT C−1

z ] =

= ηhhT + κ(hT Czh)hh
T − 2hhT + σ2

sC−1
z +

+ C−1
z (hT Czh), (13)

where

κ = E[ψ2(s)], (14)

η = E[ψ2(s)s2], (15)

σ2
s = E[s2], (16)

and where the following identities have been used

E[ψ(s)s] = 1, (17)

y1 = hT z, (18)

E
[
y21yy

T
]
= E

[
y21
]
E
[
yyT

]
+ 2E [y1y] (E [y1y])

T . (19)

Next,

Fh,h = E
[
ψ2(s)zzT

]
= κCz, (20)

(Fc,c)i,j =
1

2

(
tr(Ji,jCzJj,iCz)

)
, (21)

Fg,h = E
[
ψ2(s)x1hz

T − x1C−1
z zzTψ(s)

]
=

=κhhT Cz − Id−1, (22)
Fh,c = O, (23)

where O denotes a zero matrix of corresponding dimension.
Finally,

(Fg,c):,k =
1

2
E
[−ψ(s)hx1z

T Ji,jz
]
+

+
1

2
E
[
x1C−1

z zzT Ji,jz
]
+

+
1

2
E
[
h · tr(Jj,iCz)− hC−1

z zzT tr(Jj,iCz)
]
=

= −1

2
hE

[
zT Ji,jz

]
+

1

2
E
[
y1C−1

z zzT Ji,jz
]
=

= −1

2
h · tr(Ji,jCz) +

1

2
C−1

z V:,ij , (24)

where

V:,ij = E[y1zzizj ] = E[y1z]E[zizj ] + E[y1zi]E[zzj ]+

+ E[y1zj ]E[zzi] =

= Czh(Cz)ij + (Cz)i,:h(Cz):,j + (Cz)j,:h(Cz):,i, (25)

i = 1, . . . , d−1, j = 1, . . . , d−1 and i > j. The other blocks
follow the symmetry of FIM. Now, the CRLB is obtained
through the computation of F−1.

IV. CRLB-INDUCED BOUND FOR ISR

Here, we derive the lower bound for the achievable mean
value of the Interference-to-Signal Ratio (ISR) using the
CRLB derived above. Let ŵ be an estimated vector that
separates s from x, and let AICE be the true mixing matrix
in (3). Then, the ISR of the extracted signal ŝ = ŵTx is

ISR =
E[(ŵTy)2]

E[(ŵTas)2]
=

qT
2 Czq2

q21σ
2
s

≈ 1

σ2
s

qT
2 Czq2, (26)

where qT = [q1, q
T
2 ] = ŵTAICE = [ŵTa, ŵTQ]. The last

approximation assumes “small” errors, so q21 ≈ 1 and q ≈ e1
(the unit vector). Then, the mean ISR value reads

E [ISR] ≈ 1

σ2
s

E
[
qT
2 Czq2

]
=

1

σ2
s

tr
(
CzE

[
q2q

T
2

])
. (27)

For further analysis, let us consider the special case when
Cz = σ2

zId−1. Then, (27) simplifies to

E [ISR] ≈ σ2
z

σ2
s

tr
(
E
[
q2q

T
2

])
=

σ2
z

σ2
s

tr (cov (q2)) . (28)

Thanks to the equivariance property [5], we can consider the
special case when g = h = 0. Then, it holds that q2 = ĥ,
where ĥ is ŵ without its first element, hence,

E [ISR] ≈ σ2
z

σ2
s

tr(cov(ĥ)) ≥ σ2
z

σ2
s

tr (CRLB (h)) , (29)

where CRLB(h) denotes the diagonal block of F(ξ)−1 corre-
sponding to the parameter h. Since h = g = 0, (8) is equal
to

F(ξ) =

⎛⎝ σ2
s

σz
Id−1 −Id−1 O

−Id−1 κσ2
zId−1 O

O O D

⎞⎠ , (30)

where D = 1
2σ

4
zI d(d−1)

2
. Then, it holds that

F(ξ)−1 =

⎛⎜⎝
κσ2

z

κσ2
s−1 Id−1

1
κσ2

s−1Id−1 O

1
κσ2

s−1Id−1
1

κσ2
s−1

σ2
s

σ2
z

Id−1 O

O O D−1

⎞⎟⎠ . (31)

Using (29) and (31), and by considering N observations, the
CRLB-induced bound for ISR is obtained as

E [ISR] ≥ 1

N

d− 1

κσ2
s − 1

σ2
s

σ2
z

. (32)

To compare this bound with (2), let us consider σ2
s = σ2

z = 1.
Then, E [ISR] ≈ ∑d

k=2 E

[
G2

1,k

]
and (32) simplifies to

E [ISR] ≥ d− 1

N

1

κ− 1
. (33)

Moreover, assume that u1, . . . , ud have all unit variance and
that u2, . . . , ud have all Gaussian pdf, which means that κj =
1 for j = 2, . . . , d. In that special case, it can be verified,
using (2), that the induced bound for ICA coincides with that
for ICE given by (33). Also, (33) coincides with the optimum
theoretical performance of methods performing one-unit (or
partial) source separation [5], [11], [12].
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V. SIMULATIONS

In simulations, we compare the bound for ICE with empiri-
cal mean ISR achieved by two methods: EFICA (Efficient Fast
ICA) and OGICE (Orthogonally Constrained ICE). EFICA is
an ICA algorithm that approaches the CRLB when pdfs of all
components belong to the Generalized Gaussian Distribution
(GGD) family [13]. OGICE is a recently developed method
for ICE that has to be properly initialized, i.e., within the
area of convergence to the desired (target) signal [7]. OGICE
is derived based on maximum likelihood principle, so it
might achieve asymptotic efficiency, however, it exploits the
orthogonal constraint (the subspaces of the target signal and
of the other signals are constrained to be orthogonal), which
can cause performance limitations [5].

In a trial, d = 5 independent signals are generated. The
target signal is drawn from a GGD with the shape parameter
α ∈ (0,+∞). The other signals are Gaussian, which corre-
sponds to α = 2. All signals are normalized to have zero mean
and unit variance and mixed by a random mixing matrix A
as in (1). Note that such mixture corresponds with (3) where
Cz is determined by A. OGICE is initialized by a randomly
perturbed first column of A, while the initialization of EFICA
is random in full (the separated target signal is determined
based on ISR).

Figures 1 and 2 show average ISR achieved by the al-
gorithms in 1000 trials, respectively, for varying N (when
α = 1) and varying α (N = 2500). The results from EFICA
confirm the validity of the bound (33); the ISRs achieved by
the algorithms are very close almost in all cases. However,
OGICE does not converge to global maximum in each trial.
Hence, we take the average ISR for this method only over trials
where ISR ≤ 1

10 (to remove those trials where the algorithm
did not converge). Therefore, the resulting ISR by OGICE
does not fully obey the bound (33) (can be sometimes lower,
especially, for α close to 2).

With growing N , the ISRs are decreasing. For α = 2, where
all signals (including the target one) are Gaussian and are
not separable, the ISRs approach 0 dB, which means poor
separation accuracy.
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Fig. 1. Average ISR for d = 5, α = 1, and varying N .

VI. CONCLUSIONS

The CRIB for achievable ISR through ICE was shown to
be attainable by EFICA, depending on the target signal pdf
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Fig. 2. Average ISR for d = 5, N = 2500 and varying α.

and the length of data. The bound coincides with that for ICA
provided that the rest of the linear mixture is Gaussian. Future
works will be focused on situations when the rest is a mixture
of non-Gaussian signals. Then, the open question is whether
other than Gaussian modeling enables ICE to approach the
CRIB achievable through ICA.
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[5] P. Tichavský, Z. Koldovský, and E. Oja, “Performance analysis of
the FastICA algorithm and Cramér-Rao bounds for linear independent
component analysis,” IEEE Transactions on Signal Processing, vol. 54,
no. 4, pp. 1189–1203, April 2006.

[6] J. F. Cardoso, “Blind signal separation: statistical principles,” Proceed-
ings of the IEEE, vol. 86, no. 10, pp. 2009–2025, Oct 1998.
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