
Under–Determined Tensor Diagonalization
for Decomposition of Difficult Tensors
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Abstract—Analysis of multidimensional arrays, usually called
tensors, often becomes difficult in cases when the tensor rank
(a minimum number of rank-one components) exceeds all the
tensor dimensions. Traditional methods of canonical polyadic
decomposition of such tensors, namely the alternating least
squares, can be used, but a presence of a large number of
false local minima can make the problem hard. Usually, multiple
random initializations are advised in such cases, but the question
is how many such random initializations are sufficient to get a
good chance of finding the right solution. It appears that the
number of the initializations can be very large. We propose a
novel approach to the problem. The given tensor is augmented
by some unknown parameters to the shape that admits ordinary
tensor diagonalization, i.e., transforming the augmented tensor
into an exact or nearly diagonal form through multiplying the
tensor by non-orthogonal invertible matrices. Three possible
constraints are proposed to make the optimization problem well
defined. The method can be modified for an under-determined
block-term decomposition.

I. INTRODUCTION

The paper deals with the canonical polyadic decompo-
sition of some tensors that are hard to be decomposed by
traditional methods. For example, matrix multiplication can
be represented by certain tensors containing zeros and ones
only, ranks of these tensors represent the minimum possible
number of scalar multiplications needed to execute the matrix
products. Then, CP decomposition of these tensors represents
algorithms to compute the products. In particular, tensor of
matrix multiplication for two matrices of the size 3 × 3 has
the size 9 × 9 × 9, and despite a tremendous effort of many
mathematicians, we only know so far that the rank of the tensor
lies in the interval [19, 23] [1], [2]. In other words, we know
that product of two matrices of the size 3×3 can be performed
through 23 scalar multiplications [3], but it is not certain if this
number can be lower. A large number of algorithms for small–
size matrix multiplications is presented in [4].

CP decomposition of this kind of tensors, as well as
other tensors whose rank exceeds the tensor dimension, is a
challenging problem. The term “under-determined” used in this
context is borrowed from the area of blind source separation.
Here, an under-determined mixture of signals means that the
number of the sources in the mixture exceeds the number of the
mixtures. Certain blind source separation algorithms separate

under-determined mixtures by means of CP decomposition of
“under-determined” tensors computed from the received data
[7], [18].

If at least one dimension of the tensor exceeds the tensor
rank, then the tensor can be decomposed by an algebraic
method using joint diagonalization of a set of matrices, de-
scribed in [8]. Assume that the tensor has order three and size
I ×J ×K with I ≥ J ≥ K ≥ 2 and rank R. The method can
be applied if R(R − 1) ≤ J(J − 1)K(K − 1)/2. It follows
that R can obey I ≥ R ≥ J ≥ K . This is the key component
of the algorithm SOBIUM (Second Order Blind Identification
of Under–determined Mixtures) [7].

The focus of this paper, however, is on the case R >
min{I, J,K}. In [9], Domanov and De Lathauwer developed
an algebraic method to solve this case to some extent: R
can exceed all I, J,K , but must obey the condition R ≤
(I +J +K − 2)/2+ (I −

√
(J −K)2 + 4I)/2. For example,

for I = J = K = 9 we could have R ≤ 14. The method
seems to work perfectly if there is no noise. Unfortunately,
the rank R = 14 is not sufficient for decomposition of the
matrix multiplication tensor of this size. For this tensor we
need a decomposition of rank R = 23.

CP decomposition of these tensors of high rank is a
challenging problem. In [17], it was proposed to perform the
CP decomposition of such tensors by solving the following
optimization task:

min ‖T − [[A,B,C]]‖2F (1)
subject to ‖A‖2F + ‖B‖2F + ‖C‖2F ≤ c

where T is the tensor to be decomposed, [[A,B,C]] is the
Kruskal form of the tensor approximation [5] with factor
matrices A,B,C, ‖ · ‖F denotes the Frobenius norm (either
for a tensor or a matrix), and c is a suitable constant. The
optimization can be performed by means of the Levenberg-
Marquardt algorithm [6].

The optimization problem in (1) is well defined, because
the criterion function is continuous and differentiable, and
is minimized in a compact set. The function is not convex,
however, false local minima may exist, and multiple random
initializations are inevitable. The method is very efficient in
decomposing the tensor for 3 × 3 matrix multiplication, i.e.,
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the tensor has the size 9 × 9 × 9 and rank 23. No noise is
considered, and the constant c should be in the range of 150
and 200 to get the best performance. Unfortunately, for the
method is not able to decompose multiplication tensors of
bigger size, say 16× 16× 16 for 4× 4 matrix multiplication.
Neither the currently best existing method can do that [4].

Recently, it has been shown that the CP decomposition
of (over) determined tensors (with rank smaller or equal to
the tensor dimension) can be done through a tensor diago-
nalization. The advantage of this approach is that in some
difficult scenarios, a cost function of the tensor diagonalization
seems to have a lower number of false local minima than other
optimization-based methods. Since, however, good algebraic
tensor decomposition methods exist in this case, the space
for improvements is very narrow if any. Therefore the tensor
diagonalization seems to be suitable as a tool for tensor block
decomposition rather than for the CP decomposition [12].

Tensor diagonalization means transforming a given tensor
into an exact or nearly diagonal form through multiplying the
tensor by non-orthogonal invertible matrices along selected
dimensions of the tensor. However, the tensor rank has to
be smaller or equal to the tensor dimensions. It is a gener-
alization of approximate joint diagonalization (AJD) of a set
of matrices [15]. The concept of tensor diagonalization has
been introduced by P. Comon and his co-workers [10], [11].
It works for order–three tensors of a cubic shape. The tensor
diagonalization in those papers seeks orthogonal matrices that
transforms the given tensor into a diagonal one.

In [12], a generalized (non-symmetric) tensor diagonal-
ization was proposed. Here, symmetric and nonsymmetric
two-sided tensor diagonalizations of order-three tensors, and
three-sided diagonalizations of order-3 or order-4 tensors are
considered. Note that in the case of nonsymmetric two-sided
diagonalization of order-3 tensors, the method is equivalent to
the SECSI method of CP tensor decomposition [13], [14].

This paper presents an extension of the tensor diagonaliza-
tion method for the under-determined tensors.

The paper is organized as follows: Section 2 presents
principles of the ordinary tensor diagonalization and under-
determined tensor diagonalization. In Section 3, we explain
details of a possible efficient implementation of the method.
Section 4 presents some numerical examples, and Section 5
concludes the paper.

II. TENSOR DIAGONALIZATION PRINCIPLE

A. Ordinary (Determined) Tensor Diagonalization

The main idea of the ordinary (determined) tensor diag-
onalization is to find so-called demixing matrices that trans-
form the given tensor into another tensor that is diagonally
dominant. For simplicity, in this section, we only discuss the
two-sided tensor diagonalization of order-3 tensors.

Let T be a tensor of size R×R×M . The outcome of the
diagonalization is the tensor

E = T ×1 A×2 B (2)

where ×i denotes the tensor-matrix multiplication along the
dimension i, i = 1, 2. The diagonalization is exact if all frontal

slices of the tensor E are diagonal matrices. If this happens and
the matrices A and B are invertible, then A−1 and B−1 are
factor matrices of a CP decomposition of T . In particular,

T = [[A−1,B−1,C]]

where C is an M×R matrix composed of diagonals of the M
frontal slices of tensor E , i.e., Cmr = Errm for r = 1, . . . , R
and m = 1, . . . ,M .

As in [12], consider an operator off2 which nullifies
diagonals in all frontal slices of a tensor. If tensor E has
elements Eijm, i, j = 1, . . . , r, m = 1, . . . ,M , then off2(E)
has elements (1 − δij)Eijm, where δij is the Kronecker
delta. The exact diagonalization means that off2(E) = 0 or
‖off2(E)‖F = 0.

The algorithm TEDIA proposed in [12] does not minimize
the Frobenius norm of off2(E) directly, but it terminates at
invertible A and B. The algorithm halts when the residual
tensor E cannot be diagonalized any further by any infinitely
small rotations δA, δB, where diagonals of δA and δB are
filled with ones, i.e., when it holds ‖off2(E)‖F ≤ ‖off2(E ×1

δA×2 δB)‖F for all such δA, δB. See [12] for more details.

B. Under–Determined Tensor Diagonalization

Consider a tensor T0 of size I × J × M has rank
R > I ≥ J ≥ M . The idea of the under-determined tensor
diagonalization is to augment the tensor to a bigger size
R×R×M which has the same rank and is fully diagonalizable.

Let T be an augmented tensor of T0 of size R×R×M ,
which has the same elements as T0, say, Tijm for i = 1, . . . , I ,
j = 1, . . . , J , m = 1, . . . ,M , and the remaining elements are
arbitrary. Let boff(T ) be a tensor of the same size, R×R×M ,
with the same elements outside T0, while the place of T0 is
filled with nulls. Since every element of T lies either in T0 or
in boff(T ), it holds

‖T ‖2F = ‖T0‖2F + ‖boff(T )‖2F .

Under-determined Tensor Diagonalization (U-TEDIA) of T0
consists, in general, in finding demixing matrices A, B and
elements of boff(T ) such that the tensor E in (2) is as diagonal
to the largest possible extent. The diagonalization is illustrated
in Fig. 1.

To be more specific, we studied three types of diagonal-
ization, denoted U-TEDIA-1, U-TEDIA-2, and U-TEDIA-3.

Type 1: Minimize ‖off2(E)‖F subject to

‖boff(T )‖2F + ‖A−1‖2F + ‖B−1‖2F ≤ c (3)

where c is a suitable constant.

Type 2: Minimize ‖off2(E)‖F under the constraint (3) and
an additional constraint

M∑
m=1

E2mmr = 1 (4)

for all r = 1, . . . , R. The condition (4) in the type-2 diagonal-
ization means that columns of the estimated factor matrix C
have all unit Euclidean norm.
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Type 3: Minimize ‖off2(E)‖F subject to

‖boff(T )‖2F + ‖A‖2F + ‖B‖2F + ‖A−1‖2F + ‖B−1‖2F ≤ c (5)

where c is a suitable constant.

Note that off2(E) is a trilinear function of A, B and
boff(T ), i.e., it is linear individually in A, B and boff(T ),
but not jointly. We could apply, for example, a kind of
constrained Alternating Least Squares (ALS) minimization
algorithm similar to an ALS algorithm for CPD, but in this
paper, we propose a Levenberg–Marquardt algorithm.

All three types of diagonalization guarantee that both A
and B would be invertible thanks to limiting the Frobenius
norms of A−1 and B−1 in (3) and (5). It appears that solutions
produced by U-TEDIA-1 are sometimes not well balanced in
the sense that the rank-one components differ dramatically.
U-TEDIA-2 was proposed to overcome this problem. Its
convergence is slightly slower, but it is guaranteed that the
decomposition would be well-balanced.

In some cases, these methods achieve exact fit solutions,
but it occurs rather rarely (more frequently for U-TEDIA-1). In
typical cases, when the final diagonalization error was nonzero,
we observe that additional iterations further decrease the cost
function, but the norm of the Frobenius norm of A and B
increases. We hypothesize that if the number of iterations goes
to infinity, the Frobenius norm converges to infinity as well. In
order to avoid such singular solutions, we can apply U-TEDIA-
3. This method has typical behavior of damped Gauss-Newton
algorithms. It requires a few dozens of iterations to converge,
unlike U-TEDIA-1 and U-TEDIA-2, which never completely
converge, unless an exact fit solution is found.

All three variants of TEDIA produce decompositions with
low diagonalization error. If the considered tensors are noisy,
then the results can be satisfactory. However, we observed that
despite the diagonalization errors are small, the approximation
errors may not be small. The latter error is defined as

E(T ,A,B) = ‖T0 − [[A1,B1,C1]]‖2F
where A1 and B1 are submatrices of A−1 and B−1, respec-
tively, and C1 is obtained from the diagonal of T ×1A×2B.

Finally, we need to address a choice of parameter c in
the constraint (3) or (5). Obviously, if a CP decomposition of
T0 exists in the form T0 = [[A0,B0,C0]], then c should be
greater than ‖A0‖2F + ‖B0‖2F . The problem is that we do not
know the norms of A0 and B0 in advance. On the other hand,
the parameter c should not be too high. A greater c means
that the domain if the optimization increases, and the criterion
may have more side local minima. As a result, achieving the
exact diagonalization (exact fit) is harder, in general. A suitable
parameter c can be selected by a trial and error method.

III. IMPLEMENTATION DETAILS

We seek a vector of parameters

θ = [vec(A)T , vec(B)T , vec(boff(T ))T ]T

of the length 2R2 + M(R2 − IJ) that minimizes the cost
function

ϕ(θ) = ‖off2(T ×1 A×2 B)‖2F

T0
A T BT = E

Fig. 1. Under-determined tensor diagonalization seeks demixing matrices A,
and B, and elements of T outside T0 so that tensor E is diagonally dominant.

under the constraint (3) or the two constraints (3) and (4), re-
spectively. The ordinary (unconstrained) Levenberg-Marquardt
(LM) algorithm updates θ as

θ ← θ − (H+ μI)−1g (6)

where

H = JTJ, J =
∂b(θ)

∂θ
, g = JTb(θ) (7)

and

b(θ) = vec(off2(E(θ)) . (8)

μ is a damping parameter, which is sequentially updated ac-
cording to a rule described in [6]. Let Em and Tm be the m−th
frontal slices of E and T , respectively, for m = 1, . . . ,M .
Then,

Em = ATmBT . (9)

Computation of the Jacobian J is straightforward. Note that
right-lower part of the Hessian H = JTJ is block diagonal,
i.e., easier-to-invert than a full matrix of the same size. This
fact helps to reduce number of operations to compute (H +
μI)−1g, i.e., to solve the linear system (H+ μI)x = g.

Optimization constrained by the condition (3) or (5) is
performed by minimizing the cost function in the tangent plane
to the corresponding variety first, and then the minimum point
is projected into the variety. The tangent plane is described by
one its point θ0, which is the latest available approximation of
the optimum θ, and a normal vector gc. It can be shown that
for the condition (3) it holds

gc =

⎡
⎣

vec(A−TA−1A−T )
vec(B−TB−1B−T )

vec(boff(T ))

⎤
⎦ . (10)

The minimizing point in the variety θ′1 is obtained by mini-
mizing the following second-order approximation of the cost
function,

ϕ(θ) ≈ ϕ(θ0) + gT (θ − θ0) +
1

2
(θ − θ0)

TH(θ − θ0) (11)

under the linear constraint (θ−θ0)Tgc = 0. We use the method
of Lagrange multiplier to get

θ′1 = θ0 −H−1g+
gT
c H

−1g

‖gc‖2
H−1gc . (12)

Instead of using (12) directly, we replace H−1 by (H+μI)−1

as in (6) in the LM method.

Once θ′1 is found, its projection to the constraint variety is
obtained by an appropriate scale change.
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Computation of the updates for type-2 and type-3 optimiza-
tions is similar, details are omitted for lack of space.

IV. SIMULATIONS

We studied CP decomposition of synthetic tensors of the
size 5× 5× 5 and rank 9. The tensors were constructed from
their factor matrices A0, B0 and C0 of the size 5× 9 that are
taken at random with independent Gaussian distributions of
zero mean and unit variance. We generated 100 such tensors
and decomposed them using

1) a CP decomposition technique of tensorlab [19],
namely the nonlinear-least squares cpd-nls,

2) the constrained Levenberg-Marquardt method de-
noted LM3c [17] with c = 200

3) U-TEDIA-1 with 400 iterations and c = 300, fol-
lowed by refinement by LM3c

4) U-TEDIA-2 with 400 iterations and c = 300, fol-
lowed by refinement by LM3c.

5) U-TEDIA-3 with 100 iterations and c = 500, fol-
lowed by refinement by LM3c.

Since we are primarily interested in low approximation errors,
we switch to an algorithm minimizing the approximation error,
i.e., LM3c.

The success rate was assessed as the percentage of runs
that an algorithm attained an exact decomposition, i.e. the
fitting error was lower than 10−7. The tensorlab nls method
had a success rate lower than 1%. LM3c had a success rate
of 12%, and U-TEDIA-x + LM3c, x=1,2,3, had at most the
same success rate. LM3c was not outperformed by the new
algorithms.

Another result was obtained for the CP decomposition of
the tensor corresponding to the product of two matrices 3× 3
to rank 23. Here, we used c = 500 for U-TEDIA-1 and U-
TEDIA-2, c = 800 for U-TEDIA-3, and c = 200 for LM3c
again. LM3c achieved the exact decomposition in 40% trials,
U-TEDIA-1 with LM3c in 47% trials, and U-TEDIA-2 with
LM3c in 54% trials, and U-TEDIA-3 with LM3c in 42% trials.

V. CONCLUSIONS

U-TEDIA extends the algorithm TEDIA to non-orthogonal
diagonalization of tensors of arbitrary sizes. It is a novel
approach to the CP tensor decomposition. We present three
versions of the algorithm. Their application depends on the
criterion of success. Our primary motivation was the chal-
lenging decomposition of the matrix multiplication tensors. In
this area, we have not succeeded to outperform our earlier
algorithm LM3c.

Results in this paper are rather preliminary, further mod-
ification of the methods are possible. Like in the case of the
ordinary (determined) tensor diagonalization, we anticipate an
extension of the method to the under-determined block-term
decomposition.

Matlab code of the proposed technique will be posted on
the web page of the first author.
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[16] P. Tichavský, A.H. Phan, A. Cichocki, “Two-sided diagonalization of
order-three tensors”, Proc. EUSIPCO 2015, Nice, pp. 998–1002.
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