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Abstract. Researchers interested in the estimation of operational risk often face prob-
lems arising from the structure of available data. The present contribution deals with
the problem of left truncation, which means that the values (e.g. the losses) under cer-
tain threshold are not reported. Simultaneously, we have to take into account possible
occurrence of heavy-tailed distribution of loss values. We recall briefly the methods of
incomplete data analysis, then we concentrate to the case of fixed left truncation and
parametric models of distribution. The Cramér-von Mises, Anderson-Darling, and the
Kolmogorov-Smirnov minimum distance estimators, the maximum likelihood, and
the moment estimators are used, their performance is compared, with the aid of ran-
domly generated examples covering also the case of heavy-tailed distribution. Higher
robustness of some distance-based estimators is demonstrated. The main objective is
to propose a method of statistical analysis and modeling for the distribution of sum of
losses over a given period, particularly of its right quantiles.
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1 Introduction, the problem of incomplete data
The most traditional field of statistical analysis where the methodology dealing with incomplete data (caused by
censoring or truncation) has been developed systematically is the area of statistical survival analysis. While the
censoring means that the data values are hidden in known intervals, the truncation arises when some results, though
relevant for the analysis, are not reported at all (i.e. we even do not know the number of such lost data). As a rule,
there are thresholds (which could be individual and taken as random, or fixed equal for the whole set of observa-
tions) such that the values under them (in the case of left truncation) or above them (the right truncation) are not
included in available data. It has been shown, for instance already in [7], that when the design of truncation thresh-
old is such that the values from the whole data region are allowed (can be obtained), consistent non-parametric
estimation of data distribution is possible. The result has later been extended to regression setting adapting the
approach based on counting processes and hazard rate models, the overview is e.g. in [1].

The fixed truncation means that there are no data observed under (or above) a given threshold, therefore only
the information on a conditional distribution is available and, in order to fit the complete distribution to such data,
its parametric form has to be assumed. The present contribution deals with the case of left truncation. It is inspired
by the problem how to estimate the operational risk regulatory capital on the basis of available data-base when
the loss data of our interest are truncated from below at a fixed threshold. It is caused by an attempt to avoid
recording and storing too many small loss events. However, omitting a part of data makes the problem of modeling
operational risk accurately rather difficult [3]. In [6] the authors give an overview of different challenges connected
with such an analysis, besides the problem of missing data also the problem of possible heavy-tailed nature of the
losses distribution.

The structure of the paper is the following: In the next section the problem will be further specified, the structure
of data described, and four methods of losses distribution estimators presented, namely the maximum likelihood
estimator (MLE), the moment method (MM), then the Cramér-von Mises (CvM), Anderson-Darling (AD), and
Kolmogorov-Smirnov (KS) minimum distance estimators. The methods will be examined on randomly generated
data and their performance compared, in particular their reaction to the presence of a part of data coming from a
heavy-tailed distribution. It is necessary to emphasize here that the main goal is a reliable estimation (and then the
prediction) of the sum of values (losses) over certain period, not only the estimation of parameters of distribution
of losses itself. And that the difficulties of analysis are caused principally by two aspects: The truncation (a set of
values, though small ones, not recorder at all) and the accidental presence of very high values, outliers from the
statistical point of view, which, however, must not be omitted.
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2 The problem of heavy tails
In statistics, the robustness of a method (for instance of an estimator) means that its performance is not influenced
much by a presence of (a small) portion of outlied values contaminating the regular data. There exists a set of
characteristics quantifying the reliability (stability) of a robust method, e.g. the breakdown point or the empirical
influence function (cf. [4]). Thus, even in the setting considered here, from the robust statistics point of view, the
aim is to estimate well the underlying basic distribution, when it is contaminated by (mixed with) a certain portion
of a distribution with heavy tails. To this end, both in [3] and [6] the empirical influence functions for several
estimators are derived, showing highly non-robust behavior of the MLE and moment estimators and at least partial
robustness of the Cramér-von Mises method (see also [2]). Let us recall here that, in general, a heavy tail of a
distribution means that it is not exponentially bounded. In fact, we shall consider here a sub-class of so called
”fat-tailed” distributions having its right tail P (X > x) comparable with x−a, for some a > 0, as x → ∞.

More specifically, the situation is as follows: We assume that certain parametric distribution type is the baseline
model. Further, it is assumed that a realistic model of the data arises from the mixture with another distribution
having heavier right tail. In fact, its type can also be specified, still we face a difficult task to estimate parameters of
both distributions and the rate of mixture. As the case is further complicated by missing part of data, in general such
a problem has no unique solution. Fortunately, in the left truncation case considered here, just certain portion of
small values is missing, high values remain available in observed data sets. Then, the main condition of successful
model identification is a sufficiently robust method of estimation of the baseline distribution parameters. Hence,
the estimators will be compared also from this point of view.

The robustness can be further improved with the aid of convenient robust estimator. In [6] the authors use
so called ”optimally bias-robust estimator” (OBRE) set of estimators. On the other hand, the structure of left
truncated data suggests the use of so called trimmed estimator of the location parameter, i.e. a very simple robust
estimation method. That is why we considered such a kind of estimator as a tool for improving the estimation
results. However, the improvement was rather negligible, therefore the method is not considered in the follow up.

Proposed estimation procedure has in fact two stages. In the first, the parameters of the baseline distribution are
estimated. To do it reliably, sufficiently robust estimator should be employed. Then, on the basis of well estimated
parameters of the baseline distribution, the second component of the mixture and the mixture rate can be estimated,
which is crucial for the main goal of the analysis, namely for prediction of aggregated losses. This stage, on the
contrary, has to use an estimator sensitive to all values, in order to distinguish both mixture components.

In the sequel we shall consider, similarly as [3] and [6], the log-normal baseline distribution of losses, as it is
a model convenient both from practical and theoretical point of view. Further, its right part will be contaminated
by the Pareto distribution as a model of possible occurrence of large values, as it is commonly considered to be
a reasonable choice [5]. Again, let us recall here briefly that the Pareto (or also ”power law”) distribution has
distribution function Fp(x) = 1 − (A/x)λ for x > A > 0, Fp(x) = 0 for x ≤ A, λ > 0 is its shape parameter.

3 The model and estimators
It is assumed that a positive random variable X is observed just when its value is above a given threshold T .
Hence, the data consist of a random sample Xi, i = 1, .., N1, all Xi > T . The part under T is not observed, nor its
frequency N2 is known. Denote the density function of X f(x), distribution function F (x). It is further assumed
that this distribution is a mixture, namely f(x) = (1 − α) · f0(x) + α · f1(x), where the basic part f0(x) is given
by a log-normal distribution with unknown parameters µ0, σ0, and is contaminated by a Pareto distribution, with
density function f1(x) and with appropriate parameters. As it has been said above, both its parameters and the
rate of contamination are also the object of estimation. We assume that the contamination rate α is not large, we
have examined its influence for α ∈ [0, 0.2]. Thus, the first goal is to estimate parameters of f0(x). As it has been
said above, the aim of this first stage is to use a sufficiently robust procedure. Just for comparison, we shall deal
with cases both with and without contamination, examining the behavior of several estimators. Namely the MLE,
moment estimator and three distance-based methods.

Remark: The assumption of log-normal distribution allows to work with normal distribution model for loga-
rithmized data. Hence the methods described above can be used for transformed data, it can simplify numerical
procedures. As regards the contamination, let us recall that logarithmized Pareto distribution yields the exponential
one. This connection will be used later for the random generation of data.

3.1 Estimation methods
In the case of full data, we can construct the full empirical distribution function, as a reliable non-parametric distri-
bution estimate. Under the assumption of parametrized distribution, let us denote its density f(x; θ), distribution
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function F (x; θ), set of parameters hidden in θ should be estimated. From the fixed truncation it follows that the
part of distribution above threshold T is given by the density and distribution functions, resp., both for x > T :

fT (x; θ) =
f(x; θ)

1 − F (T ; θ)
, FT (x; θ) =

F (x; θ) − F (T ; θ)

1 − F (T ; θ)
.

1. Maximum likelihood estimator. The likelihood based on observed data has the form

L(θ, x) =

N1∏

i=1

fT (Xi; θ)

and we search for θ maximizing its logarithm.

2. Moment estimator. Let us compute conditional first 2 moments of (X|X > T ) and compare them with
empirical moments obtained from observed data. Namely, we shall compute

E
(k)
T (θ) =

∫ ∞

T

xk fT (x; θ) dx, X̄k =
1

N1

N1∑

i=1

Xk
i .

The best θ should minimize a distance of them, in the simplest case
∑2

k=1(E
(k)
T (θ) − X̄k)2.

3. Cramér-von Mises estimator. It minimizes the distance between the empirical and assumed distribution
function on (T, ∞), namely we search for θ minimizing

N1∑

i=1

(Femp,T (Xi) − FT (Xi; θ))
2,

where Femp,T (x) is the empirical distribution function computed from data observed above T . Namely, the
simplest form is Femp,T (X(i)) = i/N1, i = 1, ..., N1, where X(1) ≤ X(2) ≤, ...,≤ X(N1) denote ordered
observations. We use the following variant: Femp,T (X(i)) = (2i − 1)/2N1.

4. Anderson-Darling estimator is a weighted variant of the CvM estimator giving the data-points weights
corresponding to the variance of empirical distribution function. Hence, it minimizes

N1∑

i=1

(Femp,T (Xi) − FT (Xi; θ))
2 · 1

wi
,

where wi = FT (Xi; θ) · (1 − FT (Xi; θ)). The weighting results in a higher sensitivity to small and large
data, hence also in smaller robustness compared to the CvM method. However, still its influence function is
bounded. This difference actually will lead us to the estimator choice, on the basis of following Monte Carlo
study. In the first stage, where rare outlying data should have small influence, the CvM estimator will be
preferred. Further, however, when the model should describe well also the source of contamination, the AD
estimator will be utilized.

5. Kolmogorov-Smirnov estimator is based on minimizing the maximal distance between empirical and
model distribution functions, i.e. it minimizes

max
Xi

|Femp,T (Xi) − FT (Xi; θ)|.

It is evident that in all cases the estimation has to be solved with the aid of a convenient numerical optimization
procedure, the moment method evaluation includes also numerical integration.

4 Monte Carlo study
The study is based on K-times repeated generation of data sets of extent N. Each such set is taken as representing
the loss data over certain period. The data have been generated from normal distribution with parameters µ0, σ0 and
mixed with values from exponential distribution with parameter λ shifted by a constant a, i.e. having distribution
function Fe(x) = 1− exp(−λ · (x−a)) for x ≥ a. The mixture (contamination) rate α was selected from [0, 0.3].
Such data represented logarithms of losses, they then were truncated from the left side by a threshold T0. Hence,
the losses were given by values coming from the mixture of log-normal distribution (with µ0 and σ0) with the
Pareto distribution having distribution function Fp(x) = 1 − (A/x)λ for x ≥ A = exp(a). The values of losses
were truncated by threshold T = exp(T0).
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The set of truncated data then contained just N1 ≤ N values greater than the threshold, it was assumed that
the number of omitted data as well as their values were not known. In fact, as the data were prepared artificially,
we knew them and could use them as a benchmark for comparison of performance of estimation methods and
examination of information loss caused by the truncation. As in each Monte Carlo study, the repetition of analysis
enabled us to construct empirical distribution of estimates, to study their bias and variability, and, later on, to
analyze and compare distributions of sums reconstructed on the basis of different estimation methods.

The example provided here uses the following values: µ0 = 2, σ0 = 0.5, λ = 1, a = 2, hence A
.
= 7.39.

Further T0 = 1.3, α = 0 or 0.1, N = 1000, K = 1000 were selected. From such a choice it follows that the
basic log-normal distribution had expectation .

= 8.4 and standard deviation .
= 4.5, while the Pareto distribution

with parameter λ = 1 had infinite all moments. Threshold T = exp(1.3)
.
= 3.67, the proportion of data truncated

off was about 8%. Just for comparison, the 95% quantiles were 16.8 and 147.8 for these log-normal and Pareto
distributions, respectively, 99% quantiles were 23.6 and 738.9.

4.1 Results of parameters estimation
The first case examined was the case without contamination, the data were generated just to correspond the log-
normal distribution with given parameters µ0, σ0. Data were then truncated and parameters estimated from trun-
cated samples by three methods. As the data generation was repeated K times, K estimates were obtained for each
parameter and each method. Figure 1 displays these sets of estimates in a form of boxplots. The first correspond
to the MLE from complete data, the other three then to the CvM estimator, the MLE and to moment estimator.
It is seen that their performance is comparable, bias negligible and variability increased (compared to estimates
from full data) due a loss of information caused by the truncation. Other estimators (KS and AD) performed very
similarly.

In the second case presented here the log-normal (µ0, σ0) data were mixed with values generated from the
Pareto distribution, their proportion was α = 0.1. As it was said, during this stage of analysis the data were still
treated as coming from log-normal distribution with unknown parameters µ, σ. Figure 2 again shows the results
of estimation, in K repetitions, first the MLE from full data, then the results of 3 selected estimation methods used
to truncated data. Now the pattern is different. First, as the contamination has caused a number of large, outlying
values in data, the consequence is that the estimates are shifted, namely estimated standard deviation is increased
and estimate of µ biased even in the case of the MLE from full data. Further, reactions of examined estimation
methods to contaminated and truncated data differ. As expected, both the MLE and moment estimators react by
even more increased both bias and variability of values, relative to estimates obtained from full data. On the other
hand, in order to cope with heavier right tail of the data, the CvM method yielded a slightly increased estimates of
both µ andσ. Simultaneously, variability of estimates did not increase significantly, which indicates a consistency
of method. Such an phenomenon can be related to findings in [6] concluding that the CvM method is much more
robust (having bounded empirical distribution function) than the other two. Further, as regards the other distance-
based estimators, the result is collected in Table 1. It is seen that the KS method yielded results quite comparable
with those of the CvM, while the AD estimators showed a stronger reaction to right tail data, it was biased and had
larger variability similarly like the MLE and the moment method.
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Figure 1 Estimated µ (above) and σ (below) in the case of no contamination: 1–MLE estimates from complete
data, 2–CvM estimator, 3–MLE, 4–moment method.
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Figure 2 Estimated µ (above) and σ (below) when contamination rate was α = 0.1: 1–MLE estimates from
complete data, 2–CvM estimator, 3–MLE, 4–moment method.

estimated: µ estimated: σ

Method mean median Q(0.05) Q(0.95) mean median Q(0.05) Q(0.95)
CvM 2.0493 2.0512 1.9952 2.0954 0.5431 0.5416 0.4900 0.6007

KS 2.0441 2.0460 1.9841 2.0966 0.5533 0.5529 0.4930 0.6195
AD 2.2426 2.1097 1.7212 2.9800 0.8682 0.8918 0.7494 0.8995

MLE 1.8230 1.8132 1.6812 1.9806 0.8073 0.8215 0.6708 0.8963
Moment 1.8298 1.8219 1.6984 1.9778 0.8092 0.8230 0.6749 0.8952

Table 1 Empirical characteristics of estimates obtained from different methods.

4.2 Analysis of contamination
In the second estimation stage the aim is to identify the heavy-tailed component of the mixture and estimate its
parameters, when the Pareto model is assumed.Hence, the method should be sensitive to all observed values, giving
an appropriate weights also to right tails of data. After a set of experiments we decided to prefer the AD estimator
meeting best such requirements. The numerical example presented here, again based on K sets of N data (partly
left-truncated), and using µ andσ estimated in the first stage, yielded the estimates which empirical characteristics
(from K repetitions) are summarized in Table 2.

Parameter mean median Q(0.05) Q(0.95)
a 1.695 1.521 1.321 2.982
λ 0.839 0.903 0.121 1.602
α 0.094 0.091 0.014 0.217

Table 2 Empirical characteristics of estimates.

It is seen that empirical distribution of estimates is not symmetric, still rather wide, but at least the mean or
median values providing acceptable results. Simultaneously, certain trade-off among parameters can be traced. For
instance, smaller λ leads to longer right tail, while smaller a shifts the whole distribution left.

4.3 Estimated distribution of sums
As it has been said, this task is the main and final objective of the study. In particular, we are interested in how
well the methods are able to model (and then to predict) upper right end quantiles of distribution of sums. This
distribution is very sensitive even to just small changes of parameters, hence also to their unperfect estimates. And
we have seen how rather complicated the estimation procedure is. Simultaneously, the results depends also on the
number of losses during given period. This point is not considered here, we just try to estimate the distribution of
convolution of a fixed number, D, of i.i.d. random variables representing the losses. The recommended approach
to the operational risk modeling concerns the calculation of a risk measure VaRγ at a confidence level γ = 99, 9%
for a loss random variable L corresponding to the aggregate losses over a given period, usually one year [5]. As
this distribution has no closed form, standard way of examining it is again a Monte Carlo approach. Therefore we
generated K times, with K 105, sums L =

∑
Lk of D = 100 variables Lk having the mixed distribution derived

and estimated in preceding parts. Table 2 shows a comparison of chosen right empirical quantiles of L obtained
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by random generation.

Quantile 0.995 0.996 0.997 0.998 0.999 0.9995
a) Estimated 18 730 23 671 31 638 46 747 97 711 202 301

b) ”True” 15 555 19 183 25 214 37 952 84 846 154 176

Table 3 Empirical quantiles of L based on a) model using the medians of estimated parameters µ = 2.0512, σ =
0.5416, λ = 0.903, a = 1.521, α = 0.091; b) the ”true” model with parameters µ0 = 2, σ0 = 0, 5, λ0 = 1, a0 =
2, α0 = 0.1.

The quantiles based on estimated parameters exceed slightly the quantiles of true distribution of sums. It
indicates that the method could be applicable without large danger of underestimation of real aggregate losses.
Naturally, each analysis of this kind has to start from careful exploration of available real data.

5 Concluding remarks
The first aim of the study was to examine and compare performance of several estimators of distribution parameters
in the case of fixed left truncated data. The data were generated randomly, the sense of examples was to simulate
a set of losses of a financial institution encountered during certain period. Their distribution was modeled via the
log-normal distribution contaminated by the Pareto one. The main objective was then the estimation of distribution
of sums of losses over a given period..It means to summarize the values coming from (possibly contaminated)
log-normal distribution and, moreover, not observed fully. Theoretically, the distribution could be approximated
on the basis of the central limit theorem. However, there are many issues leading to doubts on its correctness and
practical usefulness. The asymptotic behavior of the C.L.Th. on distribution tails is rather slow in general, not
speaking about the fact that Pareto distribution of our choice does not fulfil theoretical requirement for the C.L.Th.
validity.

That is why this part of analysis was also based on Monte Carlo approach and estimated parameters. We
hope that such an approach is suitable also for practical use. As a rule, a sufficiently large database is available,
usually omitting values under given threshold. Hence, the parameters of assumed type of baseline distribution can
be estimated, e.g. using sufficiently robust Cramér-von Mises estimator. Then the model for heavy-tailed part
of losses distribution can be identified, in this stage a less robust method is appropriate, we can recommend the
Anderson-Darling method. Finally, random generation from obtained model helps to recover expected behavior of
aggregated losses.
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