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ABSTRACT

We propose a method for the recognition of vector field pat-
terns under an unknown rotation. The rotation is modeled as
a total transformation, which is applied on both spatial coor-
dinates and field values. The invariants are constructed from
orthogonal Gaussian-Hermite moments. Their numerical sta-
bility and recognition power are shown to be better than those
of the invariants published so far.

Index Terms— Vector field, total rotation, invariants,
Gaussian-Hermite moments, template matching.

1. INTRODUCTION

Vector fields are a type of multidimensional data that appear
in many engineering areas. They may describe particle veloc-
ity, wind velocity, optical/motion flow, image gradient, and
similar phenomena. Unlike traditional images, they behave
differently under spatial transformations and require develop-
ing of special algorithms.

In 2D, vector fieldf(x) = (f1(x, y), f2(x, y)) can be in-
terpreted as a pair of scalar imagesf1 andf2. If the field is
rotated, the spatial rotation is always coupled with the rotation
of the vector values by the same angle asf’(x) = Rαf(R−αx),
whereRα is a rotation matrix. This is calledtotal rotation
which differs from inner rotation f’(x) = f(R−αx), com-
monly applied to scalar images. Hence, to detect patterns of
interest such as vortices and saddle points in a vector field,in-
dependently of their orientation, we cannot apply traditional
rotation invariants known from image processing, because
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they are not invariant to total rotation. Instead, special invari-
ants of vector fields must be used.

The first paper on rotation invariants of vector fields was
published by Schlemmer et al. [1], who adapted the scalar
moment invariants proposed by Mostafa and Psaltis [2] and
Flusser [3, 4], and designed invariants composed of complex
moments of the field. Rotation invariants of vector fields have
found several applications. Liu and Ribeiro [5] used them to
detect singularities on meteorological satellite images show-
ing wind velocity. Liu and Yap [6] applied them to indexing
and recognition of fingerprint images. Bujack et al. [7, 8]
generalized the previous works and showed that the invari-
ants can be derived also by means of the field normalization
approach. They studied the use of the invariants in fluid dy-
namics, particularly in simulations of a von Kármán vortex
street.

In this paper, we use orthogonal Gaussian-Hermite mo-
ments instead of geometric moments to design rotation in-
variants of vector fields with better numerical stability ofthe
high-order moments. This effect has been known for scalar
images [9] and we demonstrate it propagates to vector fields
as well.

2. GAUSSIAN-HERMITE MOMENTS

Hermite polynomials can be defined and evaluated by means
of the three-term recurrence relation

Hn+1(x) = 2xHn(x)− 2nHn−1(x) (1)

with initial conditionsH0(x) = 1 andH1(x) = 2x. Hermite
polynomials have a high dynamic range and poor localiza-
tion. To overcome this, we modulate them with a Gaussian
function and scale them. It yieldsGaussian-Hermite (GH)
polynomials

Hn(x, σ) = Hn(x/σ)e
−

x
2

2σ2 . (2)

We use GH polynomials as the base functions of the moments.
The GH momentsηpq were introduced to image analysis by
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Shen [10, 11]. They were proven to be robust to additive noise
[12, 13]. They have been successfully employed in detection
of moving objects in videos [14], in license plate recognition
[15], in image registration as landmark descriptors [16], in
fingerprint classification [17], in face recognition [18], and as
directional feature extractors [19].

The GH moments exhibit an interesting property. They
change under an in-plane rotation by angleα in the same
way as do the monomialsxpyq [20, 21, 9]. This allows an
easy construction of rotation invariants, which is known as
theYang’s theoremfor scalar images: If there exists a rotation
invariantI(mp1q1 , mp2q2 , . . ., mpdqd) of geometric moments

mpq =

∞
∫

−∞

∞
∫

−∞

xpyqf(x, y)dxdy, (3)

the same function of the corresponding Hermite moments
I(ηp1q1 , ηp2q2 , . . ., ηpdqd) is also a rotation invariant (see [21]
for the detailed proof). For numerical stability reasons, we
normalize the GH moments as

η̂pq=
1

σ
√

π(p+q)!2p+q

∞
∫

−∞

∞
∫

−∞

Hp(x, σ)Hq(y, σ)f(x, y)dxdy,

which keeps the range of values in a reasonable interval and
does not violate the Yang’s theorem.

3. GAUSSIAN-HERMITE ROTATION INVARIANTS
OF VECTOR FIELDS

We can treat the vector field as a field of complex numbers

f(x, y) = f1(x, y) + if2(x, y).

Any momentMpq (geometric, GH, or any other) is then

M (f)
pq = M (f1)

pq + iM (f2)
pq .

Since the outer rotation (i.e. the rotation of the vector values)
can be modeled as a multiplication of the vector field by a
constant factore−iα, any momentMpq satisfies

M ′

pq = e−iαMpq.

It means the Yang’s theorem is valid also for the total rotation
of vector fields.

The rotation invariants of scalar images [22] are com-
monly derived viacomplex moments

cpq =

∞
∫

−∞

∞
∫

−∞

(x + iy)p(x− iy)qf(x, y)dxdy. (4)

The complex moments change under the inner rotation by an-
gle α as c′pq = e−i(p−q)αcpq and under a total rotation as

c
(f′)
pq = e−i(p−q+1)αc

(f)
pq . The link between the geometric and

the complex moments

cpq =

p
∑

k=0

q
∑

j=0

(

p

k

)(

q

j

)

(−1)q−jip+q−k−jmk+j,p+q−k−j

(5)
yields the possibility of applying the Yang’s theorem. When
replacing thecpq ’s by the corresponding functions of the GH
moments

dpq =

p
∑

k=0

q
∑

j=0

(

p

k

)(

q

j

)

(−1)q−jip+q−k−j η̂k+j,p+q−k−j ,

(6)
the behavior under a total rotation must be preserved, which
leads to

d(f
′)

pq = e−i(p−q+1)α · d(f)pq . (7)

Analogously to the scalar case [3, 22], we can cancel the
rotation parameter by a multiplication of proper powers of
thedpq ’s. Let ℓ ≥ 1 andki, pi, andqi (i = 1, . . . , ℓ) be non-

negative integers such that
ℓ

∑

i=1

ki(pi − qi + 1) = 0. Then the

product

I =
ℓ
∏

i=1

dki

piqi
(8)

is invariant with respect to total rotation. This statementmay
generate an infinite number of rotation invariants. It is desir-
able to work with an independent and complete subset (basis).
A simple basis can be obtained by

Φ(p, q) ≡ dpqd
p−q+1
q0p0

, (9)

wherep0 − q0 = 2 anddq0p0
6= 0. To get a complete system,

we set by definitionΦ(q0, p0) ≡ |dq0p0
|. The choice of the

basis is not unique and it is determined by the choice ofdq0p0
.

4. EXPERIMENTS

The aim of the experiments is to compare GH invariants of
vector fields to the invariants composed of geometric/complex
moments. Thegeometric invariantsare formally defined by
the same equation as (9), but complex momentscpq are used
in place ofdpq:

Ψ(p, q) ≡ cpqc
p−q+1
q0p0

. (10)

4.1. Numerical Precision

In this experiment, we evaluated numerical properties of GH
and geometric moment invariants up to the orderp+q = 160.
We took a sample vector field, rotated it byπ/4 using the to-
tal rotation, and calculated the relative error of each invariant.
The relative errors of the geometric invariants are visualized
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in Fig. 1(a) using the color map on the right. White points
correspond to NaN values of the invariants. We can see lim-
ited possibility of working with the geometric invariants if
p− q > 20 or p, q > 80.

The relative errors of the GH invariants are visualized in
the same way in Fig. 1(b). The main difference is that all
investigated invariants are valid. To compare the relativeer-
rors in the valid region, we calculated the element-wise ratio
̺ of the relative errors; see Fig. 1(c). The vast majority of in-
dices(p, q) yield ̺ > 1, which means the relative error of the
geometric invariants is higher than that of the GH invariants.
The mean value of̺ is 7.3 and the median equals 4.3, which
clearly illustrates the higher stability of the GH invariants.

4.2. Template matching in a gradient field

We used the gradient of the picture of hair (Fig. 2(a)) in this
experiment. We randomly selected 9 circular templates of the
gradient field, rotated them by5◦, and matched them against
the original field. The matching was carried out by searching
for the minimumℓ2-distance in the space of the GH invari-
ants of ordersp + q ≤ 4 between the template and all field
patches of the same size. Eight templates were found in their
exact location, one was matched with a localization error of1
pixel (see Fig. 2(b)). We repeated this experiment with tem-
plate rotations23◦, 41◦, 59◦, and77◦, respectively. The re-
sults were always exactly the same as depicted in Fig. 2(b).
The performance of the GH invariants in template matching
is very good, regardless of the actual template content and of
the template rotation.

4.3. Template matching in a fluid flow field

This experiment dealt with an important problem from fluid
dynamics – vortex detection in a fluid flow vector field. We
used the field showing the von Kármán vortex street, which
is a repeating pattern of swirling vortices caused by the flow
of a fluid around blunt bodies. In the von Kármán pattern, we
can see several vortices arranged in two rows. The orienta-
tion of the “street” is given by the main flow direction and is
generally not known a priori. A patch with a typical vortex
was used as a template (see Fig. 3(a)). We rotated the tem-
plate by30◦. The task is to find all vortices of a similar shape
regardless of their orientation. The search was performed in
the space of the rotation invariants. We searched for all local
minima ofℓ2-distance below a user-defined threshold.

The results may be controlled by the number and the order
of the invariants used. In Fig. 3(b), we can see the matching
results when only the invariants up to the fourth order were
employed. Almost all vortices in the field were detected, but
there were also some false matches. The vortices in the bot-
tom row are mirror reflections of that in the top row. If we
want to detect them, we must use the absolute value of the
imaginary parts of the invariants. As we increased the order
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Fig. 1. Relative errors. (a) Geometric invariants. White area
corresponds to NaN values of the invariants. (b) Gaussian-
Hermite invariants. (c) Their ratio̺.
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Fig. 2. Template matching. (a) Original picture of hair.
(b) Gradient field (only the magnitudes are displayed). The
ground-truth template positions are white and the localized
positions are red. There is only one error of 1 pixel.

of the invariants, we identified only those vortices, which are
more similar to the template (see Fig. 3(c) for the ninth order)
and the number of the false matches was reduced. This pro-
cess terminated at the order 14, where only a single vortex, the
one identical with the template, was found. We performed this
template matching on 300 consecutive frames of the Kármán
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(a) The selected template.
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(b) The matching vortices when only the GH invariants
up to the fourth order have been employed.
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(c) The matching vortices when the GH invariants
up to the ninth order have been employed.

Fig. 3. The von Kármán vortex street.

street time sequence, which yielded an illustrative example of
vortex tracking in a video.

5. CONCLUSION

The paper dealt with rotation invariants of vector fields,
which are functions of orthogonal moments. We demon-
strated that the use of orthogonal Gaussian-Hermite moments
provides significantly higher numerical stability than thegeo-
metric/complex moment invariants. Further, we successfully
applied them to real world pattern detection tasks.
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