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a b s t r a c t 

Orientation-independent object recognition mostly relies on rotation invariants. Invariants from moments 

orthogonal on a square have favorable numerical properties but they are difficult to construct. The paper 

presents sufficient and necessary conditions, that must be fulfilled by 2D separable orthogonal polynomi- 

als, for being transformed under rotation in the same way as are the monomials. If these conditions have 

been met, the rotation property propagates from polynomials to moments and allows a straightforward 

derivation of rotation invariants. We show that only orthogonal polynomials belonging to a specific class 

exhibit this property. We call them Hermite-like polynomials. 

© 2017 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s  

r  

n  

a  

m  

m  

[  

u  

t  

p  

t  

(  

m  

t

 

c  

a  

c  

d  

G  

a  

H  

i  

c  

t  

m  
1. Introduction 

Rotation invariants play a key role in an orientation-invariant

object description and recognition. Being a part of rigid-body

transformation, object rotation is present almost in all applications,

even if the imaging system has been well set up and the experi-

ment has been prepared in a laboratory. Rotation is not trivial to

handle mathematically, unlike for instance translation and scaling.

For these two reasons, invariants to rotation have been in focus

of researchers since the beginning. Invariants composed of image

moments, moment invariants , belong to the most popular ones [1] . 

Moment invariants have been mostly constructed from geomet-

ric moments , which are projections of an image onto a standard

monomial basis x p y q [1] . A theory which allows to construct com-

plete and independent set of rotation invariants of arbitrary order

was proposed by Flusser [2,3] . However, geometric moments are

not very suitable for practical applications since they suffer with a

numerical instability and precision loss, which decreases the per-

formance of moments of high orders [1] . To overcome that, several

authors proposed to employ various orthogonal (OG) moments (i.e.

moments with respect to certain orthogonal polynomial basis) in-

stead. 

In 2D, there exist two families of OG polynomials, which dif-

fer from one another by the area of orthogonality – polyno-

mials orthogonal on a disc and polynomials orthogonal on a

square/rectangle. The former group is inherently suitable for con-
∗ Corresponding author. 

E-mail addresses: byang@nwpu.edu.cn (B. Yang), flusser@utia.cas.cz (J. Flusser), 
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tructing rotation invariants, because these moments change under

otation in a simple way and the rotation parameter can be elimi-

ated easily. This was noted for example by Teague [4] , Khotanzad

nd Hong [5] , and Wallin and Kubler [6] who used Zernike mo-

ents, and by other authors who employed pseudo-Zernike mo-

ents [7] , Fourier–Mellin moments [8,9] , Jacobi-Fourier moments

10] , and Chebyshev-Fourier moments [11] . The negative aspect of

sing moments OG on a disc is that they require a mapping of

he image into the disc, which is equivalent to image scaling and

olar transformation. This operation leads to a precision loss due

o the image resampling and also increases the computation time

both can be partially compensated by dedicated algorithms for

oment computation, see [12] for instance). That is why some au-

hors turned back to the moments OG on a square/rectangle. 

Moments OG on a square can be calculated efficiently and pre-

isely because the grid of the area of orthogonality is the same

s the pixel grid of the image. In image processing literature, we

an find many representatives of this group of moments. Legen-

re moments [13–15] , Chebyshev moments [16–18] , Hermite and

aussian-Hermite moments [19,20] , Krawtchouk moments [21] ,

nd Gegenbauer moments [22] are the most popular examples.

owever, construction of rotation invariants from these moments

s generally very difficult. Even for low orders it leads to compli-

ated clumsy formulas. This is why only few papers have followed

his tedious approach. Yap et al. [21] did it for Krawtchouk mo-

ents, Hosny [15] and Deepika et al. [23] for Legendre moments.

or higher orders, general forms of the invariants have not been

ublished yet. Before 2011, the situation looked like a deadlock. We

ould use either OG moments on a disc on the expense of compu-
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2 Favard’s Theorem holds for general OG polynomials as well; in that case the 

first factor in (5) has the form (a p x + s p ) instead of just a p x . Since we look for 

polynomials with the same rotation properties as x p y q , it is reasonable to limit our- 
ational precision or geometric moments, which are defined on a

ectangular grid but which are not OG and hence unstable. 

A significant breakthrough on this field was achieved by Yang

t al. [24,25] . They discovered that 2D Hermite moments, which

re OG on a square grid, offer a possibility of an easy and effi-

ient design of rotation invariants and demonstrated this on low-

rder moments. Their elegant technique was later used to con-

truct complete and independent set of rotation invariants of ar-

itrary orders [26] and was generalized even to 3D Hermite and

aussian-Hermite moments [27] . Their method is based on the

ang’s Theorem , which essentially says that Hermite polynomials

hange under an in-plane rotation exactly in the same way as do

he monomials x p y q . Hence, if we have explicit formulas of rotation

nvariants from geometric moments (these formulas have been ac-

ually known thanks to [2] ), it is sufficient just to replace the ge-

metric moments with Hermite moments of the same degree and

e end up with rotation invariants from OG moments. Since Her-

ite polynomials can be evaluated by recurrent relations, we can

ork with these invariants with an acceptable precision up to very

igh moment orders [26] . 

However, an important question has still remained open – are

ermite polynomials the only OG polynomials satisfying the rota-

ion property described in the Yang’s Theorem, or are there other

D separable OG polynomials which provide the same possibility

f construction of the invariants? In this paper, we answer this

uestion completely. We present the proof that there exists a spe-

ific class of polynomials (we call them Hermite-like polynomials

ecause they are in certain sense similar to Hermite polynomials),

hich are actually the only OG polynomials with this property. 

. Orthogonal polynomials under rotation 

Let us first investigate how the monomials πpq (x, y ) = x p y q 

re transformed under a coordinate rotation by angle θ . Rotation

(x, y ) → ( ̂  x , ̂  y ) is given as 

ˆ x = x cos θ − y sin θ

ˆ y = x sin θ + y cos θ . 
(1) 

fter a substitution and application of binomial formula, we obtain

he monomial in the rotated coordinates 

pq ( ̂  x , ̂  y ) = 

 

p ∑ 

n =0 

q ∑ 

j=0 

(−1) n 
(

p 

n 

)(
q 

j 

)
( cos θ ) p−n + j ( sin θ ) q − j+ n x p+ q −n − j y n + j . 

(2) 

rouping the variables of the same power together, Eq. (2) can be

ewritten into the form 

pq ( ̂  x , ̂  y ) = 

p+ q ∑ 

r=0 

k (r, p, q, θ ) x p+ q −r y r , (3)

here k ( r, p, q, θ ) is a coefficient given as a linear combination of

ertain powers of sin θ and cos θ (see [24] for detailed formulas

nd basic properties of k ( r, p, q, θ )). 

Now let us move from the monomials x p y q to bivariate poly-

omials G pq ( x, y ). In this paper, we consider solely 2D separable

olynomials 1 We assume G pq ( x, y ) can be expressed as a product

 pq (x, y ) = G p (x ) G q (y ) , (4)

here G n ( x ) is a univariate polynomial of degree n . 

We are particularly interested in the case when polynomials

 p ( x ) form an orthogonal (possibly weighted orthogonal) system.
1 For a short discussion on non-separable polynomials see Section 4.2. 

s

s

m

bviously, in such a case also the corresponding bivariate polyno-

ials (4) are orthogonal. Due to Favard’s Theorem [28] , any sym-

etric OG polynomials 2 can be expressed by a three-term recurrent

elation of the form 

 p+1 (x ) = a p xG p (x ) − b p G p−1 (x ) , for p � 1 (5)

ith an initialization 

G 0 (x ) = c 0 , 

G 1 (x ) = c 1 x, 
(6) 

here all coefficients are real-valued, c 0 � = 0, c 1 � = 0, a p � = 0 and

 p > 0 for every p ≥ 1. Conversely, any recurrent relation of this

orm generates symmetric OG polynomials. 

The Favard’s Theorem allows to work directly with recurrent re-

ations (5) without loss of generality. All properties of the poly-

omials are determined by the coefficients. For example, the set-

ing c 0 = c 1 = 1 , a p = (2 p + 1) / (p + 1) , b p = p/ (p + 1) yields Leg-

ndre polynomials; c 0 = c 1 = 1 , a p = 2 , b p = 1 leads to Chebyshev

olynomials of the first kind; c 0 = 1 , c 1 = 2 , a p = 2 , b p = 1 leads to

hebyshev polynomials of the second kind; and c 0 = 1 , c 1 = 2 , a p =
 , b p = 2 p yields Hermite polynomials (see [1] or [29] for more

etails and other examples). 

Now we can proceed to formulate the central theorem of this

aper, which introduces necessary and sufficient conditions for a

simple” (i.e. similar to monomials) transformation of OG polyno-

ials under rotation. 

heorem 1. Let a family of polynomials G p ( x ) be defined by recur-

ence (5) with initialization (6) . Then bivariate polynomials G pq ( x, y )

4) are transformed under rotation of the coordinates (1) as 

 pq ( ̂  x , ̂  y ) = 

p+ q ∑ 

r=0 

k (r, p, q, θ ) G p+ q −r (x ) G r (y ) , (7)

here k ( r, p, q, θ ) are from (3) , if and only if it holds, for the recur-

ence coefficients, the following: 

a p = 

c 1 
c 0 

≡ a, 

b p = b · p, b > 0 , for any p � 1 . 

(8) 

In other words, Theorem 1 says that if the recurrence has cer-

ain specific form, then the corresponding 2D OG polynomials are

ransformed under rotation exactly in the same way as do the

onomials, and vice versa. For the proof of Theorem 1 see Ap-

endix A. 

Let us show what actually the constraints (8) , imposed on the

ecurrence coefficients, mean. For c 0 = 1 , c 1 = a = b = 2 we ob-

ain exactly Hermite polynomials. Other choices of parameters c 0 , a

resp. c 1 ) and b make a scaling of the variable x , which is the same

or all degrees, and scaling of the values of G p ( x ), which, however,

epends on p . Since this does not change the character of the poly-

omials, we call the polynomials satisfying (8) Hermite-like polyno-

ials . Theorem 2 specifies these polynomials exactly. 

heorem 2. Let a family of polynomials P n ( x ) satisfy (8) with c 0 =
 = b = 1 and let a family of polynomials G n ( x ) satisfy (8) with an

rbitrary setting of c 0 , a, b; b > 0 . Then these two polynomial families

re linked with each other as 

 n (x ) = c 0 

√ 

b n P n (ax/ 

√ 

b ) . (9)
elves to symmetric OG polynomials (i.e. s p = 0 for any p ) which have the same 

ymmetry/antisymmetry as the monomials. Non-zero s p ’s yield shifted OG polyno- 

ials which do not exhibit this property. 
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A

Polynomials P n ( x ) are sometimes called probabilists’ Hermite

polynomials . Polynomials G n ( x ) are orthogonal on (−∞ , ∞ ) with

respect to weighting function 

w (x ) = e −
(ax ) 2 

2 b . (10)

Applying Theorem 2 in a transitive manner, we may establish the

link between any two polynomial families of this kind. For the

proof of Theorem 2 see Appendix B . 

3. Rotation invariants from OG moments 

In this Section, we show how Theorem 1 can be used for an

easy derivation of rotation invariants from OG moments. First, con-

sider geometric moments of image f ( x, y ) 

m pq = 

∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

x p y q f (x, y ) d xd y. (11)

Under rotation, geometric moments are transformed as 

ˆ m pq = 

∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

ˆ x p ˆ y q f (x, y ) d xd y. (12)

Substituting from Eq. (3) we obtain 

ˆ m pq = 

∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

p+ q ∑ 

r=0 

k (r, p, q, θ ) x p+ q −r y r f (x, y ) d xd y 

= 

p+ q ∑ 

r=0 

k (r, p, q, θ ) m p+ q −r,r . 

(13)

Rotation invariants are such functions of moments that elimi-

nate rotation parameter θ . A consistent theory how to construct

them was first proposed in [2] , for a deeper insight and links to

other approaches see [1] . The main conclusion is that an indepen-

dent and complete set of rotation invariants from geometric mo-

ments can be designed as 

�pq = 

( 

q 0 ∑ 

k =0 

p 0 ∑ 

j=0 

(
q 0 
k 

)(
p 0 
j 

)
(−1) p 0 − j i p 0 + q 0 −k − j m k + j,p 0 + q 0 −k − j 

) p−q 

·
p ∑ 

k =0 

q ∑ 

j=0 

(
p 

k 

)(
q 

j 

)
(−1) q − j i p+ q −k − j m k + j,p+ q −k − j 

(14)

where p ≥ q and p 0 , q 0 are fixed user-defined indices (usually very

low) such that p 0 − q 0 = 1 . 

If we have OG polynomials G pq ( x, y ) satisfying conditions (8) ,

then, thanks to Theorem 1 , we can only replace geometric mo-

ments in (14) with the corresponding OG moments 

ηpq = 

∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

G p (x ) G q (y ) f (x, y ) d xd y (15)

and the invariance property of each �kj is preserved. 3 On the other

hand, Theorem 1 says that Hermite-like moments are the only mo-

ments 4 which offer this possibility. That underlines the prominent

position of Hermite-like moments in image analysis. 

4. Possible extensions 

4.1. Extension to 3D 

Due to a recent development of 3D imaging devices and tech-

nologies, which have become widely accessible, 3D rotation mo-

ment invariants started to attract an increasing attention of the
3 For Gaussian-Hermite moments, this process is described in detail in [26] . 
4 For practical purposes, Hermite-like moments may be weighted and normalized 

to ensure reasonable dynamic range of the invariants but this does not violate their 

rotation properties. 

 

r  

e  

J  

S

esearchers [30–36] . The problem of numerical instability of non-

rthogonal moments appears in 3D even more seriously because

t influences lower moment orders than in 2D. To overcome this,

ang et al. [27] proposed 3D rotation invariants from Gaussian-

ermite moments. They proved that the Yang’s Theorem holds in

D as well and is fully analogous to its 2D ancestor. Thanks to this,

e can easily generalize Theorem 1 for the 3D case. 

heorem 3. Let a family of polynomials G p ( x ) be defined by re-

urrence (5) with initialization (6) . Then trivariate polynomials

 pqr (x, y, z) = G p (x ) G q (y ) G r (z) are transformed under rotation of the

oordinates by the same coefficients as monomials x p y q z r if and only

f the conditions (8) hold for the recurrence coefficients. 

The proof is via the same induction as in 2D, only more labori-

us. We do not repeat it in the paper. Theorem 2 of course holds

egardless of the space dimension. 

.2. The case of non-separable polynomials 

The question whether or not Theorem 1 can be extended and

eformulated also for non-separable OG polynomials G pq ( x, y ) (i.e.

hose that cannot be expressed as a product of two univariate

olynomials) is very difficult to answer. We should distinguish

etween weakly and strongly non-separable polynomials. Weakly

on-separable polynomials can be made separable after the coor-

inates have been rotated by an appropriate angle. For example,

he polynomials x + y and x − y are both weakly non-separable,

ecause when rotating them by π /4 they become 
√ 

2 x and 

√ 

2 y .

or weakly non-separable polynomials Theorem 1 holds well, since

e can transform them to a separable case by means of rotation. 

For strongly non-separable polynomials the answer is unknown.

e cannot modify Theorem 1 and follow its original proof, be-

ause it is based on the recurrent relations of 1D polynomials. The

quivalence between recurrent relations and polynomials in 1D fol-

ows from Favard’s theorem. However, no such theorem exists in

D, to our best knowledge. To modify Theorem 1 for strongly non-

eparable polynomials, we would have to derive a 2D analogue of

avard’s theorem, which is a quite challenging open problem. Our

onjecture is that no strongly non-separable polynomials change as

he monomials but we do not have a proof of this statement. 

We hope that from practical point of view this is not a signifi-

ant restriction. The use of strongly non-separable polynomials and

heir moments would increase the computing complexity while

probably) not bringing any advantages. Almost nobody has used

on-separable polynomials for image analysis purposes; [37] is one

f very few exceptions. 

. Conclusion 

The paper presents sufficient and necessary conditions, that

ust be fulfilled by 2D OG polynomials, for being transformed un-

er rotation in the same way as are the monomials. These condi-

ions are given by Theorem 1 , which is the main novel result of

he paper. If these conditions have been met, the rotation property

ropagates from polynomials to moments and allows an effortless

erivation of rotation invariants. We showed that only Hermite-like

olynomials and moments exhibit this property. 
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ppendix A. Proof of Theorem 1 

Theorem 1 has a form of an equivalence. To prove it in full, we

rst prove that the constraints (8) imposed on the parameters are

ufficient and then that they are also necessary. The proof is via

athematical induction. 

roof of sufficiency 

Let us prove that the validity of (8) implies the validity of (7) . 

• Initial step 

Eq. (7) holds trivially for (p, q ) = (0 , 0) . For (p, q ) = (1 , 0) we

have 

π10 ( ̂  x , ̂  y ) = 

ˆ x = x cos θ − y sin θ, 

from where we can see the coefficients k (r, 1 , 0 , θ ) , r = 0 , 1 , 

and the validity of (7) can be verified immediately. For (p, q ) =
(1 , 1) we have on one hand 

G 11 ( ̂  x , ̂  y ) = G 1 ( ̂  x ) G 1 ( ̂  y ) 

= c 2 1 sin θ cos θx 2 + c 2 1 cos 2 θxy 

− c 2 1 sin 

2 θxy − c 2 1 sin θ cos θy 2 . (16) 

On the other hand, 

2 ∑ 

r=0 

k (r, 1 , 1 , θ ) G 2 −r (x ) G r (y ) 

= c 2 1 sin θ cos θx 2 + c 2 1 cos 2 θxy 

− c 2 1 sin 

2 θxy − c 2 1 sin θ cos θy 2 . (17) 

Hence, Eq. (7) holds for the initial conditions. 
• Induction step 

Assuming Eq. (7) holds for some positive integers ( p, q ), let us

prove the validity for (p, q + 1) . We can rewrite the left-hand

side of Eq. (7) to the following form: 

Φle f t = G p ( ̂  x ) G q +1 ( ̂  y ) 

= G p ( ̂  x ) 
(

c 1 
c 0 

ˆ y G q ( ̂  y ) − bqG q −1 ( ̂  y ) 
)

= 

c 1 
c 0 

(x sin θ + y cos θ ) 

p+ q ∑ 

r=0 

k (r, p, q, θ ) G p+ q −r (x ) G r (y ) 

− bq 

p+ q −1 ∑ 

r=0 

k (r, p, q − 1 , θ ) G p+ q −r−1 (x ) G r (y ) . (18) 

The right-hand side Φright can be expressed by means of

Lemma 1 from [24] (the Lemma shows the properties of coeffi-

cients k ( r, p, q, θ )) as 

Φright = 

p+ q +1 ∑ 

r=0 

k (r, p, q + 1 , θ ) G p+ q +1 −r (x ) G r (y ) 

= sin θ
p+ q ∑ 

r=0 

k (r, p, q, θ ) G p+ q +1 −r (x ) G r (y ) 

+ cos θ
p+ q +1 ∑ 

r=1 

k (r − 1 , p, q, θ ) G p+ q +1 −r (x ) G r (y ) . (19) 

Since 
p+ q +1 ∑ 

r=1 

k (r − 1 , p, q, θ ) G p+ q +1 −r (x ) G r (y ) 

= 

p+ q ∑ 

r=0 

k (r, p, q, θ ) G p+ q −r (x ) G r+1 (y ) (20) 

due to the index shift, we have 

Φright = sin θ
p+ q ∑ 

r=0 

k (r, p, q, θ ) G p+ q +1 −r (x ) G r (y ) 

+ cos θ
p+ q ∑ 

r=0 

k (r, p, q, θ ) G p+ q −r (x ) G r+1 (y ) . (21) 

Substituting the recurrence relations for G p+ q +1 −r (x ) and

G r+1 (y ) in Eq. (21) yields 

Φright = 

c 1 
c 0 

(x sin θ + y cos θ ) 

p+ q ∑ 

r=0 

k (r, p, q, θ ) G p+ q −r (x ) G r (y ) 

− b sin θ
p+ q ∑ 

r=0 

(p + q − r) k (r, p, q, θ ) G p+ q −1 −r (x ) G r (y ) 

− b cos θ
p+ q ∑ 

r=0 

rk (r, p, q, θ ) G p+ q −r (x ) G r−1 (y ) . (22) 

The second and third terms of (22) vanish for r = p + q and

r = 0 , respectively. So, the summation in the second term goes

only to r = p + q − 1 and the summation of the third term goes

from r = 1 . Incorporating this into (22) and using Lemma 2

from [24] to simplify the sums, we obtain 

Φle f t = Φright , 

which completes the induction step. 

To complete the proof of sufficiency, we should repeat the in-

duction also over p . That is, however, the same as for q due

to the symmetry of the problem. The only change is that we

employ Lemmas 3 and 4 from [24] instead of Lemmas 1 and 2

which have been used above. We do not repeat the proof for p

here. 

roof of necessity 

Assuming Eq. (7) holds for any p and q , we derive the con-

traints (8) on parameters a p and b p via induction. 

• Initial step 

Let us calculate G 11 ( ̂  x , ̂  y ) . On one hand, via direct calculation, it

equals c 2 
1 ̂

 x ̂  y , which can be further expanded using (1) . On the

other hand, using the assumption of Theorem 1 , we have 

G 11 ( ̂  x , ̂  y ) = 

2 ∑ 

r=0 

k (r, 1 , 1 , θ ) G 2 −r (x ) G r (y ) . (23)

Comparing the coefficients of x 2 leads to the constraint 

a 1 = 

c 1 
c 0 

(24) 

while b 1 may be an arbitrary positive real number. 
• Induction step 

We assume Theorem 1 valid for certain p ≥ 1, i.e. we assume 

a p = 

c 1 
c 0 

and b p = pb, b > 0 . (25)

Let us again express the left-hand side of (7) in the form of

(18) . The second term of (18) can be expanded by means of
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Lemma 2 from [24] (the Lemma is about the properties of the

coefficient k ( r, p, q, θ )) as 

qb 

p+ q −1 ∑ 

r=0 

k (r, p, q − 1 , θ ) G p+ q −1 −r (x ) G r (y ) 

= b sin θ
p+ q −1 ∑ 

r=0 

(p + q − r) k (r, p, q, θ ) G p+ q −1 −r (x ) G r (y ) 

+ b cos θ
p+ q −1 ∑ 

r=0 

(r + 1) k (r + 1 , p, q, θ ) G p+ q −1 −r (x ) G r (y ) 

= b sin θ
p+ q ∑ 

r=0 

(p + q − r) k (r, p, q, θ ) G p+ q −1 −r (x ) G r (y ) 

+ b cos θ
p+ q ∑ 

r=0 

rk (r, p, q, θ ) G p+ q −r (x ) G r−1 (y ) . (26)

Hence, 

G p,q +1 ( ̂  x , ̂  y ) = 

c 1 
c 0 

(x sin θ + y cos θ ) 

p+ q ∑ 

r=0 

k (r, p, q, θ ) G p+ q −r (x ) G r (y )

− b 

p+ q ∑ 

r=0 

sin θ (p + q − r) k (r, p, q, θ ) G p+ q −1 −r (x ) G r (y

− b 

p+ q ∑ 

r=0 

cos θ rk (r, p, q, θ ) G p+ q −r (x ) G r−1 (y ) . (27

The right-hand side Φright of Eq. (7) can be rewritten to

Eq. (21) . Substituting the recurrence relations for G p+ q +1 −r (x )

and G r+1 (y ) in Eq. (21) yields 

Φright = x sin θ
p+ q ∑ 

r=0 

a p+ q −r k (r, p, q, θ ) G p+ q −r (x ) G r (y ) 

+ y cos θ
p+ q ∑ 

r=0 

a r k (r, p, q, θ ) G p+ q −r (x ) G r (y ) 

− sin θ
p+ q ∑ 

r=0 

b p+ q −r k (r, p, q, θ ) G p+ q −1 −r (x ) G r (y ) 

− cos θ
p+ q ∑ 

r=0 

b r k (r, p, q, θ ) G p+ q −r (x ) G r−1 (y ) . (28)

Comparing the coefficients of terms x sin θ , y cos θ , sin θ and

cos θ between (27) and (28) leads to the constraints 

a r = 

c 1 
c 0 

b r = rb, 

(29)

for any r � p + q. 

Theorem 1 has been proven completely. 

Appendix B. Proof of Theorem 2 

The proof is via mathematical induction over degree n . 

• Initial step 

For n = 0 , 1 , 2 we have P 0 (x ) = 1 , P 1 (x ) = x, P 2 (x ) = x 2 − 1 

and 

G 0 (x ) = c 0 , G 1 (x ) = c 0 ax, G 2 (x ) = c 0 (ax ) 2 − c 0 b . 

The validity of Theorem 2 is evident. 
• Induction step 

Assuming Theorem 2 is valid up to certain degree n , we prove

it for n + 1 . We have to prove that 

G n +1 (x ) = c 0 

√ 

b n +1 P n +1 (ax/ 

√ 

b ) . (30)
The left-hand side of (30) can be expanded using the recur-

rence as 

G n +1 (x ) = axG n (x ) − bnG n −1 (x ) , (31)

which can be further rewritten, by means of the induction as-

sumption, into the form 

G n +1 (x ) = c 0 ax 
√ 

b n P n (ax/ 

√ 

b ) − c 0 bn 

√ 

b n −1 P n −1 (ax/ 

√ 

b ) 

= c 0 

√ 

b n +1 [(ax/ 

√ 

b ) P n (ax/ 

√ 

b ) − nP n −1 (ax/ 

√ 

b )] . 

(32)

On the other hand, the right-hand side of (30) can be expressed

by recurrence of P n +1 as 

c 0 

√ 

b n +1 P n +1 (ax/ 

√ 

b ) 

= c 0 

√ 

b n +1 [(ax/ 

√ 

b ) P n (ax/ 

√ 

b ) − nP n −1 (ax/ 

√ 

b )] , (33)

which is the same as (32) . The proof of Theorem 2 has been

completed. 
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