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Blind Deconvolution With Model Discrepancies
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Abstract— Blind deconvolution is a strongly ill-posed problem
comprising of simultaneous blur and image estimation. Recent
advances in prior modeling and/or inference methodology led to
methods that started to perform reasonably well in real cases.
However, as we show here, they tend to fail if the convolution
model is violated even in a small part of the image. Methods
based on variational Bayesian inference play a prominent role.
In this paper, we use this inference in combination with the
same prior for noise, image, and blur that belongs to the family
of independent non-identical Gaussian distributions, known as
the automatic relevance determination prior. We identify several
important properties of this prior useful in blind deconvolution,
namely, enforcing non-negativity of the blur kernel, favoring
sharp images over blurred ones, and most importantly, handling
non-Gaussian noise, which, as we demonstrate, is common in
real scenarios. The presented method handles discrepancies in
the convolution model, and thus extends applicability of blind
deconvolution to real scenarios, such as photos blurred by camera
motion and incorrect focus.

Index Terms— Blind deconvolution, variational bayes, auto-
matic relevance determination, gaussian scale mixture.

I. INTRODUCTION

NUMEROUS measuring processes in real world are mod-
eled by convolution. The linear operation of convolution

is characterized by a convolution (blur) kernel, which is
also called a point spread function (PSF), since the kernel
is equivalent to an image the device would acquire after
measuring an ideal point source (delta function). In devices
with classical optical systems, such as digital cameras, optical
microscopes or telescopes, image blur caused by camera
lenses or camera motion is modeled by convolution. Media
turbulence (e.g. atmosphere in the case of terrestrial tele-
scopes) generates blurring that is also modeled by convolution.
In atomic force microscopy or scanning tunneling microscopy,
resulting images are convolved with a PSF, whose shape
is related to the measuring tip shape. In medical imaging,
e.g. magnetic resonance perfusion, pharmacokinetic models
consist of convolution with an unknown arterial input function.
These are just a few examples of acquisition processes with a
convolution model. In many practical applications convolution
kernels are unknown. Then the problem of estimating latent

Manuscript received August 19, 2016; revised January 14, 2017 and
February 21, 2017; accepted February 21, 2017. Date of publication
March 1, 2017; date of current version April 1, 2017. This work was
supported by the Czech Science Foundation under Grant GA13-29225S and
Grant GA15-16928S. The associate editor coordinating the review of this
manuscript and approving it for publication was Dr. Javier Mateos.

The authors are with the Institute of Information Theory and Automation,
Czech Academy of Sciences, 182 08 Prague, Czech Republic (e-mail:
kotera@utia.cas.cz).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2017.2676981

data from blurred observations without any knowledge of
kernels is called blind deconvolution.

Due to widespread presence of convolution in images, blind
deconvolution is an active field of research in image processing
and computer vision. However, the convolution model may not
hold over the whole image. Various optical aberrations alter
images so that only the central part of images follows the
convolution model. Physical phenomena such as occlusion,
under and overexposure, violate the convolution model locally.
It is therefore important to have a methodology that handles
such discrepancies in the convolution model automatically.

Let us assume the standard image acquisition model, in
which a noisy observed image g is a result of convolution
of a latent image u and an unknown PSF h, plus corruption
by noise ε,

g = h ∗ u + ε. (1)

The goal of blind image deconvolution is to recover u solely
from the given blurry image g.

We follow the stochastic approach and all the variables
in consideration are 2D random fields characterized by cor-
responding probability distributions denoted as p(h), p(u),
and p(ε). The Bayesian paradigm dictates that the infer-
ence of u and h from the observed image g is done by
modeling the posterior probability distribution p(u, h|g) ∝
p(g|u, h)p(u)p(h). Estimating the pair (û, ĥ) is then accom-
plished by maximizing the posterior p(u, h|g), which is com-
monly referred to as maximum a posteriori (MAP) approach,
sometimes denoted MAPu,h to emphasize the simultaneous
estimation of image and blur. Levin et al. in [1] pointed out
that even for image priors p(u) that correctly capture natural-
image statistics (sparse distribution of gradients), MAPu,h

approach tends to fail by returning a trivial “no-blur” solution,
i.e., the estimated sharp image is equal to the input blurred
input g and the estimated blur is a delta function. However,
MAPu,h avoids the “no-blur” solution if we artificially sparsify
intermediate images by shock filtering, removing weak edges,
overestimating noise levels, etc., as widely used in [2]–[8].

From the Bayesian perspective, a more appropriate approach
to blur kernel estimation is by maximizing the poste-
rior marginalized w.r.t. the latent image u, i.e. p(h|g) =∫

p(u, h|g)du. This distribution can be expressed in closed
form only for simple image priors (e.g. Gaussian) and suitable
approximation is necessary in other cases. In the Varia-
tional Bayesian (VB) inference, we approximate the poste-
rior p(u, h|g) by a restricted parametrization in factorized
form and optimize its Kullback-Leibler divergence to the
correct solution. The optimization is tractable and the resulting
approximation provides an estimate of the sought marginal
distribution p(h|g).
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As soon as the blur h is estimated, the problem of recovering
u becomes much easier. It can be usually determined by
the very same model, only now we maximize the posterior
p(u|g, h), or outsourced to any of the multitude of available
non-blind deconvolution methods.

It is important to realize, that the error between the obser-
vation and the model, ε = g − h ∗ u, may not always be
of stochastic uncorrelated zero-mean Gaussian nature – the
true noise. In real-world cases, the observation error comes
from many sources, e.g. sensor saturation, dead pixels or
blur space-variance (objects moving in the scene) to name
a few. Vast majority of blind deconvolution methods do
not take any extra measures to handle model violation and
the fragile nature of blind blur estimation typically causes
complete failure when more than just a few pixels do not
fit the assumed model, which unfortunately happens all too
often. A non-identical Gaussian distribution with automatically
estimated precision, which is called the Automatic Relevance
Determination model (ARD) [9], is simple enough to be
computationally tractable in the VB inference and yet flexible
enough to handle model discrepancies far beyond the limited
scope of Gaussian noise.

In this work, we adopt the probabilistic model of
Tzikas et al. [10], which is based solely on VB approximation
of the posterior p(u, h) and which uses the same ARD model
for all the priors p(u), p(h), and importantly also for the
noise distribution p(ε). Our main focus is to analyze properties
of the VB-ARD model and to elaborate on details of its
implementation in real world scenarios, which was not directly
considered in the original work of Tzikas. Specifically, we
propose several extensions: include global precision for the
whole image in the noise distribution p(ε) to decouple the
Gaussian and non-Gaussian part of noise, different approxima-
tion of the blur covariance matrix, pyramid scheme for the blur
estimation, and handling convolution boundary conditions.
We demonstrate that VB-ARD with proposed extensions is
robust to outliers and in this respect outperforms by a wide
margin state-of-the-art methods.

The rest of the paper is organized as follows. Sec. II
overviews related work in blind deconvolution, ARD modeling
and masking. Sec. III discusses the importance of modeling
the data error by ARD. Sec. IV presents the VB algorithm with
ARD priors. Experimental validation of robustness to model
discrepancies is given in Sec. V and Sec. VI concludes this
work.

II. RELATED WORK

First blind deconvolution algorithms appeared in telecom-
munication and signal processing in early 80’s [11]. For a
long time, the general belief was that blind deconvolution
was not just impossible, but that it was hopelessly impossible.
Proposed algorithms usually worked only for special cases,
such as astronomical images with uniform (black) background,
and their performance depended on initial estimates of PSF’s;
see [12], [13]. Over the last decade, blind deconvolution
experiences a renaissance. The key idea behind the new algo-
rithms is to address the ill-posedness of blind deconvolution

by characterizing the prior p(u) using natural image statistics
and by a better choice of estimators. A major performance
leap was achieved in [14] and [15] by applying VB to
approximate the posterior p(u, h|g) by simpler distributions.
Other authors [6], [16]–[19] stick to the alternating MAPu,h

approach, yet their methods converge to a correct solution by
using appropriate ad hoc steps. It was advocated in [1] that
marginalizing the posterior with respect to the latent image u is
a proper estimator of the PSF h. The marginalized probability
p(h|g) can be expressed in a closed form only for simple
priors, otherwise approximation methods such as VB [20] or
the Laplace approximation [21] must be used. More recently
in [4], [22], and [23], even better results were achieved when
the model of natural image statistics was abandoned and priors
that force unnaturally sparse distributions were used instead.
Such priors belong to the category of strong Super-Gaussian
distributions [24]. A formal justification of unnaturally sparse
distributions was given in [25] together with a unifying
framework for the MAP and VB formulation. An overview
of state-of-the-art VB blind deconvolution methods can be
found in [26].

The ARD model was originally proposed for neural net-
works in [9]. Each input variable has its associated hyperpara-
meter that controls magnitudes of weights on connections out
of that input unit. The weights have then independent Gaussian
prior distributions with variance given by the corresponding
hyperparameter. This prior distribution is also known as the
scale mixture of Gaussian [27]. It is slightly less general than
strong Super-Gaussian distributions but its advantage is that
it is nicely tractable in the VB inference [22]. Distributions
of the ARD type have been successfully used in the context
of deconvolution as image or PSF priors [28]–[31], and less
frequently also as a noise model [10], [32], [33].

A method of masking was originally proposed for handling
convolution boundary conditions [34], however it can be
also used for model discrepancies in blind deconvolution as
discussed in [35]. A binary mask defines regions where con-
volution model holds. It allows for a very fast implementation
using Fourier transform, which renders the method applicable
to large scale problems. However, the main drawback of this
approach is that the areas with model discrepancies are not
estimated automatically and must determined in advance by
other means. Saturated pixels were considered in [36] using
the EM algorithm but only for a non-blind scenario. Explicitly
addressing the problem of outliers in blind deconvolution was
proposed in [2] using MAPu,h and automatically masking out
regions where the convolution model is violated. Handling
severe Gaussian noise was e.g. proposed in [5] by mitigating
noise via projections.

III. AUTOMATIC RELEVANCE DETERMINATION

In the discrete domain, convolution is expressed as matrix-
vector multiplication. Then according to (1) the data error εi

of the i -th pixel is

εi = gi − Hiu = gi − Ui h , i = 1, . . . , N , (2)

where H and U are convolution matrices performing con-
volution with the blur and latent image, respectively, and h
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and u are column vectors containing lexicographically ordered
elements of the corresponding 2D random fields. N is the
total number of pixels. Subscript i in vectors denotes the i -th
element and in matrices the i -th row. If the subscript is omitted
then we mean the whole vector (or matrix).

In the majority of blind deconvolution methods, the data
error term is assumed to be i.i.d. zero-mean Gaussian with
precision α, i.e.

p(ε|α) =
∏

i

N (εi |0, α−1) . (3)

Such assumption leads to the common �2 data term α
2

∑
i (gi −

Ui h)2. However as we demonstrate below, if this Gaussian-
error assumption is slightly violated (e.g. by pixel saturation,
model locally doesn’t hold, etc.), the �2 data term gives an
incorrect solution. It is therefore desirable to model both the
Gaussian and non-Gaussian part of the error, for which the
Student’s t-distribution is a good choice, as it is essentially
a scaled mixture of Gaussians and also plays nicely with the
VB framework. As demonstrated earlier for the autoregressive
model in [32], we propose using a Gaussian distribution with
pixel-dependent factors γi modulated by the overall noise
precision α. The error model of ε is then defined as

p(ε|α, γ ) =
∏

i

N
(
εi |0, (αγi )

−1
)

, (4)

to which we refer as the ARD model with common precision.
To draw a parallel to the classical formulation, the data term
in this case takes the form α

2

∑
i γi (gi − Ui h)2. The power

of this model lies in determining the precisions α and γi

automatically. This is covered in the following section, where
we formulate the VB inference. For the current discussion, it
suffices to state that we need priors also on γ . Let G denote
the standard Gamma distribution, defined as G(ξ |a, b) =
(1/�(a))baξa−1

i exp(−bξ). We define the γ prior as

p(γ |ν) =
∏

i

G(γi |ν, ν). (5)

Marginalizing p(ε|α, γ )p(γ |ν) over γ gives us the Student’s
t-distribution with zero mean, precision α and degrees of
freedom 2ν. From the above model it follows that the mean
of γi is equal to a/b = ν/ν = 1. If ν becomes large then
G(γi |ν, ν) tends to the delta distribution at 1 and the error
model will be just a Gaussian distribution. As ν decreases,
tails decay more slowly and γi will be allowed to adjust and
automatically suppress outliers violating the acquisition model.

The conventional ARD model used e.g. in [10] is

p∗(ε|γ ) =
∏

i

N
(
εi |0, γ −1

i

)
,

p∗(γi ) = G(γi |aγ , bγ ). (6)

The marginal distribution of this prior over γ is a Student’s
t-distribution with 2aγ degrees of freedom. It is possible to
choose the number of degrees of freedom as a priori known –
a common approach is to choose aγ , bγ as small as possible,
yielding Student’s t-prior with infinite variance. Estimation of
the hyperparameters aγ , bγ via a numerical MAP method has
been proposed in [10].

Fig. 1. Sharp (left) and intentionally blurred (right) image pair acquired for
accurate calculation of the blur PSF from the known patterns surrounding the
image.

Fig. 2. Convolution error distribution in the case of real motion blur (solid
green). It is much more heavy-tailed than the usually assumed Gaussian
(dotted red, α = 0.6 · 103), while the Student’s t-distribution (dashed blue,
2ν = 3.5, α = 1.2 · 105) is a perfect fit.

The ARD model is valuable in real scenarios even when
there are no visible local discrepancies of the convolutional
model. We conjecture that under real image acquisition con-
ditions there exists no convolution kernel h such that the
distribution of ε in (2) is strictly Gaussian. Different factors
inherently present in the acquisition process, such as lens
imperfections, camera sensor discretization and quantization,
contribute to the violation of the convolution model. To verify
our conjecture, we acquired several pairs of sharp–blurred
images (u, g) with intentional slight camera motion during
exposure. Except for this, we carefully avoided any other
kinds of error like pixel saturation or space-invariance of the
blur and worked strictly with raw data from the camera. For
each of these pairs we estimated the blur PSF h following
the procedure suggested in [37], which uses patterns printed
around the image and designed to make the blur identification
stable; see example in Fig. 1. For this data, we measured
the error of the convolution (2) and plotted its distribution
(negative log) in Fig. 2. The distribution is far from Gaussian,
as the maximum likelihood estimate of the Gaussian distrib-
ution clearly provides a very poor approximation, especially
in the tails. The Student’s t-distribution, on the other hand,
approximates the error distribution correctly and thus justifies
the ARD choice for p(ε). It is interesting to note, that
we performed a similar analysis on Levin’s dataset [1] and
obtained the same Student’s t-distribution of the convolution
error. Another justification of the ARD model provided in [10]
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Fig. 3. Relative data term value (negative log likelihood) for commonly used
Gaussian (top) and ARD (bottom) priors (low value means high probability
of the particular PSF) for image blurred with PSF of size 2.2. Different
data series correspond to different percentages of non-Gaussian error in the
input. The curves’ minima (indicated by dots) should correspond to the true
PSF (vertical line). The Gaussian prior favors larger and larger blurs as
the non-Gaussian error increases, while the ARD prior remains virtually
unaffected and correctly identifies the true PSF.

is that a small error in the blur estimation also produces heavy-
tailed p(ε).

Having demonstrated that the model error may have a
significantly non-Gaussian distribution, the logical next step
is to further analyze how this influences the solution accuracy.
We conducted an experiment to answer a question: Is the ubiq-
uitous standard-issue quadratic data term (Gaussian model)
the right choice in the presence of non-Gaussian input error?
As one expects, the answer is no. The problem is that in the
presence of non-Gaussian error, the quadratic data term attains
its minimum at a wrong point, therefore we get a solution,
however not the solution we sought.

The setup of our experiment was as follows. We took a sharp
image u and set a certain percentage of randomly selected
pixels to over-exposed values to represent non-Gaussian error.
We then blurred the saturated image with the “true” PSF ht,
added mild Gaussian noise and clipped the image intensities
to obtain the final image g. We then proceeded to measure
the goodness of several PSF candidates h by evaluating the
corresponding data terms (more precisely, − log(·) of the
assumed noise distribution) of the classical Gaussian model
(3) and the ARD model with common precision (4).

The whole experiment is graphically documented in two
plots in Fig. 3. The top plot corresponds to the Gaussian
model (quadratic data term) and the bottom plot corresponds
to the ARD model used by our method. Individual line series
represent different percentage of pixels intentionally corrupted

by non-Gaussian error. The y-axis shows the data-term value
for different blurs h as a function of their size (x-axis). The
minimum of each line is marked by a small dot. The actual
blur size of ht is depicted by a vertical line around x = 2.2.
For the Gaussian model (top plot), the minimum is reached
for the correct blur size as long as the error is Gaussian-only
(0% non-Gaussian). As the presence of non-Gaussian error
increases, the data-term minimum shifts further and further
away from the true point, effectively eliminating the chances
of successful blur estimation. The ARD model (bottom plot),
however, is unaffected by whatever amount of non-Gaussian
error is thrown at it. We can conclude that when non-Gaussian
input error can be expected the Gaussian presents a poor
choice for the likelihood, a choice which compromises the
chances of successful sharp image restoration.

IV. VARIATIONAL BAYESIAN INFERENCE

There are many examples of the VB inference applied to
blind deconvolution in the literature; see e.g. [10], [14], [15],
[20], [22]. They approximate the posterior p(u, h|g) by a
factorized distribution q(u, h) = q(u)q(h). We follow the
same path and use the ARD model with common precision
for the error ε and the conventional ARD model for image
and blur priors. The common precision in the image and blur
priors is in our opinion superfluous, since it lacks any relation
to real phenomena as opposed to the error ε where the common
precision models white Gaussian noise.

Let us first define the individual distributions. Substituting
from (2) into the ARD model in (4), the conditional probability
distribution of the blurred image is

p(g|u, h, α, γ ) = N (g|H u, (α�)−1)=
∏

i

N (gi |Hiu, (αγi )
−1)

∝
∏

i

(αγi )
1/2 exp

(
−αγi

2
(gi − Hiu)2

)
, (7)

where �−1 is a diagonal covariance matrix having the inverse
of the precision vector γ on the main diagonal, � = diag(γ ).
Let us recall that the precision γi is in general different for
every pixel and it is determined from the data, which allows
for automatic detection and rejection of outliers violating the
acquisition model.

The image prior p(u) is defined over image features (deriv-
atives) and takes the form

p(u|λ) = N (Du|0,
−1) =
∏

i

N (Di u|0, λ−1
i )

∝
∏

i

λ
1/2
i exp

(

−λi

2
(Di u)2

)

, (8)

where Di is the first order difference at the i -th pixel and 
 =
diag(λ). The operator D can be replaced by any sparsifying
image transform, like wavelet transform or other set of high-
pass filters. The prior ability to capture sparse features (edges)
comes from the automatically determined precisions λi ’s.

It was advocated in [1], [19], and [22] to use flat priors on
the blur and enforce only non-negativity, hi ≥ 0, and constant
energy,

∑
i |hi | = 1. This reasoning stems from the fact

that the blur size is by several orders of magnitudes smaller
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than the image size and therefore inferring the blur from the
posterior is driven primarily by the likelihood function (7) and
less by the prior p(h). However, if the image estimation u is
inaccurate, which is typically the case in the initial stages of
any blind deconvolution algorithm, then a more informative
prior p(h) is likely to help in avoiding local maxima and/or
speeding up the convergence. To keep the approach coherent,
we apply the ARD model on blur intensities

p(h|β) = N (h|0, B−1) =
∏

i

N (hi |0, β−1
i )

∝
∏

i

β
1/2
i exp

(

−βi

2
h2

i

)

, (9)

where B = diag(β).
The ARD models in (7), (8), and (9) are conditioned to

unknown precision parameters (α, γi , λi , βi ). The conjugate
distributions of precisions are Gamma distributions and thus
for image and blur precisions we have

p(λi ) = G(λi |aλ, bλ),

p(βi ) = G(βi |aβ, bβ) , (10)

and for the error precisions according to (4) and (5) we have

p(α) = G(α|aα, bα),

p(γi |ν) = G(γi |ν, ν) ,

p(ν) = G(ν|aν, bν). (11)

The hyperparameters a(·) and b(·) are user-defined constants.
Let Z = {u, h, α, ν, {γi }, {λi }, {βi }} denote all the unknown

variables and Zk its particular member indexed by k. Using
the above defined distributions, the posterior p(Z|g) is pro-
portional to

p(g|u, h, α, γ )p(α)p(γ |ν)p(ν)p(u|λ)p(λ)p(h|β)p(β) .

The VB inference [38] approximates the posterior p(Z|g) by
the factorized distribution q(Z),

p(Z|g) ≈ q(Z) = q(u)q(h)q(α)q(ν)q(γ )q(λ)q(β). (12)

This is done by minimizing the Kullback-Leibler divergence,
which provides a solution for individual factors

log q(Zk) ∝ El �=k
[
log p(Z|g)

]
, (13)

where El �=k denotes expectation with respect to all factors
q(Zl) except q(Zk). Formula (13) gives implicit solution,
because each factor q(Zk) depends on moments of other
factors. We must therefore resort to an iterative procedure and
update the factors q in a loop.

A detailed derivation of update equations can be found
in [10] as the model is similar to ours. The interested reader is
also referred to [15] for better understanding of the derivation.
In the following subsections we therefore only state the update
equations yet analyze their properties in detail.

A. Likelihood

The important feature is automatic estimation of the non-
Gaussian part of the error modeled by precision γ . Utilizing
the combination of VB inference and ARD prior, we are able
to detect and effectively reject outliers from the estimation and
achieve unprecedented robustness of the blur estimation, much
needed in practical applications.

Using (13), q(γ ) becomes a Gamma distribution with a
mean value

γ i = 1 + 2 ν

α Eu,h
[
(gi − Hiu)2

] + 2 ν
, (14)

where (·) denotes a mean value. Relating the inference to the
classical minimization of energy function − log p(u, h|g), the
precision γi corresponds to the weight of the i -th pixel in
data fidelity term. The above equation shows that this weight
is inversely proportional to the (expected) reconstruction error
at that pixel (up to the relaxation by ν/α) and it is updated
during iterations, as the image and blur estimates change. This
technique is similar to the method of iteratively reweighted
least squares (IRLS), where the quadratic data terms are
reweighted according to the error at the particular data point
to achieve greater robustness to outliers, but here it arises
naturally as part of the VB framework. We demonstrate how
the method behaves with respect to outliers in the experimental
section.

According to (14), the mean value of γ depends, apart from
u and h, only on the mean values α and ν. Using again the
VB inference formula (13), one can deduce that both q(α) and
q(ν) are Gamma distributions with mean values

α = N + 2aα
∑N

i=1 γi Eu,h
[
(gi − Hiu)2

] + 2bα

(15)

and

ν = N + 2aν

2
∑N

i=1(γi − Eγi

[
log(γi )

] − 1) + 2bν

. (16)

The update equation of ν requires Stirling’s approximation; see
e.g. [32] for detailed derivation. Note that the above update
equations (14), (15) and (16) are easy to compute.

Precision α is expected to be inversely proportional to the
level of Gaussian noise in the input image. It is therefore
interesting to observe how α behaves during iterations. After
the initialization, when the reconstruction error is high, the
weight α is correspondingly low and thus the role of priors
(regularization) is increased in the early stages of estimation.
During subsequent iterations, as the estimation improves,
α increases and the effect of priors is attenuated. It has
long been observed that this adjustment of data-term weight
during iterations is highly beneficial, if not necessary, for the
success of blind blur estimation, otherwise the optimization
tends to get stuck in a local minimum. Many state-of-the-
art blind deconvolution methods therefore perform some kind
of heuristic adjustment of the relative data-term/regularizer
weight [7], often of the form of geometric progression αk+1 =
rαk , where k denotes k-th iteration. The drawback of this
approach is that the optimal constant r must be determined
by trial and error and, more importantly, the progression must
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Fig. 4. Estimated noise precision as a function of iterations: The Variational
Bayesian algorithm updates the noise precision in every iteration. The curves
depict its typical development for different image SNRs; 50dB through 10dB.
The diamond markers show the fixed update using geometric progression
αk = 1.5αk−1.

stop when the correct α (corresponding to the true noise level)
is reached, which is not determined automatically but must be
specified by the user. The VB framework has an indisputable
advantage over more straightforward MAP methods – not only
does it give us the optimal update equation for the data-
term precision, it also provides automatic saturation when
the correct noise level is reached, as we can see in Fig. 4.
During the early iterations the precision sharply increases and
then levels out at the correct value. For comparison we also
show the fixed geometric progression for r = 1.5 (diamond
markers).

B. Image Prior

The factors associated with the image are q(u) and q(λ).
Applying (13), we get (up to a constant)

log q(u)

= −Eh,α,γ,λ

[
α(g−H u)T �(g−H u)+uT DT 
Du

]
, (17)

where the terms independent of u are omitted. The distribution
q(u) is a normal distribution. The mean u and covariance
cov(u) are obtained by taking the first and second order
derivatives of log(q(u)), respectively, and solving for zero.
The update equation for the mean is a linear system

(
Eh

[
H T �H

]
+ α−1 DT 
D

)
u = H

T
�g (18)

and for the covariance we get

cov u =
(
αEh

[
H T �H

]
+ DT 
D

)−1
. (19)

The mean pixel precisions λi form the diagonal matrix 
.
They are calculated from q(λ), which is a Gamma distribution
with the mean

λi = 1 + 2aλ

Eu
[
(Di u)2

] + 2bλ
. (20)

The parameter bλ plays the role of relaxation, as it prevents
division by zero in the case Di u = 0.

Fig. 5. Comparison of priors: The graph shows − log p(u) of priors as a
function of amount of blurring. The �1 prior (dotted red line) decreases and so
does the log prior (dash-dotted yellow line), which is the marginalized ARD
prior. On the other hand, the ARD prior (solid purple line) with precisions
estimated from the sharp image steeply increases and flattens out for large

blurs. The normalized prior �1/�2 (dashed blue line) increases more slowly
but steadily. The value of priors are normalized to give 1 on sharp images
(1 blur size). The curves show mean values calculated on various images
(photos of nature, human faces, buildings).

It was demonstrated in [1] that commonly used �p (p < 1)
priors with |Di u|p in the exponent, counter-intuitively favor
blurred images over the sharp ones and therefore cannot
avoid the “no-blur” solution by itself. The sparsity of image
derivatives decreases with increasing blur but the variance
of image derivatives decreases as well. The second effect
is stronger in natural images and therefore the total prior
probability increases with blur. We want to analyze if the ARD
image prior p(u|λ) in (8) behaves better in this respect and
how it compares with the unconditional (marginalized) ver-
sion p(u). Following the analysis of Gaussian scale mixtures
in [27] and [29], the unconditional prior p(u) is obtained by
marginalizing over λ, which in the limit for aλ → 0 yields

p(u) =
∫

p(u, λ)dλ =
∫

p(u|λ)p(λ)dλ

∝
∏

i

exp

(

−1

2
log

(
(Di u)2 + b

))

. (21)

The marginalized ARD image prior is of the exponential form
with exponent log

(
(Di u)2 + const

)
. It is thus equivalent to

the log prior proposed in [22]. It is a non-convex prior that
aggressively favors sparsity of the natural image statistics.
In this sense it resembles the �p priors with p → 0.

We calculated − log p(u) on natural images (photos of
nature, human faces, buildings) blurred with Gaussian blur of
varying size. We also tried motion and uniform blur and the
behavior was identical. For each image we have normalized
− log p(u) calculated on differently blurred versions of the
image so the original sharp image (no blur) gives 1. The
normalized − log p(u) of different priors as a function of
blur size and averaged over all images is plotted in Fig. 5.
As expected, the exponent of the �1 prior decreases as the blur
increases, i.e. this prior favors blurred images over sharp ones.
The log prior, which is the marginalized ARD prior, decreases
less but still favors blurred images. In the VB framework,
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however, we do not work with the marginalized ARD prior
and instead iteratively estimate the prior precisions λi ’s from
the current estimate of u using the update formula (20). Let us
assume an ideal situation in which the precisions are estimated
from the sharp image, then the ARD prior shows correct
behavior similarly to the normalized prior �1/�2 [39] that
compensates for the effect of decreasing image variance. This
ideal case is not achievable in practice, since we do not have
a correct estimate of the sharp image u at the beginning, but
it can be regarded as an upper bound. As the VB inference
makes the approximation of the posterior more accurate with
every iteration, we approach this upper bound.

C. Blur Prior

As stated earlier, we use the same ARD model also for
the blur prior (9). Analogously to the derivation of the image
distribution q(u) in (17), the form of blur factor q(h) is a
Gaussian distribution given by

log q(h) = −Eu,α,γ,β

[
α(g − Uh)T �(g − Uh) + hT Bh

]
.

Then the mean h is the solution of the linear system
(
Eu

[
U T �U

]
+ α−1 B

)
h = U

T
�g (22)

and the covariance is

cov h =
(
αEu

[
U T �U

]
+ B

)−1
. (23)

The distribution q(β) of the blur precision is again a Gamma
distribution and for the mean values of βi we get analogously
to (20)

β i = 1 + 2aβ

Eh
[
h2

i

] + 2bβ
. (24)

State-of-the-art blind deconvolution methods often esti-
mate h while enforcing positivity and constant energy, i.e.
hi ≥ 0 and

∑
i hi = 1. Enforcing such constraints in our

case means to solve the least squares objective associated
with (22) under these constraints. Since the constraints form a
convex set, we can use, e.g., the alternating direction method
of multipliers (ADMM) [40], that solves convex optimization
problems by breaking them into smaller pieces, each of which
is then easier to handle. However, applying such constraints
would take us outside the VB framework, as q(h) is then no
longer a Gaussian distribution and cov h is intractable. To test
the influence of the constraints, we have used the proximal
algorithm to solve the constrained (22), albeit violating the
VB framework, but we have noticed no improvement.

One explanation is that a non-negative solution is a local
extreme of VB approximation which attracts the optimization
when the initial estimate is also non-negative. Let us assume
that the PSF is initialized with non-negative values, which is
always true in practice as PSFs are typically initialized with
delta functions. If during VB iterations, any hi approaches
zero then the corresponding precision calculated in (24) grows,
reaching 1/(2b) if a → 0. If the hyperparameters are suffi-
ciently small (which is our case), this correspond to a very

tight distribution q(hi ) that traps hi at zero and prevents
further changes.

The covariance cov h has an additional positive influence on
the behavior of the PSF precision β. The denominator of (24)

expands to h
2
i + cov hi + 2b. From (23) it follows that cov hi

is inversely proportional to α + βi . We can ignore γ , since it
is in average around 1 anyway as it captures only local non-
Gaussian errors. We have seen in Fig. 4 that α starts small,
which implies larger cov hi and thus small PSF precision βi .
Small βi loosely constrains the estimation of the PSF h during
initial iterations. As α increases later on, cov hi decreases and
βi increases, which helps to fix the estimated values of h.

D. Algorithm

All equations in the VB inference are relatively easy to
solve, except for the calculation of covariance matrices cov u
in (19) and cov h in (23), which involves inverting precision
(concentration) matrices. Both matrices are large and their
inversion is not tractable since they are a combination of
convolution and diagonal matrices. The covariance is impor-
tant in the evaluation of expectation terms E[·]. To tackle
this problem, we approximate precision matrices by diagonal
ones. This is different from Tzikas’s work [10], where cov h
is approximated by a convolution matrix. The experimental
section demonstrates that the diagonal approximation performs
better.

We show the approximation procedure on cov h and calcu-
lation of u. The approximation of cov u and calculation of h
is similar. First we approximate the covariance matrix cov h
by inverting only the main diagonal of the precision matrix,
i.e., (diag(αEu

[
U T �U

]
+ B))−1. Here we use the syntax of

popular numerical computing tools such as MATLAB, Python
or R, and assume that the operator diag(·) if applied to a matrix
returns its main diagonal. The covariance cov h is required in
the evaluation of Eh

[
H T �H

]
in (18). After some algebraic

manipulation, we conclude that Eh

[
H T �H

]
= H

T
�H +Ch ,

where Ch is a diagonal matrix constructed by convolving γ
with cov h. We can interpret the main diagonals of cov h and
� as 2D images and then by slightly abusing the notation
write Ch = diag

(
γ ∗ (diag(αU T �U + Cu + B))−1

)
, where

the outer operator diag(·) returns a diagonal matrix with pixels
of the convolution result arranged on the main diagonal.

The blind deconvolution algorithm is summarized in
Algorithm 1.

The most time consuming steps are 3 and 5, which are
large linear systems. Fast inversion is not possible because
the matrices are composed of convolution and diagonal ones.
We thus use conjugate gradients to solve these systems.
Steps 10, 11 and 12 update precisions and they are calculated
pixel-wise. Since the covariances of u and h are approximated
by diagonal matrices, the expectation terms in these update
steps are easy to evaluate and likewise in steps 7 and 8.

There are two important implementation details. For the
method to be applicable to large blurs (20 pixels wide or
more), we must use a pyramid scheme. The above algo-
rithm first runs on a largely downsampled blurred image g.



2540 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 5, MAY 2017

Algorithm 1

The estimated blur h is then upsampled and used as an initial-
ization in the next run of the algorithm with the corresponding
scale of g. This is repeated until the original scale of g is
reached. We tested various configurations and concluded that
5 scales with a scale factor of 1.5 is sufficient, which was then
used in all our experiments. Passing other variables (e.g. preci-
sions) between scales except h proved superfluous. The second
point is to handle convolution boundary conditions, which is
necessary in the case of real images. We solve it naturally by
forcing precisions γi ’s that lie along image boundaries to zero.
This way the algorithm assumes maximal model discrepancy
and completely ignores the boundary regions.

The hyperparameters a(·) and b(·) in (10) and (11) are the
only user-defined parameters. Checking update equations (15)
and (16) reveals that (aα, bα) and (aν, bν) have a negligible
effect since both α and ν are scalars and data terms in
the update equations are dominant. In all our experiments
we set them thus to zero. On the other hand, (aλ, bλ) and
(aβ, bβ) are important since both λ and β are calculated
for every pixel and their update equations (20) and (24) are
influenced by the hyperparameters. We have searched for the
best parameters and determined that both aλ and aβ can be set
to zero but bλ and bβ must be in the interval (10−9, 10−6),
otherwise the algorithm is unstable. In the case of the noise
model with conventional ARD, α and ν (and corresponding
hyperparameters aα, bα, aν , bν) are not present. Instead, we
have new hyperparameters aγ , bγ , which we set in all our
experiments to 0 and 10−4, respectively. This corresponds to
fixing the number of degrees of freedom to zero.

V. EXPERIMENTS

We evaluated our method on both synthetically blurred
images as well as real images with unknown blur and com-
pared its performance with other state-of-the-art methods

TABLE I

LIST OF METHODS INCLUDED IN THE EXPERIMENTAL EVALUATION

Fig. 6. Original images and PSFs used in our synthetic experiments.

Fig. 7. Sample of input images in our synthetic tests. Left: many small
regions with non-Gaussian error (7%), middle: one large region with non-
Gaussian error (2.2%), right: combination of non-Gaussian error (5%) and
Gaussian noise (SNR=25dB). The ground-truth PSF is in the top-right corner.
Results of PSF estimation for these inputs are in Fig. 9 and the corresponding
precision γi s is in Fig. 10.

(listed in Tab. I) based on similar principle or targeting the
same scenario. The presented experiments test the ability to
blindly identify regions violating the assumed convolution
model in input images and to exclude such regions from blur
estimation without affecting its accuracy. Our method is rep-
resented in two flavors differing in the error model: Ours-αγ
with common precision α and estimated degrees of freedom ν
in (4), and Ours-γ with conventional ARD and fixed degrees of
freedom aγ and bγ in (6). The reason for this is to investigate
if the more complex model with estimated degrees of freedom
is beneficial in practice and in which scenarios. All methods
marked in Tab. I as “our implementation” were run with the
same pyramid scheme and parameter settings to make a fairer
comparison. The method of Pan16 resembles objective wise
our method, however uses an entirely different principle not
based on VB. Xu10 is a generally robust deconvolution method
without extra handling of model discrepancies. Babacan12
is similarly robust deconvolution method but based on VB.
Zhong13 is a method which specifically handles Gaussian
noise in the input.

In the first of the synthetic experiments we take three images
and eight PSFs (see Fig. 6), and blur them to get 24 inputs in



KOTERA et al.: BLIND DECONVOLUTION WITH MODEL DISCREPANCIES 2541

Fig. 8. Restored image PSNR as a function of degree of model violation (higher values mean better performance). Left: increasing number of small
model-violating regions, right: one increasingly large region. Dashed line shows blurred image PSNR for reference.

Fig. 9. Example of estimated PSFs in our synthetic experiment, the
ground-truth is in Fig.7 top-right. Top row: no intentional input error, second
row: many small error regions as in Fig. 7-left, third row: one large error region
as in Fig. 7-middle, bottom row: mixture of non-Gaussian and Gaussian noise
as in Fig. 7-right.

total. Then we intentionally set random parts of the blurred
images to 0 or 1, which represents a non-Gaussian error
simulating under-exposed or over-exposed regions (remark:
affected pixel i in image g was altered according to g(i) =
round(1 − g(i)) to achieve an error of at least .5 and avoid
scenarios in which we saturate pixels that are already white or
vice versa). To test the influence of erroneous region geometry
we corrupted the input in two different ways. In one case
we altered an increasing number of small 3x3 pixel squares
randomly scattered in the image (Fig 7-left), simulating several
small saturated regions in a scene, and in the other case we
altered one large blob of pixels (Fig. 7-middle), simulating
e.g. an object occluding otherwise a uniformly blurred scene.
Then we proceeded with the blur estimation using all the tested
methods but applied the same non-blind deconvolution (�1-TV
with boundary handling) to make the results directly com-
parable. Deconvolution was performed on the blurred image

Fig. 10. Estimated γ (precision of the non-Gaussian part of reconstruction
error) for the inputs in Fig. 7. Dark (light) pixels mean low (high) precision,
i.e. model fidelity.

without the intentional corruption (otherwise the input error
would constitute most of the restoration error). We repeated
this process for many degrees of corruption (percentage of
altered pixels), several realizations of random placement of
altered pixels and averaged the image estimation accuracy
(PSNR) as a function of percentage of damaged pixels. The
results of this experiment are summarized in Fig. 8.

In the ideal case, if the model-violating regions are identified
exactly, the restored image accuracy should remain constant
as long as the rest of the image constitutes enough data for
accurate blur estimation. After this point, the accuracy can be
expected to drop rapidly. Ours-αγ shows certain robustness to
input error but its accuracy quickly drops. Ours-γ exhibits the
best performance – it retains high PSNR even if a significant
portion of the input is corrupted. A good characteristic is that
the outlier rejection process works in both scenarios, scattered
and compact error regions, as opposed to Pan16. When the
error is scattered in the whole area of the input (Fig. 7-middle
and Fig. 8-left), Pan16 performance is significantly worse than
most of the contenders, but when the error is concentrated
(Fig. 7-middle and Fig. 8-right), it performs almost on par
with Ours-γ . Tzikas09 shows similar robustness as Ours-γ
but performs overall worse, except for too severe input error
when all methods start to fail. Babacan12 and Xu10, with no
extra outlier handling other than being generally robust, fail
as soon as the non-Gaussian error becomes non-negligible.

A qualitative demonstration of the PSF estimation is
in Fig. 9, which depicts results for the particular inputs
in Fig. 7. The top row corresponds to unaltered ideal input,
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Fig. 11. Estimated blur PSNR as a function of Gaussian noise in input images (SNR on x-axis) for three different levels of non-Gaussian noise (0%, 5%
and 10% of pixels randomly saturated).

Fig. 12. Real motion blur, each row represents a new experiment (different photo with different blur). Estimated PSFs are superimposed in the top-right
corner. Best viewed on computer screen.

second through fourth row correspond to the three input
images in Fig. 7, respectively. All methods perform reason-
ably well on the error-free input (top row), but with added
error some of the methods get significantly worse or fail
completely. Pan16 is not sufficiently stable and fails when
the erroneous pixels are scattered. The method of Xu10 does
not actively seek outliers and as a result fails when the error
is non-negligible. Our methods (Ours-γ and Ours-αγ ), and
moderately also Tzikas09, produce results comparable to the
ideal case, unless the overall input error is too severe (bottom
row). The good performance is due to the automatic estimation
of the noise precision γ as shown in Fig. 10 for the same
input images. The dot pattern on the left image is recognized
almost flawlessly. The large disk in the middle image has zeros
mainly around its edges. This is because the homogeneous
inside of the disk can be explained by any PSF, including the
current estimate, and the method thus considers this area as
“in accordance with the convolution model”. The black frame
are enforced zeros (meaning absolute uncertainty) to suppress
convolution boundary artifacts.

The difference in performance between Ours-γ and
Ours-αγ is worth attention. Results in Figs. 8 and 9 imply that
the extra complexity provided by Ours-αγ is not worth it when
the non-Gaussian error is too strong. We conjecture that due
to the strong outliers the estimation of the degrees of freedom
does not provide meaningful results. The noise distribution
with degrees of freedom fixed to zero (albeit improper) is more
suitable since it does not penalize strong outliers.

In the second synthetic experiment, we investigated the
effect of Gaussian noise in the input on the accuracy of blur

estimation. Fig. 11 shows the results of PSF estimation accu-
racy as a function of the Gaussian noise level for increasing
levels of non-Gaussian error (plots left to right). For low levels
of non-Gaussian error, Ours-αγ method performs best and is
superseded by Ours-γ only when the SNR gets too low. This
can be explained by the estimation of the degrees of freedom,
value of which is relatively high (around 2). The prior model
thus approaches a Gaussian distribution, which is the correct
model for this experiment. When the non-Gaussian corruption
gets too severe, Ours-γ takes the lead. The estimated value
of the degrees of freedom decreases, however, not sufficiently
(to 0.6), the tails are not heavy enough to accommodate for
the severe outliers and the model with fixed zero degrees
of freedom performs better. Tzikas09 is similarly stable as
Ours-γ but with the performance falling by 1dB in average.
Pan16 is slightly less robust to increasing Gaussian noise with
zero non-Gaussian noise, and as in the previous experiment,
when non-Gaussian noise grows, it starts to fail quickly.
Zhong13 shows stable (though somewhat subpar) performance
for zero non-Gaussian error (left plot) and even outperforms
other methods for exceedingly noisy images. However, it
breaks instantly with any presence of non-Gaussian error.

Besides synthetic experiments, we also tested our method
on a number of images captured in real world conditions with
intentional blur caused either by camera motion or incorrect
focus. In the synthetic tests, the convolutional model is vio-
lated either completely or not at all, which is fairly well distin-
guishable even in the blind scenario and the identified outliers
can be rejected. In real cases, however, the convolutional
model never really holds completely, instead the error changes
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Fig. 13. Real out-of-focus blur, each row represents a new experiment (different photo with different blur). Estimated PSFs superimposed in the top-right
corner. Best viewed on computer screen.

more or less smoothly from pixel to pixel, so there is no
clear distinction between in- and outliers. We demonstrate the
results in Fig. 12 and 13 for camera motion and out-of-focus
blur, respectively. We first applied all compared blind methods
to each image and kept the estimated PSFs. To make the
results of the sharp image estimation comparable, we then used
the same non-blind method, which was our VB-ARD with
the estimated PSFs (i.e. PSF estimation steps 5 and 6 in the
algorithm were omitted); all other variables, such as α and γ ,
were inferred from the data to account for noise, saturations, or
other model violations. For these experiments we present only
qualitative comparison between our method and several others.
We can see that especially Ours-γ method performs well in
both motion blur and incorrect focus scenario – the ringing is
less prominent while the level of detail and the quality of the
PSF estimation is better than in the case of other methods.

More results are provided in the supplementary material.
The MATLAB code of the proposed blind deconvolution
algorithm is available on our website.

VI. CONCLUSIONS

We have presented a blind deconvolution algorithm using
the Variational Bayesian approximation with the Automatic
Relevance Determination model on likelihood and image and
blur priors. The derived coherent algorithm consists of two
linear systems of equations that can be efficiently solved
with the Conjugate Gradients method, and three simple pixel-
wise update equations for noise, image and blur precisions.
We have shown that the Automatic Relevance Determination
model correctly favors sharp images over the blurred ones,
enforces PSF non-negativity and most importantly adjusts for
convolution model discrepancies. The experimental section has
demonstrated that allowing variable data precision is essential
for dealing with outliers such as saturated regions, occlusions
or convolution boundary effects. Estimation of the degrees
of freedom of the noise prior is beneficial only for Gaussian
noise. For non-Gaussian noise distributions, it is more effective
to fix the number of degrees of freedom to zero.
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