
JPEG Compression Model
in Copy-move Forgery Detection

Adam Novozámský and Michal Šorel
The Czech Academy of Sciences, Institute of Information Theory and Automation

Pod Vodárenskou věžı́ 4, 182 08, Prague 8, Czechia
e-mail: novozamsky@utia.cas.cz, sorel@utia.cas.cz

Abstract—The integrity of visual data is important for the
credibility of news media and especially when used as an evidence
in court or during criminal investigation. The common way to
manipulate image content is copying an object and pasting in
another location of the same image. In this paper, we describe
a new idea for the detection of this type of forgery in JPEG
images, where the compression significantly degrades detection
by popular algorithms. We derive a JPEG-based constraint
that any pair of patches must satisfy to be considered a valid
candidate for tampered area. We propose also efficient algorithm
to verify the constraint that can be integrated into most existing
methods. Experiments show significant improvement of detection,
especially for difficult cases, such as small objects, objects covered
by textureless areas and repeated patterns.

Index Terms—Image forensics, Copy-move forgery detection,
Image tampering, JPEG, Quantization constraint set.

I. INTRODUCTION

One of the most common image manipulations is the copy-
move forgery, based on copying an object and pasting in
another location of the same image. Transition between the
inserted object and original contents is often masked by
various retouching tools. Copying from the same image keeps
statistical properties of the image such as the noise, contrast
and color, which makes detection more difficult. On the other
hand, reusing the same object in one image can be detected
and is what is looked for by the majority of copy-move forgery
detection (CMFD) techniques.

While the copy-move forgery is relatively easy to detect in
images stored in lossless formats, such as PNG, GIF, and TIFF,
detection in JPEG images is complicated by the fact that the
same pixels, after moving to a different position and storing in
the JPEG format, have different values. For this reason, when
looking for copy-move candidates, existing methods usually
consider all patches that are in a sense similar. Irrespective
of how the similarity is measured, the problem arises that
the criterion used is always a compromise between detecting
all true candidates and getting a reasonable number of false
positives, i. e. patches that actually were not copied but must
be considered valid candidates.

In this article, we analyze the problem whether it is pos-
sible to reduce the number of false positives using the exact
mechanism of JPEG compression. In other words, whether it
is possible to say something about how originally identical
patches can differ under compression.

Preprocessing

Feature
Extraction

Block
extraction

Detecting
keypoints

Matching Postprocessing

Filtering

Our
contribution:

JPEG
copy-move
constraint

Fig. 1. Typical processing pipeline of copy-move forgery detection algori-
thms. The main contribution of this paper is filtering using the JPEG copy-
move constraint, which increases sensitivity and reduces significantly the
number of false matches.

II. RELATED WORK

Copy-move forgery detection was first proposed by Fridrich
et al. [1]. The number of papers has been increasing every year
and CMFD has become one of the most active topics in image
forensics. In this section, we give a short overview of main
approaches, for a more complete treatment, we refer readers
to [2], [3] comparing many popular algorithms.

The typical processing pipeline used by most CMFD me-
thods is shown in Fig. 1 (derived from Fig. 2 in [2]). The
preprocessing phase includes decompression of image files if
stored in a compressed format and for methods working on
grayscale images also conversion to grayscale.

Based on the second step (the second block from left
in Fig. 1), CMFD methods can be divided into two large
groups, block-based and keypoint-based, depending on the
mechanism used to find the candidates for matching. The
vast majority of them is in the first group, including [1]. In
this approach, algorithms look for similar block obtained by
partitioning the image into overlapping blocks. The reason,
why it is usually impractical to look for exactly the same
values (exact match in [1]) is that values can be damaged
by JPEG compression or additional retouching operations.
Methods either work directly with pixels or compute features
transforming blocks into a representation of lower-dimension
or having convenient invariant properties. For example, [1]
used weighted DCT transform coefficients and Bashar et al.
[4] Daubechies four tap wavelet transform.

An important reason for using features is to achieve in-
variance with respect to some transforms. While the basic
copy-move detection assumes that object is unchanged and
in the same orientation, in practice it is possible that before
being pasted, it was rotated, scaled or even blurred. To ensure
the invariance to rotation, Wang et al. [5] used a circle
block model, Bayram et al. [6] added a scale invariance by978-1-5386-1842-4/17/$31.00 c© 2017 IEEE

features obtained from the Fourier-Mellin transform. Several
authors worked with moment invariants. Mahdian and Saic [7]
suggested 24 blur invariants, Ryu et al. [8] used the Zernike
moments.

In the matching phase (third phase in Fig. 1), algorithms
take the blocks or their features stored in a feature matrix
and look for similar entries. Since considering all pairs of
blocks would be extremely time-consuming, methods save
time in various ways. One possibility is decreasing the number
of features, which reduces the dimension of space we are
searching. Popescu et al. [9] reduced the feature matching
space by the PCA applied on blocks. Bashar et al. [4] modified
their algorithm to use the kernel PCA. Huang et al. [10]
simply shortened the feature vector to its first quarter. A
complementary way to reduce computational complexity is
using an efficient data structure for the approximate nearest-
neighbor search. In the original paper [1], similar blocks were
found by lexicographically sorting the rows in the feature
matrix and comparing the adjacent rows, which was used
by many followers. A more reliable efficient data structure
are kd-trees, mostly used in the best-bin-first variant [11],
which is applicable in both block and keypoint-based algori-
thms. Comparison [2] uses multiple randomized kd-trees [12].
Another fast iterative randomized technique for computing the
approximate nearest-neighbor search can be found in [13].

The purpose of the filtering step (4th in Fig. 1) is to remove
false matches that inevitably arise in all methods. A common
procedure is to remove spatially close matches that appear
because of correlation between spatially close regions. Another
heuristic is skipping low-variance areas, such as sky, building
facades, water surfaces etc. The main contribution of this paper
belongs to this phase, filtering pairs of regions based on the
compatibility with the JPEG compression process (JPEG copy-
move constraint).

Finally, a postprocessing step verifies the spatial coherence
of shift vectors (or in general transform parameters) obtained
from the candidates generated by matching and filtering, as a
rule by a combination of ideas known in image processing as
the Hough transform [14] and RANSAC [15]. The seminal
paper [1] simply considered only pairs with a shift vector
identical to a sufficient number of other pairs. Postprocessing
can also eliminate objects smaller than a threshold.

The block-based techniques are time-consuming due to the
large number of compared blocks and lose accuracy when
the tampered areas are blurred, scaled, rotated or otherwise
geometrically transformed. To address these problems, some
authors, instead of working with blocks, applied keypoint-
based techniques used in computer vision, where the task is to
find point correspondence between two images of one object
or the same scene. Huang et al. [16] came up with a CMFD
method based on the SIFT features [17], Bo et al. [18] used
SURF [19]. In general, the keypoint-based techniques are fast
and can be easily used when the patches were deformed by a
geometric transform. On the down-side, they do not work well
for small objects and are less stable than block-based methods.
Especially, since the keypoints are usually detected in regions

with high entropy, these methods lose accuracy in the areas
retouched by an indistinct texture [20].

III. JPEG COMPRESSION

JPEG is undoubtedly the most widespread format for ef-
ficient storage of image data [21]. JPEG uses a lossy type
of compression based on the quantization of discrete cosine
transform (DCT) coefficients, where the two-dimensional DCT
is applied to small blocks of usually 8 × 8 pixels. In this
section we describe this process in detail and introduce the
mathematical notation needed later.

For grayscale images, the lossy part of JPEG compression
can be expressed as

y = [QCx] , (1)

where x is a vectorized original image, y the vector of integer
coefficients stored in the JPEG file, Q and C are matrices,
and the square brackets denote the operator of rounding to the
nearest integer [22], [23]. C is the block-diagonal matrix of
the block DCT made up of the square matrices of the two-
dimensional DCT (64× 64 matrix for each 8× 8 block). C is
orthogonal, because all the DCT sub-matrices are orthogonal.
Q is a diagonal matrix corresponding to the element-wise
division by the coefficients from the quantization table stored
in each JPEG file replicated for each block along diagonal (64
values for each 8×8 block). We will denote the vector of these
coefficients as q, i. e. Q = diag(1/q). For color images, the
image is first transformed into Y ′CBCR space and individual
channels are stored separately. The brightness Y ’ is treated
as described above but the chrominance channels are often
stored at smaller resolution, which complicates the degradation
model. Formally,

y = [QCDx] , (2)

where D is a down-sampling matrix. As a rule, D returns
the average value for every (non-overlapping) square of 2× 2
pixels but other dimensions of down-sampling windows, such
as 2 × 1 or 1 × 2 are possible. The grayscale case (1) can
be considered a special case of (2) with D = I , i. e. identity.
JPEG decompression can be written as

x̃ =
1

k
DTCTQ−1y =

1

k
DTCT diag(q)y, (3)

where k = 1/4 for the 2×2 down-sampling window, k = 1/2
for 2 × 1 and 1 × 2, and k = 1 for grayscale (no down-
sampling).

Given coefficients y stored in a JPEG file, the quantization
constraint set is the set of images satisfying condition (2) in all
color channels. This set is local in the sense that it is defined
independently for each JPEG block. This locality is reflected
in the structure of matrix QCD, which is block-diagonal with
blocks of size 64 × 64 for grayscale and 64 × 256 for the
chrominance channels with 2× 2 down-sampling.

(a) original patch
stored as y1

(b) copy in the
target area

(c) Enlarged tar-
get area stored as
y2

Fig. 2. Alignment of original and target patches as used in the verification
of the JPEG copy-move constraint.

IV. JPEG COPY-MOVE CONSTRAINT

The main contribution of this paper is a procedure to verify
the possibility of copy-move between two patches with known
coordinates using the knowledge of JPEG compression process
including the quantization table extracted from the input JPEG
file. We assume that the object was only moved, i.e. there was
no rotation or any other geometrical distortion, and that there
was no noise added. The object could have been copied to an
arbitrary part of the image and after moving to the target area,
the object could have been retouched by blurring boundaries
to mask the transition to the surrounding area. The main
requirement is that the original object contains at least one
JPEG block, i.e. a rectangular area of size at least 8×8 pixels
aligned with the JPEG grid (see Fig. 2(a)). This is guaranteed
for objects of size 15×15 pixels and larger. The corresponding
target area (Fig. 2(b)) must not be retouched. If we use also
the chromatic channels, the necessary patch size increases to
16× 16 pixels.

For our purpose, we assume that the detection algorithm
works with patches of size being a multiple of the size of
JPEG blocks (typically 8 × 8 for grayscale and 16 × 16 if
we consider also the chrominance channels). In addition, we
assume that the source patch is aligned with the JPEG grid
(in Fig. 2(a) the patch consists of only one JPEG block).
In the target area, we consider a larger patch, the smallest
patch containing the cloned area aligned with JPEG blocks,
see Fig. 2(c). Denoting the vectorized pixel values before
compression in the enlarged target area as x, the values of
the original source patch (Fig. 2(a)) can be expressed as Mx,
where M is the matrix selecting the pixels corresponding to the
source area in Fig. 2(b) (selection matrix). Equation (2) implies
that the set of possible target areas before JPEG compression
satisfy

QCDx ∈
〈
y2 −

1

2
, y2 +

1

2

)
, (4)

where y2 is the vector of integer coefficients stored in the
JPEG file that corresponds to the target patch. The interval〈
y2 − 1

2 , y2 +
1
2

)
is the multi-dimensional interval of numbers

rounding to the nearest integers in y2. The interval is left-
closed (angle bracket) and right-open (round bracket) as usual
when rounding. In the original area containing the same
(source) patch Mx similarly

QCDMx ∈
〈
y1 −

1

2
, y1 +

1

2

)
. (5)

(a) (b)

Fig. 3. Finding the intersection of two sets by alternating projection, where
A ∩ B 6= ∅ (a) or A ∩ B = ∅ (b). We use a faster variant of this algorithm
to verify the proposed JPEG copy-move constraint.

Sets (4) and (5) are convex. We can see that the necessary
condition for the possibility of copy-move between source
and target areas is equivalent to the existence of a point in
the intersection of sets (4) and (5). We call this condition
the JPEG copy-move constraint or shortly JPEG constraint.
Unfortunately, it is probably impossible to verify the existence
of this intersection directly. Nevertheless, in the following
section, we derive an efficient algorithm that verifies the JPEG
constraint iteratively.

V. ALGORITHM

The simplest way to find a point in the intersection of
arbitrary two convex sets A and B in a vector space is
alternating projection (see Fig. 3). If the intersection is not
empty, this procedure provably converges to a point in the
intersection. Otherwise, the distance between two consecutive
projections converges to the distance between A and B. This
method is known as the projection on convex sets (POCS)
[24]. Unfortunately, POCS converges relatively slowly (in our
case hundreds of iterations), which makes it unsuitable for our
purpose.

The convergence can be significantly speeded up by the
Douglas-Rachford splitting [25], which is a special case of
the alternating direction method of multipliers (ADMM) [26].
If exists, the intersection A∩B can be found by iterating the
following three steps

x← PA (a+ d) , (6)
a← PB (x− d) , (7)
d← d− (x− a) , (8)

where PA and PB are projections on sets A and B, and a
and d are auxiliary variables of the same size as x. By the
projection on a set we mean the point in the set closest to
the projected point in the sense of l2 norm. Variable x is in
general a point in set A, which will be in our algorithm the
same x defined in the previous section. Variable a is initialized
in a starting point x0, d is initially zero. Iterations are stopped,
when the l2 norm of x−a is smaller than a threshold ε or the
number of iterations exceeds a limit. The latter implies that
A∩B is empty. Note that both POCS and ADMM require sets
A and B to be closed. For this reason, instead of intervals in

1. initialize a0 = x0, d0 = 0
2. repeat
3. x← a+ d− 1

kD
TCT diag(q) ·(

QCD (a+ d)− P〈y2− 1
2 ,y2+

1
2−δ〉(QCD (a+ d))

)
4. a← x− d− 1

kM
TDTCT diag(q) ·(

QCDM (x− d)− P〈y1− 1
2 ,y1+

1
2−δ〉(QCDM (x− d))

)
5. d← d− (x− a)
6. until the stopping criterion ||x−a|| ≤ ε is satisfied or the

number of iterations exceeds a limit

Fig. 4. The algorithm for verification of the JPEG copy-move constraint, i. e.
the possibility of copy-move between two image patches.

(4) and (5), we work with closed intervals
〈
y − 1

2 , y +
1
2 − δ

〉
,

where δ is a sufficiently small constant.
To make the algorithm efficient, we need also the projec-

tions in (6) and (7) to be fast. Since the set (4) is of the same
form as (5), its is sufficient to show the efficient projection for
the latter. Indeed, projection (5) can be expressed as

PQCDMx∈〈y− 1
2 ,y+

1
2−δ〉(z) = z − 1

k
MTDTCT diag(q)·(

QCDMz − P〈y− 1
2 ,y+

1
2−δ〉(QCDMz)

)
, (9)

which is straightforward to compute in time proportional to
the number of pixels in the patch. Transpose CT is the inverse
DCT, DT replicates each value in a down-sampled image to
the corresponding rectangle in the full size image and MT

keeps the pixels selected by M (corresponding to the source
patch) intact and fills the rest of the pixels of the target area
with zeros. Constant k = 1/mn is a down-sampling factor
(1/4 for 2× 2 down-sampling). The projection on set (4) is a
special case with M = I , i. e. identity. The proof is described
in [27]).

The algorithm is summarized in Fig. 4. We can see that (9)
and therefore also the algorithm basically consists of JPEG
compression and decompression operations (compare with (2)
and (3)). The compression operations QCD and QCDM are
computed only once in each projection, since its result can
be reused. In our experiments the threshold in the stopping
criterion was set to ε = 10−10 and the maximum number of
iterations to 12. What is important, the number of iterations
does not depend on the number of image pixels. In theory,
it can slightly increase for larger patches, though. The initial
estimate x0 can be set to the values in the target area.

The time needed to compute one projection is approximately
the same as the time of one JPEG compression (QCD) and
decompression (1kD

TCT diag(q)) of an image of the same
size as the patch.

VI. EXPERIMENTS

In this section, we show how our procedure improves
performance of a complete detection algorithm. We use sim-
ple patch-level matching, followed by the JPEG copy-move
constraint and verification of the coherence of shift vectors.

TABLE I
COMPARISON OF METHODS ON DATASET DS1, 23 IMAGES, 13645

PATCHES IN GROUND-TRUTH.

Image level Patch level TPs Patch level FPs
Method # % # sens. [%] # FDR [%]

DCT - basic 16 69.57 2697 19.77 1855 40.75
DCT - tuned 23 100.00 11644 85.34 89 0.76

SIFT 21 91.30 9127 66.89 1641 15.24
ZM 23 100.00 12988 95.19 776 5.64
PCT 23 100.00 12956 94.95 777 5.66
FMT 23 100.00 12788 93.72 630 4.70
OUR 23 100.00 12432 91.11 56 0.45

TABLE II
COMPARISON OF METHODS ON DATASET DS2, 40 IMAGES, 9288 PATCHES

IN GROUND-TRUTH.

Image level Patch level TPs Patch level FPs
Method # % # sens. [%] # FDR [%]

DCT - basic 16 40.00 532 5.73 1130 67.99
DCT - tuned 36 90.00 6601 71.07 595 8.27

SIFT 26 65.00 6057 65.21 9196 60.29
ZM 18 45.00 6560 70.63 855 11.53
PCT 20 50.00 6989 75.25 970 12.19
FMT 21 52.50 7035 75.74 1705 19.51
OUR 40 100.00 8055 86.72 127 1.55

As a representative of block-based methods, we chose the
method based on the quantization of the DCT coefficients from
the seminal paper [1]. When used with 8× 8 patches needed
to detect smaller objects, the basic version of the algorithm,
as presented in the paper, gives relatively weak results. The
main reason is that the algorithm uses lexicographic sorting
and therefore misses many potential candidates. On the other
hand, it is quite easy to tune up the method to give much
better results by increasing the level of quantization and
setting a suitable threshold to the maximum allowed distance
of quantized DCT coefficients to be considered copy-move
candidates. To distinguish these two versions, we denote them
in our comparison as DCT-basic and DCT-tuned. As a re-
presentative of methods based on keypoints, we use the SIFT-
based algorithm [28], available online. For a wider comparison
we also added the approach of Cozzolino et al. [13], namely
their three types of features: the Zernike Moments (ZM),
the Polar Cosine Transform (PCT), and the Fourier-Mellin
Transform (FMT).

To simplify comparison to other methods in literature, we

TABLE III
COMPARISON OF METHODS ON DATASET DS3 (DIFFICULT CASES), 18

IMAGES, 9850 PATCHES IN GROUND-TRUTH.

Image level Patch level TPs Patch level FPs
Method # % # sens. [%] # FDR [%]

DCT - basic 10 55.56 2353 23.89 862 26.81
DCT - tuned 16 88.89 8672 88.04 890 9.31

SIFT 6 33.33 4845 49.19 4793 49.73
ZM 10 55.56 6965 70.71 675 8.84
PCT 11 61.11 7060 71.68 1062 13.08
FMT 11 61.11 6983 70.89 2422 25.75
OUR 18 100.00 8987 91.24 119 1.31

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. Example of detection: ground truth from DS1 (a), DCT-basic (b),
DCT-tuned (c), SIFT (d), ZM (e), PCT (f), FMT (g), and proposed algorithm
with JPEG copy-move constraint (h).

use two standard image datasets [29], [3]. The performance
of other methods on the same datasets is analyzed in [2],
[3]. We also created a third image set containing difficult
cases with repeated patterns, objects masked by an indistinct
texture (skies, building facades etc.) and small objects. All
three datasets (DS1, DS2 and DS3), contain in total 81 images:

• DS1: 23 images by Silva at al. [3],
• DS2: 40 images, CoMoFoD dataset [29],
• DS3: 18 images created by our research group, represen-

ting the difficult cases.

To evaluate the algorithms, we use two different metrics. In
both cases, we compare with the ground truth represented, for
each image, by a matrix of ones on the tampered pixels and
zeroes elsewhere.

• Image level: An algorithm is successful if it finds at least
a portion of the tampered area. The algorithm fails if it
does not find any modified pixel.

• Patch level: We divide images to non-overlapping patches
of 8 x 8 pixels. A patch is considered correctly marked as
tampered if there is an overlap with a pixel in the ground
truth. We count the number of correctly found tampered
patches (true positivies, TPs) and the number of patches
labeled as tampered with no overlap with the ground true
(false positives, FPs).

For space reasons, we show results on JPEG images compres-
sed only with quality factor 95. In our experiments, we see
the similar behavior for qualities above around 90.

Quantitative results for all the datasets are given in Tables
I-III. The second column shows the number of images, where
the algorithm found at least a part of the tampered area. The
same number, as a percentage of all images in the dataset,
is given in the third column (success rate). The forth and
sixth columns show the numbers of patch level TPs and FPs.
We also compute two standard statistical quantities, sensitivity
(abbreviated as sens. in Tables I-III) and false discovery rate
(FDR, one minus precision). They are given in columns five
and seven. The number of patches in ground truth is defined as
the number of patches containing at least one modified pixel.
Three examples in Figs. 5, 6, and 7 illustrate typical outputs
of the tested approaches.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. Example of detection: ground truth from DS2 (a), DCT-basic (b),
DCT-tuned (c), SIFT (d), ZM (e), PCT (f), FMT (g), and proposed algorithm
with JPEG copy-move constraint (h).

At the image level, the SIFT-based method achieves a decent
success rate of 91% on DS1 but often fails on DS2 and
DS3 (65% and 33%). Moreover, this method produces a large
number of false matches at the patch level, even for relatively
easy examples like in Fig. 5(d). In addition, Fig. 6(d) and
Fig. 7(d) illustrate how repeated motives can cause a complete
failure of this algorithm, a problem mentioned already in the
original paper [28]. We see similar results also for all three
methods of Cozzolino [13]. Although the success rate on DS1
database is at the patch level over 95% for ZM, over 94% for
PCT, and over 93% for FMT, the FDR is around 5%. And the
success rates on the other two databases are between 70 and
75 percent only.

Using the DCT-tuned, we achieved the overall success
rate over 92% at the image level and sensitivity over 82%
at the patch level. As the weakest point of this approach,
we identified the pictures with large areas of weak texture.
The proposed JPEG copy-move constraint improves results
significantly. It achieves the overall success rate of 100% at
the image level and sensitivity 89.91 % at the patch level, by
reducing the number of false positives (1.01%) .

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7. Example of detection: ground truth from DS3 (a), DCT-basic (b),
DCT-tuned (c), SIFT (d), ZM (e), PCT (f), FMT (g), and proposed algorithm
with JPEG copy-move constraint (h).

VII. CONCLUSION

In this paper, we propose a method to improve reliability
of detecting copy-move forgery in JPEG images. For this
purpose, we introduce the JPEG copy-move constraint that
can be used to filter out false matches of candidate patches in
almost any existing detection algorithm. Since the constraint
is exact, i. e. gives almost no false negatives, results are always
better than without this constraint.

The proposed approach cannot be directly used with geo-
metrical transforms like scale change or rotation. One could
imagine an extension to these operations but results probably
would not be worth additional complexity of the algorithm.
In our opinion, improved detection justifies this restriction,
though. In addition, the scenario of pure shift is probably fre-
quent enough to be considered separately. Another limitation
of the JPEG constraint is that it requires the moved object to
contain at least one JPEG block. On the other hand, smaller
objects are probably too hard also for all other methods.

ACKNOWLEDGMENT

This research was partially funded by the Czech Science
Foundation, grant GA16-13830S (Michal Šorel) and GA15-
16928S (Adam Novozámský).

REFERENCES

[1] J. Fridrich, D. Soukal, and J. Lukas, “Detection of copy move forgery
in digital images,” in Digital Forensic Research Workshop, Aug. 2003.

[2] V. Christlein, C. Riess, J. Jordan, C. Riess, and E. Angelopoulou, “An
evaluation of popular copy-move forgery detection approaches,” IEEE
Transactions on Information Forensics and Security, vol. 7, no. 6, pp.
1841–1854, Dec 2012.

[3] E. Silva, T. Carvalho, A. Ferreira, and A. Rocha, “Going deeper into
copy-move forgery detection: Exploring image telltales via multi-scale
analysis and voting processes,” Journal of Visual Communication and
Image Representation, vol. 29, pp. 16 – 32, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1047320315000231

[4] M. K. Bashar, K. Noda, N. Ohnishi, and K. Mori, “Exploring duplicated
regions in natural images,” IEEE Transactions on Image Processing,
vol. PP, no. 99, pp. 1–1, 2010.

[5] J. Wang, G. Liu, H. Li, Y. Dai, and Z. Wang, “Detection of image region
duplication forgery using model with circle block,” in 2009 International
Conference on Multimedia Information Networking and Security, vol. 1,
2009, pp. 25–29.

[6] S. Bayram, T. H. Sencar, and N. Memon, “An efficient and robust
method for detecting copy-move forgery,” in 2009 IEEE International
Conference on Acoustics, Speech and Signal Processing, 2009, pp.
1053–1056.

[7] B. Mahdian and S. Saic, “Detection of copy-move forgery using
a method based on blur moment invariants,” Forensic Science
International, vol. 171, no. 2-3, pp. 180–189, 2007. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0379073806006748

[8] S.-J. Ryu, M.-J. Lee, and H.-K. Lee, Information Hiding: 12th In-
ternational Conference, IH 2010, Calgary, AB, Canada, June 28-30,
2010, Revised Selected Papers. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, ch. Detection of Copy-Rotate-Move Forgery Using
Zernike Moments, pp. 51–65.

[9] A. C. Popescu and H. Farid, “Exposing digital forgeries by
detecting duplicated image regions,” Department of Computer Science,
Dartmouth College, Tech. Rep. TR2004-515, 2004. [Online]. Available:
www.cs.dartmouth.edu/farid/publications/tr04.html

[10] Y. Huang, W. Lu, W. Sun, and D. Long, “Improved dct-based
detection of copy-move forgery in images,” Forensic Science
International, vol. 206, no. 1-3, pp. 178–184, 2011. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0379073810003890

[11] J. S. Beis and D. G. Lowe, “Shape indexing using approximate nearest-
neighbour search in high-dimensional spaces,” in Computer Vision and
Pattern Recognition, 1997. Proceedings. IEEE, 1997, pp. 1000–1006.

[12] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with
automatic algorithm configuration.” VISAPP (1), vol. 2, pp. 331–340,
2009.

[13] D. Cozzolino, G. Poggi, and L. Verdoliva, “Efficient dense-field copy–
move forgery detection,” IEEE Transactions on Information Forensics
and Security, vol. 10, no. 11, pp. 2284–2297, 2015.

[14] R. O. Duda and P. E. Hart, “Use of the hough transformation to detect
lines and curves in pictures,” Communications of the ACM, vol. 15,
no. 1, pp. 11–15, 1972.

[15] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography,” Commun. ACM, vol. 24, no. 6, pp. 381–395, 1981.

[16] H. Huang, W. Guo, and Y. Zhang, “Detection of copy-move forgery
in digital images using sift algorithm,” in Computational Intelligence
and Industrial Application, 2008. PACIIA ’08. Pacific-Asia Workshop
on, vol. 2, Dec 2008, pp. 272–276.

[17] D. G. Lowe, “Distinctive image features from scale-
invariant keypoints,” International Journal of Computer Vision,
vol. 60, no. 2, pp. 91–110, 2004. [Online]. Available:
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94

[18] X. Bo, W. Junwen, L. Guangjie, and D. Yuewei, “Image copy-move
forgery detection based on surf,” in 2010 International Conference on
Multimedia Information Networking and Security, 2010, pp. 889–892.

[19] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, “Speeded-up
robust features (surf),” Computer Vision and Image Understanding,
vol. 110, no. 3, pp. 346 – 359, 2008, similarity Matching
in Computer Vision and Multimedia. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1077314207001555

[20] L. Yu, Q. Han, and X. Niu, “Feature point-based copy-move forgery
detection: covering the non-textured areas,” Multimedia Tools and Ap-
plications, vol. 75, no. 2, pp. 1159–1176, 2016.

[21] W. B. Pennebaker and J. L. Mitchell, JPEG Still Image Data Com-
pression Standard, 1st ed. Norwell, MA, USA: Kluwer Academic
Publishers, 1992.

[22] Y. Yang, N. P. Galatsanos, and A. K. Katsaggelos, “Projection-based spa-
tially adaptive reconstruction of block-transform compressed images,”
Image Processing, IEEE Transactions on, vol. 4, no. 7, pp. 896–908,
1995.

[23] M. Šorel and M. Bartoš, “Fast bayesian jpeg decompression and denoi-
sing with tight frame priors,” IEEE Transactions on Image Processing,
vol. 26, no. 1, pp. 490–501, Jan 2017.

[24] H. H. Bauschke and J. M. Borwein, “On projection algorithms for
solving convex feasibility problems,” SIAM review, vol. 38, no. 3, pp.
367–426, 1996.

[25] J. Douglas and H. H. Rachford, “On the numerical solution of heat
conduction problems in two and three space variables,” Transactions of
the American mathematical Society, pp. 421–439, 1956.

[26] J. Eckstein and D. P. Bertsekas, “On the douglas-rachford splitting me-
thod and the proximal point algorithm for maximal monotone operators,”
Math. Program., vol. 55, pp. 293–318, June 1992.

[27] M. Šorel and M. Bartoš, “Efficient jpeg decompression by the alternating
direction method of multipliers,” in International Conference on Pattern
Recognition, ICPR’16, 2016.

[28] I. Amerini, L. Ballan, R. Caldelli, A. Del Bimbo, and G. Serra, “A
sift-based forensic method for copy-move attack detection and trans-
formation recovery,” IEEE Transactions on Information Forensics and
Security, vol. 6, no. 3, pp. 1099–1110, Sept 2011.

[29] D. Tralic, I. Zupancic, S. Grgic, and M. Grgic, “CoMoFoD-New
database for copy-move forgery detection,” in Proceedings ELMAR-
2013, Sept 2013, pp. 49–54.

