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A B S T R A C T

The so-called copy-move forgery, based on copying an object and pasting in another location of the same
image, is a common way to manipulate image content. In this paper, we address the problem of copy-
move forgery detection in JPEG images. The main problem with JPEG compression is that the same pixels,
after moving to a different position and storing in the JPEG format, have different values. The majority of
existing algorithms is based on matching pairs of similar patches, which generates many false matches. In
many cases they cannot be eliminated by postprocessing, causing the failure of detection. To overcome
this problem, we derive a JPEG-based constraint that any pair of patches must satisfy to be considered a
valid candidate and propose an efficient algorithm to verify the constraint. The constraint can be
integrated into most existing methods. Experiments show significant improvement of detection,
especially for difficult cases, such as small objects, objects covered by textureless areas and repeated
patterns.
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1. Introduction

The integrity of visual data is important for the credibility of
news media and especially when used as an evidence in court or
during criminal investigation. In the times of analog recording and
classical photography any tampering was considered difficult and
time consuming but the availability of easy-to-use image
processing software made the manipulation of digital content
extremely simple. Image forensics, a branch of forensic data
analysis, evolved as a scientific means to verify the source of image
data and detect potential modifications.

One of the most common image modifications, the so-called
copy-move forgery [1], is based on copying an object and pasting in
another location of the same image. Transition between the
inserted object and original contents is often masked by various
retouching tools. Copying from the same image keeps statistical
properties of the image such as the noise, contrast and color, which
complicates detection. On the other hand, reusing the same object
in one image can be detected and is what is looked for by the
majority of copy-move forgery detection (CMFD) techniques.
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While the copy-move forgery is relatively easy to detect in
images stored in lossless formats, such as PNG, GIF, and TIFF,
detection in JPEG images is complicated by the fact that the same
pixels, after moving to a different position and storing in the JPEG
format, have different values. For this reason, when looking for
copy-move candidates, existing methods usually consider all
patches that are in a sense similar. Irrespective of how the
similarity is measured, the problem arises that the criterion used is
always a compromise between detecting all true candidates and
getting a reasonable number of false positives, i.e. patches that
actually were not copied but must be considered valid candidates.

In this article, we analyze the problem whether it is possible to
reduce the number of false positives using the exact mechanism of
JPEG compression. In other words, whether it is possible to say
something about how originally identical patches can differ under
compression.

The solution we present in this article is based on the
observation that all original images that could have resulted in
the coefficients stored in the JPEG file we analyze, form a convex
set, in the field of digital image restoration known as the
quantization constraint set [2]. This set can be specified separately
for each JPEG block, typically of size 8 � 8 pixels. For grayscale
images, the set has a form of a multi-dimensional box (in general
orientation) centered in the values we get by ordinary JPEG
decompression. The dimensions of this box are given by the values
from the quantization table stored in every JPEG file during
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compression. Therefore, since the patch we are analyzing is
present at two different places, the original question can be
reformulated as verifying whether the intersection of two sets is
empty or not. Is there an original patch that would be compressed
to two different sets of coefficients stored in two different positions
in the JPEG file? In this paper, we call this condition the JPEG copy-
move constraint and show an efficient method how its validity can
be verified. We show that the idea of using the JPEG copy-move
constraint is compatible with most existing methods. It helps
especially in images with repeated motives and objects retouched
by an indistinct texture, which are common situations extremely
difficult for all methods we can find in literature.

2. Related work

The detection of copy-move modification was first proposed by
Fridrich et al. [1], which inspired a large amount of research in the
same direction. For this type of image modification, they started
using the term copy-move forgery, which became a standard in
subsequent literature. The number of papers has been increasing
every year and CMFD has become one of the most active topics in
image forensics. In this section, we give a short overview of main
approaches, for a more complete treatment, we refer readers to
[3,4] comparing many popular algorithms. Readers interested in
exposing digital forgeries and image forensics in general can start
with [5] and tutorials available on the web pages of Hany Farid.

The typical processing pipeline used by most CMFD methods is
shown in Fig.1 (derived from Fig. 2 in [3]). The preprocessing phase
includes decompression of image files if stored in a compressed
format and for methods working on grayscale images also
conversion to grayscale.

Based on the second step (the second block from left in Fig. 1),
CMFD methods can be divided into two large groups, block-based
and keypoint-based, depending on the mechanism used to find the
candidates for matching. The vast majority of them is in the first
group, including [1]. In this approach, algorithms look for a similar
block obtained by partitioning the image into overlapping blocks.
The reason, why it is usually impractical to look for exactly the
same values (exact match in [1]) is that values can be damaged by
JPEG compression or additional retouching operations. Methods
either work directly with pixels or compute features transforming
blocks into a representation of lower-dimension or having
convenient invariant properties. For example, [1] used weighted
DCT transform coefficients and Bashar et al. [6] the Daubechies
four tap wavelet transform.

An important reason for using features is to achieve invariance
with respect to some transforms. While the basic copy-move
detection assumes that object is unchanged and in the same
orientation, in practice it is possible that before being pasted, it was
rotated, scaled or even blurred. To ensure the invariance to
rotation, Wang et al. [7] used a circle block model, Bayram et al. [8]
added a scale invariance by features obtained from the Fourier-
Mellin transform. Several authors worked with moment invariants.
Mahdian and Saic [9] suggested 24 blur invariants, Ryu et al. [10]
used the Zernike moments.
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Fig. 1. Typical processing pipeline of copy-move forgery detection algorithms. The
main contribution of this paper is filtering using the JPEG copy-move constraint,
which increases sensitivity and reduces significantly the number of false matches.
In the matching phase (third phase in Fig. 1), algorithms take
the blocks or their features stored in a feature matrix and look for
similar entries. Since considering all pairs of blocks would be
extremely time-consuming, methods save time in various ways.
One possibility is decreasing the number of features, which
reduces the dimension of space we are searching. Popescu et al.
[11] reduced the feature matching space by the PCA applied on
blocks. Bashar et al. [6] modified their algorithm to use the kernel
PCA. Huang et al. [12] simply shortened the feature vector to its
first quarter. A complementary way to reduce computational
complexity is using an efficient data structure for the approximate
nearest-neighbor search. In the original paper [1], similar blocks
were found by lexicographically sorting the rows in the feature
matrix and comparing the adjacent rows, which was used by many
followers. A more reliable efficient data structure are k-d trees,
mostly used in the best-bin-first variant [13], which is applicable in
both block and keypoint-based algorithms. Comparison [3] uses
multiple randomized k-d trees [14]. Another fast iterative
randomized technique for computing the approximate nearest-
neighbor search can be found in [15].

The purpose of the filtering step (4th in Fig. 1) is to remove false
matches that inevitably arise in all methods. A common procedure
is to remove spatially close matches that appear because of
correlation between spatially close regions. Another heuristic is
skipping low-variance areas, such as skies, building facades, water
surfaces, etc. The main contribution of this paper belongs to this
phase, filtering pairs of regions based on the compatibility with the
JPEG compression process (JPEG copy-move constraint).

Finally, a postprocessing step verifies the spatial coherence of
shift vectors (or in general transform parameters) obtained from
the candidates generated by matching and filtering, as a rule by a
combination of ideas known in image processing as the Hough
transform [16] and RANSAC [17]. The seminal paper [1] simply
considered only pairs with a shift vector identical to a sufficient
number of other pairs. Postprocessing can also eliminate objects
smaller than a threshold.

The block-based techniques are time-consuming due to the
large number of compared blocks and lose accuracy when the
tampered areas are blurred, scaled, rotated or otherwise geomet-
rically transformed. To address these problems, some authors,
instead of working with blocks, applied keypoint-based techniques
used in computer vision, where the task is to find point
correspondence between two images of one object or the same
scene. Huang et al. [18] came up with a CMFD method based on the
SIFT features [19], Bo et al. [20] used SURF [21]. In general, the
keypoint-based techniques are fast and can be easily used when
the patches were deformed by a geometric transform. On the
down-side, they do not work well for small objects and are less
stable than block-based methods. Especially, since the keypoints
are usually detected in regions with high entropy, these methods
lose accuracy in the areas retouched by an indistinct texture [22].

Hybrid schemes combine advantages of block-based and
keypoint-based approaches [23–27]. Postprocessing can also
include segmentation to estimate the contours of the copied
object [28].

This paper deals with the basic but very frequent scenario of
simple copy-move in JPEG images, i.e. without geometric
distortions, added noise or blurring. We analyze the influence of
JPEG compression and propose an algorithm that uses the
principles of JPEG compression to increase the sensitivity of
detection.

In the next section, we describe the principles of JPEG
compression (Section 3). Section 4 describes the main idea of
this paper, the JPEG copy-move constraint. Section 5 shows an
efficient algorithm to verify the constraint. In the experimental
section (Section 6), we show how the constraint can be used in a
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practical detection scheme. The results are compared to several
alternative algorithms.

3. JPEG compression

JPEG is undoubtedly the most widespread format for efficient
storage of image data [29]. JPEG uses a lossy type of compression
based on the quantization of discrete cosine transform (DCT)
coefficients, where the two-dimensional DCT is applied to small
blocks of usually 8 � 8 pixels. In this section we describe this
process in detail and introduce the mathematical notation needed
later.

For grayscale images, the lossy part of JPEG compression can be
expressed [2,30] as

y ¼ ½QCx�; ð1Þ
where x is a vectorized original image, y the vector of integer
coefficients stored in the JPEG file, Q and C are matrices, and the
square brackets denote the operator of rounding to the nearest
integer. C is the block-diagonal matrix of the block DCT made up of
the square matrices of the two-dimensional DCT (64 � 64 matrix
for each 8 � 8 block). C is orthogonal, because all the DCT sub-
matrices are orthogonal. Q is a diagonal matrix corresponding to
the element-wise division by the coefficients from the quantiza-
tion table stored in each JPEG file replicated for each block along
diagonal (64 values for each 8 � 8 block). We will denote the vector
of these coefficients as q, i.e. Q = diag(1/q). For color images, the
image is first transformed into Y0CBCR space and individual
channels are stored separately. The brightness Y0 is treated as
described above but the chrominance channels are often stored at
smaller resolution, which complicates the degradation model.
Formally,

y ¼ ½QCDx�; ð2Þ
where D is a down-sampling matrix. As a rule, D returns the
average value for every (non-overlapping) square of 2 � 2 pixels
but other dimensions of down-sampling windows, such as 2 �1 or
1 � 2 are possible. The grayscale case (1) can be considered a
special case of (2) with D = I, i.e. identity. JPEG decompression can
be written as

~x ¼ 1
k
DTCTQ�1y ¼ 1

k
DTCT diagðqÞy; ð3Þ

where k = 1/4 for the 2 � 2 down-sampling window, k = 1/2 for 2 � 1
and 1 � 2, and k = 1 for grayscale (no down-sampling).

Given coefficients y stored in a JPEG file, the quantization
constraint set is the set of images satisfying condition (2) in all
color channels. This set is local in the sense that it is defined
independently for each JPEG block. This locality is reflected in the
Fig. 2. Alignment of original and target patches as used i
structure of matrix QCD, which is block-diagonal with blocks of
size 64 � 64 for grayscale and 64 � 256 for the chrominance
channels with 2 � 2 down-sampling.

4. JPEG copy-move constraint

The main contribution of this paper is a procedure to verify the
possibility of copy-move between two patches with known
coordinates using the knowledge of JPEG compression process
including the quantization table extracted from the input JPEG file.
We assume that the object was only moved, i.e. there was no
rotation or any other geometrical distortion, and that there was no
noise added. The object could have been copied to an arbitrary part
of the image and after moving to the target area, the object could
have been retouched by blurring boundaries to mask the transition
to the surrounding area. The main requirement is that the original
object contains at least one JPEG block, i.e. a rectangular area of size
at least 8 � 8 pixels aligned with the JPEG grid (see Fig. 2(a)). This is
guaranteed for objects of size 15 �15 pixels and larger. The
corresponding target area (Fig. 2(b)) must not be retouched. If we
use also the chromatic channels, the necessary patch size increases
to 16 � 16 pixels.

For our purpose, we assume that the detection algorithm works
with patches of size being a multiple of the size of JPEG blocks
(typically 8 � 8 for grayscale and 16 � 16 if we consider also the
chrominance channels). In addition, we assume that the source
patch is aligned with the JPEG grid (in Fig. 2(a) the patch consists of
only one JPEG block). In the target area, we consider a larger patch,
the smallest patch containing the cloned area aligned with JPEG
blocks, see Fig. 2(c). Denoting the vectorized pixel values before
compression in the enlarged target area as x, the values of the
original source patch (Fig. 2(a)) can be expressed as Mx, where M is
the matrix selecting the pixels corresponding to the source area in
Fig. 2(b) (selection matrix). Eq. (2) implies that the set of possible
target areas before JPEG compression satisfy

QCDx 2 y2 �
1
2
; y2 þ

1
2

� �
; ð4Þ

where y2 is the vector of integer coefficients stored in the JPEG file
that corresponds to the target patch. The interval y2 � 1

2; y2 þ 1
2

� �
is

the multi-dimensional interval of numbers rounding to the nearest
integers in y2. The interval is left-closed (angle bracket) and right-
open (round bracket) as usual when rounding. In the original area
containing the same (source) patch Mx similarly

QCDMx 2 y1 �
1
2
; y1 þ

1
2

� �
: ð5Þ
n the verification of the JPEG copy-move constraint.
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To summarize the dimensions of the above defined variables for
grayscale blocks of 8 � 8 pixels in general position, x, y1 and y2 are
vectors of sizes 256 = 16 � 16, 64 = 8 �8 and 256 = 16 � 16, respec-
tively. In the case of the target area aligned with the grid in one of
dimensions, the size of x and y2 is reduced to 128 = 16 � 8.

Sets (4) and (5) are convex. We can see that the necessary
condition for the possibility of copy-move between source and
target areas is equivalent to the existence of a point in the
intersection of sets (4) and (5). We call this condition the JPEG copy-
move constraint or shortly JPEG constraint. Unfortunately, it is
probably impossible to verify the existence of this intersection
directly by a closed-form formula. Nevertheless, in the following
section, we derive an efficient algorithm that verifies the JPEG
constraint iteratively.

5. Algorithm

We start this section by describing a general algorithm to find a
point in the intersection of arbitrary two convex sets A and B. This
algorithm will be finally applied to our sets (4) and (5). The
simplest way to find a point in the intersection of sets A and B in a
vector space is alternating projection (see Fig. 3). If the intersection
is not empty, this procedure provably converges to a point in the
intersection. Otherwise, the distance between two consecutive
projections converges to the distance between A and B. This
method is known as the projection on convex sets (POCS) [31].
Unfortunately, POCS converges relatively slowly (in our case
hundreds of iterations), which makes it unsuitable for our purpose.

The convergence can be significantly speeded up by the
Douglas–Rachford splitting [32], which is a special case of the
alternating direction method of multipliers (ADMM) [33]. If exists,
the intersection A \ B can be found by iterating the following three
steps

x   PAða þ dÞ; ð6Þ

a   PBðx � dÞ; ð7Þ

d   d � ðx � aÞ; ð8Þ
where PA and PB are projections on sets A and B, and a and d are
auxiliary variables of the same size as x. By the projection on a set
we mean the point in the set closest to the projected point in the
sense of l2 norm. Variable x is in general a point in set A, which will
be in our algorithm the same x defined in the previous section.
Fig. 3. Finding the intersection of two sets by alternating projection, where A \ B 6¼; (a) 

copy-move constraint.
Variable a is initialized in a starting point x0, d is initially zero.
Iterations are stopped, when the l2 norm of x � a is smaller than a
threshold e or the number of iterations exceeds a limit. The latter
implies that A \ B is empty. Note that both POCS and ADMM require
sets A and B to be closed. For this reason, instead of intervals in (4)
and (5), we work with closed intervals hy � 1

2 ; y þ 1
2� di, where d is

a sufficiently small constant.
To make the algorithm efficient, we need also the projections in

(6) and (7) to be fast. Since the set (4) is of the same form as (5), its
is sufficient to show the efficient projection for the latter. Indeed,
projection (5) can be expressed as

P
QCDMx2hy�

1
2
;yþ

1
2
�di
ðzÞ ¼ z � 1

k
MTDTCT diagðqÞ

� QCDMz � P
hy�

1
2
;yþ

1
2
�di
ðQCDMzÞ

0
B@

1
CA;

ð9Þ
which is straightforward to compute in time proportional to the
number of pixels in the patch. Transpose CT is the inverse DCT, DT

replicates each value in a down-sampled image to the correspond-
ing rectangle in the full size image and MT keeps the pixels selected
by M (corresponding to the source patch) intact and fills the rest of
the pixels of the target area with zeros. Constant k = 1/mn is a
down-sampling factor (1/4 for 2 � 2 down-sampling). The projec-
tion on set (4) is a special case with M = I, i.e. identity. Note that y in
(9) stands for y1 and y2 for sets (4) and (5), respectively. Informal
proof (using a lemma from [34]) is given in the appendix.

The algorithm is summarized as Algorithm 1. We can see that
(9) and therefore also the algorithm basically consists of JPEG
compression and decompression operations (compare with (2)
and (3)). The compression operations QCD and QCDM are
computed only once in each projection, since its result can be
reused. In our experiments the threshold in the stopping criterion
was set to e = 10�10 and the maximum number of iterations to 12.
What is important, the number of iterations does not depend on
the number of image pixels. In theory, it can slightly increase for
larger patches, though. The initial estimate x0 can be set to the
values in the target area.

The time needed to compute one projection is approximately
the same as the time of one JPEG compression (QCD) and

decompression (1k D
TCT diag q) of an image of the same size as

the patch. As a result, since there are two projections in one
iteration, one on a source patch and one on a target patch, and we
use twelve iterations, the time of Algorithm 1 corresponds to 12
or A \ B =; (b). We use a faster variant of this algorithm to verify the proposed JPEG
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grayscale JPEG compressions and decompressions of an image of
the same size as the aligned target patch, i.e. 16 � 16 pixels for the
source patches of size 8 � 8, and 12 of an image of the size of the
source patch.

Algorithm 1. Verification of the JPEG copy-move constraint, i.e.
the possibility of copy-move between two image patches.

1. Initialize a0 = x0, d0 = 0
2. repeat
3. x   a þ d � 1

k
DTCT diagðqÞ�

QCD a þ dð Þ � P
hy2�

1
2
;y2þ

1
2
�di
ðQCD a þ dð ÞÞ

0
B@

1
CA

4. a   x � d � 1
k
MTDTCT diagðqÞ�

QCDM x � dð Þ � P
hy1�

1
2
;y1þ

1
2
�di
ðQCDM x � dð ÞÞ

0
B@

1
CA

5. d   d � (x � a)
6. until the stopping criterion ||x � a|| � e is satisfied or the number of

iterations exceeds a limit

6. Experiments

In this section, we present results of a series of experiments
demonstrating the benefits of the proposed JPEG copy-move
constraint. Experiments in Sections 6.1–6.3 statistically analyze the
influence of the constraint on the number of falsely detected
moves, irrespectivelly of other steps in the chain of operations in
Fig. 1, i.e. independently of what particular method is used.
Section 6.4 shows the performance of the constraint in a complete
detection algorithm. For this purpose, we use the JPEG copy-move
constraint with a simple patch-level matching, finally verifying the
coherence of shift vectors. This approach is compared to two
representatives of block-based techniques and four methods based
on keypoints, using three different datasets. Two datasets [35,4]
are standard benchmark datasets available online, the third was
created by us to show performance on difficult cases with repeated
patterns and indistinct texture.

6.1. Estimating the parameters of the algorithm

Purpose of the first experiment is to determine a detection
threshold needed to select candidates for matching and two
parameters of Algorithm 1, convergence criterion e and the number
Fig. 4. Images used to estimate the parameters of the a
of iterations sufficient to reliably verify the JPEG constraint. We use
ten images of size 1024 �1024 pixels (Fig. 4), covering several
types of textures. We select randomly a position of source patch
aligned with the JPEG grid, copy the data, paste the patch to a
random off-grid position and save this new picture to JPEG. The
patches pasted on the positions aligned with the grid are not
considered, because they keep exactly the same values. After
reloading the image, we take both patches, compute their l2
distance per pixel and run our algorithm until convergence
(e = 10�10). Since these patches come from the same original patch,
the algorithm always converges. For each iteration, we remember
the norm of the residual ||x � a||. We repeat this experiment 1000
times for each image, with the quality of JPEG set to values in {10,
20, . . . , 90, 95, 98}.

This experiment gives us two valuable outputs. The maximum
value of the l2 distance gives us an estimate of the threshold
necessary to select the pairs of patches that must be considered
valid candidates for matching. However, for computational
reasons, we select the threshold to detect only 99.5% of candidates.
Otherwise, we would have to test an excessive number of
candidate patches. The resulting threshold is shown in Fig. 5.
The threshold decreases with increasing JPEG quality and stays
surprisingly high (above 15) even for the best qualities.

The second output is the number of iterations the algorithm
requires to tell whether the JPEG constraint is satisfied or not. Fig. 6
shows that the brightness component Y0 never requires more than
12 iterations for any JPEG quality. This is in contrast to the
chrominance components CB and CR that require up to 50 iterations
for higher qualities. In practice, since the brightness channel
carries more information than the chrominance channels, it is
mostly sufficient to work only with brightness, which speeds up
computation and does not considerably increase the number of
false matches. In addition, we can use smaller patches of 8 � 8
pixels, instead of 16 � 16, which is useful for detecting small
objects. For this reason, in the rest of this section, all experiments
work only with the brightness channel, i.e. in grayscale.

Our tests on the other image sets showed that the setting
e = 10�10 and 12 iterations is quite universal, which means that
using the JPEG copy-move constraint does not require setting any
additional parameters.

6.2. Reducing the number of false matches

The purpose of the second experiment is to demonstrate that
the JPEG copy-move constraint decreases the number of false
matches. The procedure is similar to what we did previously except
lgorithm and analyze the number of false matches.



Fig. 5. Maximum l2 distance per pixel of copy-moved patches at the sensitivity level 99.5%.

Fig. 6. Number of iterations needed for convergence (e = 10�10).
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that we do not clone the patches and assume that randomly taken
pairs of patches should always be negatives. We take images from
Fig. 4 and save them using the same set of compression qualities
{10, 20, . . . , 90, 95, 98}. After reloading each image, we go patch
by patch from the upper-left corner to the lower-right corner. For
each patch, we find the most similar patch from the same image (in
the l2 distance) and run our procedure for verifying the JPEG
constraint.
Fig. 7. Percentage of false matches (false positives) at sensitivity lev
If we use the thresholds computed in the first experiment using
the l2 distance, the number of false positives is huge, over 60% even
for qualities above 90 (solid line in Fig. 7). We cannot set the
threshold lower, otherwise we could miss some small objects
because of decreased sensitivity. Note that using the DCT features
as in [1] would keep the percentage of false matches high and
therefore, for our comparison, it would not help. The dotted line
shows the percentage of false matches when we apply also the
el 99.5% (thresholds taken from Fig. 5, number of iterations 12).



Fig. 8. Percentage of false matches for three quality levels (50, 90 and 98) using the l2 distance (solid line) and the JPEG copy-move constraint (dotted) at sensitivity level
99.5%.

Table 1
Comparison of methods on dataset DS1, 23 images, 13,645 patches in ground truth.

Method Image level Patch level TPs Patch level FPs

# % # sens. [%] # FDR [%]

DCT-basic 16 69.57 2697 19.77 1855 40.75
DCT-tuned 23 100.00 11,644 85.34 89 0.76
SIFT 21 91.30 9127 66.89 1641 15.24
ZM 23 100.00 12,988 95.19 776 5.64
PCT 23 100.00 12,956 94.95 777 5.66
FMT 23 100.00 12,788 93.72 630 4.70

OUR 23 100.00 12,432 91.11 56 0.45
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JPEG copy-move constraint. We can see that the number of false
matches decreases. The effect is very strong at qualities higher than
90, where the percentage decreases to less than 1.5%. At quality 95,
we get less than 0.04% and at 98 there are no false matches. Note
that the default JPEG qualities in the majority of modern photo
editing tools and cameras are above 90 and therefore these high
qualities are very common.

6.3. Influence of patch size

The third experiment (Fig. 8) shows the influence of the patch
size. We considered patches of sizes 16 � 16, 32 � 32, 48 � 48,
64 � 64, 80 � 80 and 96 � 96 pixels. As the patch size increases, the
number of false matches slightly drops. For example, for quality 50
and the JPEG constraint, the percentage of false matches drops
from 50% to 10%. Without the constraint, this number remains as
high as 30%.

6.4. Comparison on benchmark datasets

Previous experiments showed that the JPEG copy-move
constraint decreases the number of false matches significantly.
In this section, we show how this procedure improves performance
of a complete detection algorithm. We use simple patch-level
matching, followed by the JPEG copy-move constraint and
verification of the coherence of shift vectors. For each JPEG block,
we find the nearest patch in the l2 norm. Such pair of patches is
considered a valid copy-move candidate if their l2 distance is
smaller than a threshold determined by the experiment described
in Section 6.1. The coherence is achieved by considering only the
object with the highest number of detected shift vectors. We will
see that even this simple variant gives impressive results. This
approach is compared to six alternatives.

As a representative of block-based methods, we chose the
method based on the quantization of the DCT coefficients from the
seminal paper [1]. When used with 8 � 8 patches needed to detect
smaller objects, the basic version of the algorithm, as presented in
the paper, gives relatively weak results. The main reason is that the
algorithm uses lexicographic sorting and therefore misses many
potential candidates. On the other hand, it is quite easy to tune up
the method to give much better results by increasing the level of
quantization and setting a suitable threshold to the maximum
allowed distance of quantized DCT coefficients to be considered
copy-move candidates. To distinguish these two versions, we
denote them in our comparison as DCT-basic and DCT-tuned. To
verify the coherence of shift vectors, both DCT-based variants we
implemented use the same rule as the algorithm with the JPEG
constraint. As a representative of methods based on keypoints, we
use the SIFT-based algorithm [36], available online. For a wider
comparison we also added the approach of Cozzolino et al. [15],
namely their three types of features: the Zernike moments (ZM),
the Polar Cosine Transform (PCT), and the Fourier–Mellin
transform (FMT).

To simplify comparison to other methods in literature, we use
two standard image datasets [35,4]. The performance of other
methods on the same datasets is analyzed in [3,4]. We also created
a third image set containing difficult cases with repeated patterns,
objects masked by an indistinct texture (skies, building facades,
etc.) and small objects. All three datasets (DS1, DS2 and DS3),
contain in total 81 images:

� DS1: 23 images by Silva at al. [4],
� DS2: 40 images, CoMoFoD dataset [35],
� DS3: 18 images created by our research group, representing the
difficult cases.

To evaluate the algorithms, we use two different metrics. In
both cases, we compare with the ground truth represented, for
each image, by a matrix of ones on the tampered pixels and zeroes
elsewhere.

� Image level: An algorithm is successful if it finds at least a portion
of the tampered area. The algorithm fails if it does not find any
modified pixel.
� Patch level: We divide images to non-overlapping patches of 8 x 8
pixels. A patch is considered correctly marked as tampered if
there is an overlap with a pixel in the ground truth. We count the
number of correctly found tampered patches (true positivies,



Table 2
Comparison of methods on dataset DS2, 40 images, 9288 patches in ground truth.

Method Image level Patch level TPs Patch level FPs

# % # sens. [%] # FDR [%]

DCT-basic 16 40.00 532 5.73 1130 67.99
DCT-tuned 36 90.00 6601 71.07 595 8.27
SIFT 26 65.00 6057 65.21 9196 60.29
ZM 18 45.00 6560 70.63 855 11.53
PCT 20 50.00 6989 75.25 970 12.19
FMT 21 52.50 7035 75.74 1705 19.51

OUR 40 100.00 8055 86.72 127 1.55

Table 3
Comparison of methods on dataset DS3 (difficult cases), 18 images, 9850 patches in
ground truth.

Method Image level Patch level TPs Patch level FPs

# % # sens. [%] # FDR [%]

DCT-basic 10 55.56 2353 23.89 862 26.81
DCT-tuned 16 88.89 8672 88.04 890 9.31
SIFT 6 33.33 4845 49.19 4793 49.73
ZM 10 55.56 6965 70.71 675 8.84
PCT 11 61.11 7060 71.68 1062 13.08
FMT 11 61.11 6983 70.89 2422 25.75

OUR 18 100.00 8987 91.24 119 1.31

Table 4
Comparison of methods on full dataset (DS1 + DS2 + DS3), 81 images, 32,783
patches in ground truth.

Method Image level Patch level TPs Patch level FPs

# % # sens. [%] # FDR [%]

DCT-basic 42 51.85 5582 17.03 3847 40.80
DCT-tuned 75 92.59 26,917 82.11 1574 5.52
SIFT 53 65.43 20,029 61.10 15,630 43.83
ZM 51 62.96 26,513 80.87 2306 8.00
PCT 54 66.67 27,005 82.38 2809 9.42
FMT 55 67.90 26,806 81.77 4757 15.07

OUR 81 100.00 31,301 89.91 302 1.01

Fig. 9. Example of detection: ground truth from DS1 (a), DCT-basic (b), DCT-tuned (c)
constraint (h).
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TPs) and the number of patches labeled as tampered with no
overlap with the ground true (false positives, FPs).

For space reasons, we show results on JPEG images compressed
only with quality factor 95. As Fig. 7 suggests, we can expect similar
behavior for qualities above around 90.

Quantitative results for all the datasets as well as for the union
of all the datasets are given in Tables 1–4. The second column
shows the number of images, where the algorithm found at least a
part of the tampered area. The same number, as a percentage of all
images in the dataset, is given in the third column (success rate).
The forth and sixth columns show the numbers of patch level TPs
and FPs. We also compute two standard statistical quantities,
sensitivity (abbreviated as sens. in Tables 1–4) and false discovery
rate (FDR, one minus precision). They are given in columns five and
seven. The number of patches in ground truth is defined as the
number of patches containing at least one modified pixel. Three
examples in Figs. 9–11 illustrate typical outputs of the tested
approaches.

At the image level, the SIFT-based method achieves a decent
success rate of 91% on DB1 but often fails on DB2 and DB3 (65% and
33%). Moreover, this method produces a large number of false
matches at the patch level, even for relatively easy examples.
Fig. 10(d) illustrates how repeated motives can cause a complete
failure of this algorithm, a problem mentioned already in the
original paper [36]. We see similar results also for all three
methods of Cozzolino [15]. Although the success rate on DS1
database is at the patch level over 95% for ZM, over 94% for PCT, and
over 93% for FMT, the FDR is around 5%. And the success rates on
the other two databases are between 70% and 75% only.

The results in Tables 1–4 and examples in Figs. 9–11(b) show
that the basic version of the DCT-based algorithm [1] misses most
true matches. Using the modified version of [1] described above
(DCT-tuned), we achieved an overall success rate over 92% at the
image level and sensitivity over 82% at the patch level, see Table 4.
As the weakest point of this approach, we identified the pictures
with large areas of weak texture. This is demonstrated on two
examples in Figs. 12 and 13, where the algorithm produces a large
number of false matches in the homogeneous background, which
cannot be distinguished from the true patches containing a
relatively small object. We observed analogous behavior in many
, SIFT (d), ZM (e), PCT (f), FMT (g), and proposed algorithm with JPEG copy-move



Fig. 10. Example of detection: ground truth from DS2 (a), DCT-basic (b), DCT-tuned (c), SIFT (d), ZM (e), PCT (f), FMT (g), and proposed algorithm with JPEG copy-move
constraint (h).

Fig. 11. Example of detection: ground truth from DS3 (a), DCT-basic (b), DCT-tuned (c), SIFT (d), ZM (e), PCT (f), FMT (g), and proposed algorithm with JPEG copy-move
constraint (h).
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pictures with for example the skies, building facades or road
surfaces.

The proposed JPEG copy-move constraint improves results
significantly even when used with the simple l2 distance between
patches. It achieves the overall success rate of 100% at the image
level and sensitivity 89.91% at the patch level. The main advantage
of the JPEG constraint is that it increases precision and sensitivity
by reducing the number of false positives (1.55%) even in extremely
homogeneous areas like in Figs. 12 and 13. As a result, for larger
objects, we get very compact results even without any additional
postprocessing, see Figs. 9–11(h). Note that several missing pixels
in Figs. 9(h) and 10(h) are caused by considering, for speed reasons,
only the closest patch. Using a more elaborate nearest neighbor
search algorithm would easily remove them in these examples.
They could be also quickly removed by verifying the JPEG
constraint for all “holes” in the detected objects.

The computation of JPEG copy-move constraint comes at the
cost of additional time, depending on how many candidate pairs
we consider. In the simplified algorithm used in our experiments
that work with only the closest patch to each 8x8 block on the JPEG
grid, the estimate from the end of Section 5 gives a rough upper
bound of 4 * 12 + 12 = 60 JPEG compressions and decompressions of
the analyzed image in the worst case, when all the pairs we found
are close enough to be considered valid candidates, for example on
an image of clear skies. For example, on our PC with Intel Core i5
CPU (3.4 GHz) one JPEG compression/decompression of an image



Fig. 13. Reducing false matches. Figure (a) is an original image from DS3, (b) ground truth, (c) result of DCT-tuned, (d) proposed algorithm with JPEG copy-move constraint.
The SIFT, ZM, PCT, and FMT method failed completely (found nothing).

Fig. 12. Reducing false matches. Figure (a) is an original image from DS3, (b) ground truth, (c) result of DCT-tuned, (d) proposed algorithm with JPEG copy-move constraint.
The SIFT, ZM, PCT, and FMT method failed completely (found nothing).
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of size 512 � 512 (DS2) using the Matlab JPEG toolbox takes about
1/40s, i.e. 2 * 60/40 � 3s in total.

7. Conclusion

In this paper, we propose a method to improve reliability of
detecting copy-move forgery in JPEG images. For this purpose, we
introduce the JPEG copy-move constraint that can be used to filter
out false matches of candidate patches in almost any existing
detection algorithm. We show an efficient algorithm to verify this
constraint. Since the constraint is exact, i.e. gives no false negatives,
results are always better than without this constraint. For color
images, the algorithm is derived for both the brightness and
chrominance channels. However, to speed up the computation, we
work only with brightness, which allows for smaller patches (8 � 8
instead of 16 � 16).

Experiments show that the JPEG copy-move constraint is very
strong for JPEG quality factors above 90, where it almost
completely eliminates false matches. However, the reduction of
false positives is considerable already from qualities around 70.
The JPEG constraint is useful especially for small objects and areas
with indistinct texture, where using the coherence of shift vectors
in the postprocessing phase is not sufficient. This phenomenon is
less pronounced for larger objects but the statistics in the
experimental section show that even there the JPEG constraint
helps significantly. The JPEG constraint can also distinguish the
copy-move forgery from naturally repeating patterns, which is
very hard for block-based methods and probably impossible for the
methods based on keypoints.

To demonstrate the influence of the JPEG copy-move constraint,
we used a relatively simple algorithm. We can expect that using the
constraint with a more elaborated algorithm the results could be
even better.

The proposed approach cannot be directly used with geomet-
rical transforms like scale change or rotation. One could imagine an
extension to these operations but results probably would not be
worth additional complexity of the algorithm. In our opinion,
improved detection justifies this restriction, though. In addition,
the scenario of pure shift is probably frequent enough to be
considered separately. Another limitation of the JPEG constraint is
that it requires the moved object to contain at least one JPEG block.
On the other hand, smaller objects are probably too hard also for all
other methods.
To help both researchers and practitioners further investigate
the potential of the JPEG copy-move constraint, we provide a
Matlab implementation of the proposed algorithm. The code and
our DS3 database are available at: https://github.com/michalsorel/
jpegcopymove.
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Proposition 1 Appendix

Proposition 1. Projection
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Proof. The formula for the projection is a consequence of
Lemma 1. To be applicable, we must show that AAT, where
A = QCDM, is diagonal. First, MT takes a source patch and expands
it to the size of the target patch by filling with zeros and M
selects back the pixels of the source patch, therefore MMT = I.
Second, let us assume that D is the averaging over non-
overlapping windows of m � n pixels. Then DT replicates each
pixel of a down-sampled image to a m � n window multiplied by
a factor k = 1/mn. Since D only averages the values in the
window, we are getting DDT = I/mn = kI. Finally, since C is
orthogonal, i.e. CCT = I, we are getting AAT = QCDMMTDTCTQT =
QCDDTCTQT = kQCCTQT/mn = kQQT, which is diagonal. Finally,

ATðAATÞ�1 ¼ MTDTCTQT 1
k diag ðq2Þ ¼ 1

k M
TDTCT diagðqÞ. &.

Lemma 1. Projection PAx2hb1 ;b2iðzÞ ¼ arg min x k x � z k, s.t.
Ax 2 hb1, b2i, b1� b2, A 2 Rm�n, m � n full rank, AAT diagonal, can

https://github.com/michalsorel/jpegcopymove
https://github.com/michalsorel/jpegcopymove
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be computed as PAx2hb1 ;b2iðzÞ ¼ z � ATðAATÞ�1ðAz � Phb1 ;b2iðAzÞÞ,
where Phb1 ;b2iðyÞ ¼min ð max ðb1; yÞ; b2Þ.
The proof of this lemma can be found in the appendix of [34].
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