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Fast Bayesian JPEG Decompression and
Denoising With Tight Frame Priors

Michal Šorel and Michal Bartoš

Abstract— JPEG decompression can be understood as an
image reconstruction problem similar to denoising or deconvolu-
tion. Such problems can be solved within the Bayesian maximum
a posteriori probability framework by iterative optimization
algorithms. Prior knowledge about an image is usually described
by the l1 norm of its sparse domain representation. For many
problems, if the sparse domain forms a tight frame, optimization
by the alternating direction method of multipliers can be very
efficient. However, for JPEG, such solution is not straightfor-
ward, e.g., due to quantization and subsampling of chrominance
channels. Derivation of such solution is the main contribution
of this paper. In addition, we show that a minor modification
of the proposed algorithm solves simultaneously the problem of
image denoising. In the experimental section, we analyze the
behavior of the proposed decompression algorithm in a small
number of iterations with an interesting conclusion that this
mode outperforms full convergence. Example images demonstrate
the visual quality of decompression and quantitative experiments
compare the algorithm with other state-of-the-art methods.

Index Terms— Image processing, image restoration, sparsity,
JPEG, ADMM, denoising.

I. INTRODUCTION

LOSSY compression of images using the JPEG
standard [1] based on the quantization of discrete

cosine transform (DCT) coefficients has become a standard
way to store image data. Decompression specified in the
JPEG standard was created mainly with speed in mind and
typically results in artifacts along strong edges and a visually
disturbing checkerboard pattern. However, decompression
can be thought of as an image restoration problem. Indeed,
since the adoption of the JPEG standard in 1992, the image
processing community has worked on finding efficient and
precise methods to restore the original data. Similarly to
other specialized problems, the progress in JPEG restoration
mostly reflects developments in general image restoration.

JPEG decompression/restoration techniques can be naturally
categorized based on the Bayesian maximum a posteriori
probability (MAP) framework. Even for various ad hoc artifact
removal filters and other heuristic methods trying to reduce
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what is disturbing from a human perspective by suppressing
the checkerboard pattern and smoothing along strong edges,
we can usually find an intuitive explanation as an approxima-
tion of the MAP view.

The Bayesian MAP approach estimates the posterior prob-
ability of possible solutions and chooses the image with
the highest probability. Following the Bayes formula, this
posterior probability is proportional to the product of the like-
lihood, describing the error introduced during the compression
process, and of an approximation of the prior probability.
As a rule, instead of maximizing the probability, we equiva-
lently minimize the negative log-probability, which transforms
the product to the sum of the negative log-likelihood and a
regularization function.

In JPEG restoration, Bayesian likelihood is considered
in two forms representing two large groups of algorithms.
The first group works with precise likelihood correspond-
ing to the quantization constraint set (QCS) defined as
an interval of DCT coefficients, rounding of which could
have resulted in the integer coefficients stored in the JPEG
file [2]–[6].

Instead of the QCS, the second group works with
the distribution of quantization error approximated by a
multivariate Gaussian function, which corresponds to a mul-
tivariate Gaussian function also in the spatial domain. Its
variance is spatially varying with higher values along edges
of JPEG blocks, and its covariance matrix has non-negligible
off-diagonal elements [7]. Compared to the QCS, the Gaussian
likelihood is differentiable and resulting function has no
constraints, which simplifies optimization of the posterior
probability and speeds up convergence [7]–[9].

In addition to the choice between the QCS and its
Gaussian approximation, the quality of reconstruction depends
mainly on the choice of image prior probability distribution
represented by the corresponding regularization function.
Early publications used smooth priors, for example the Huber
function of spatial gradient in [8] or weighted quadratic
function of gradient in [2]. Later methods incorporated non-
differentiable sparse priors that provided state-of-the-art results
for many other image restoration problems [10]. These include
the total variation (TV) [3], [11], fields of experts (FoE) [9],
total generalized variation (TGV) [4], [5], wavelets [12], non-
local means [13] and sparse dictionaries [14], [15]. We should
also mention algorithms that can be interpreted as working
with DCT domain priors [16]. State-of-the-art algorithms
usually build on the ideas of sparsity and non-local means
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denoising [17]–[20] or neural networks [21], [22], achieving
good results at the cost of longer run times.

The choice of the algorithm to optimize the MAP cri-
terion depends on image priors. Early methods that used
smooth priors applied gradient descent or for the QCS the
projected gradient descent [8], [11]. Convexity of the QCS
motivated the use of the projection on convex sets (POCS)
method [23], [24]. As the POCS method works with no
objective function, only constraint sets, these decompression
methods replace smoothness priors by inequalities.

Bayesian estimation with the sparse priors based on l1 norm
found its use in many image processing, compressed sensing
and machine learning applications. One difficulty with these
priors is that resulting non-smooth functions are difficult
to optimize by standard methods. This helped spreading
of several first-order techniques for non-smooth optimiza-
tion [25]–[28], which are relatively simple to implement and
are fast enough to be practical. Probably the most popular are
the alternating direction method of multipliers (ADMM) [29],
also known as the split-Bregman method [26], and the
accelerated Arrow-Hurwicz algorithm [30].

For JPEG decompression, the algorithm [30] applied on
the QCS formulation with TV regularization was used in [3].
The main disadvantage of TV in this context is that it favors
unnatural piecewise constant functions, which is exactly the
character of JPEG artifacts on block boundaries. To alleviate
this problem, in [4] and [5], the same authors proposed a
modified regularization term - total generalized variation.

Based on our good experience with ADMM in other
problems [31], this paper investigates the application of
ADMM on the combination of the Gaussian approximation of
the QCS and tight frame priors. In general, for image restora-
tion problems with the sparse priors based on l1 norm, ADMM
can be very fast under the assumption that there is a closed-
form non-iterative solution for the inverse of an operator
corresponding to the regularized Hessian of image degradation
(see Sec.~IV). The time complexity of this inverse depends on
the properties of both the degradation and regularization func-
tions. For deconvolution problems, fast inversion is possible
in the Fourier domain for priors containing only convolutions,
such as TV and FoE [32]. There is a group of degradations,
where efficient inversion requires the linear operator used in
the regularization function to form a tight frame [33]. Several
examples of such degradations are derived for example in [27],
including deconvolution, inpainting, and reconstruction from
partial Fourier observations.

Tight frames sacrifice the orthonormality and linear inde-
pendence of orthonormal bases while still enjoying the same
efficient decomposition and reconstruction as orthonormal
wavelet bases. In recent years, many tight frames have
been proposed to more efficiently represent natural images,
including the dual-tree complex wavelets (DT-CWT) [34],
ridgelets [35], curvelets [36], bandlets [37], and shearlets [38].
Tight frames can be even learned from data [39].

A. Contributions

In this article we show that ADMM can be efficiently
applied to solve an approximation of the MAP formulation

of JPEG restoration with sparse priors forming a tight frame.
To this end, we replace quantization noise by its Gaussian
approximation and apply the Woodbury matrix inversion
formula to express the inverse of the regularized Hessian
of degradation operator, which has in this case a relatively
complicated structure, consisting of the block-wise DCT, quan-
tization and for chrominance channels also down-sampling.
We derive how this inverse can be computed directly in the
DCT domain.

Using the Gaussian approximation of quantization noise
has several advantages. Likelihood becomes strongly convex,
which in general improves convergence. Perhaps surprisingly,
its use improves reconstruction quality both visually and in
terms of the signal-to-noise ratio (SNR), as we show in our
experiments. It also makes the result less sensitive to the
number of iterations.

Asymptotical convergence properties of ADMM are well
known. In contrast to most articles, we concentrate on its
behavior in a small number of iterations, which is in practical
applications more relevant. An important conclusion we draw
is that a small number of iterations, such as five, can achieve a
better ISNR (improvement in SNR) than much larger numbers.
This also justifies the use of ADMM instead of accelerated
primal-dual methods that in theory further improve conver-
gence by preconditioning or utilizing the strong convexity of
the likelihood function. Our experience is that for a small
numbers of iterations ADMM is competitive and sometimes
even faster than for example [30], which is not true for higher
numbers. Since one iteration of ADMM in our case consists
of only two DCTs and two frame transforms (in addition to a
few element-wise operations), this makes MAP based iterative
methods as practical as non-iterative methods.

In our experiments, we illustrate the behavior of the
proposed algorithm for different priors and various stop-
ping criteria, both in terms of SNR and visual impression.
We compare the algorithm with similar methods based on
the QCS model with the total variation [3] and total gener-
alized variation [4], [5] priors, as well as the state-of-the-art
method [20]. The latter gives better SNR but at the cost of
much longer running time. Statistical experiments show the
mean ISNR and its variance on a set of fifty images.

The Bayesian MAP approach can be extended to other
image restoration problems involving JPEG compression,
for example the resolution enhancement of compressed
videos [16], [40]. Nevertheless, as a rule, their solution is
complex and much more time-consuming than simple JPEG
decompression. In this paper, we show that as an interesting
side-effect of using the Gaussian approximation of quantiza-
tion noise, a simple modification of the proposed decompres-
sion algorithm can be used to remove simultaneously image
noise and compression artifacts.

The rest of the paper is organized as follows. Sec. II explains
the MAP formulation of the problem of image restoration from
JPEG data. Sec. III shortly explains the main optimization
tool we use, the alternating direction method of multipliers.
For grayscale images, the algorithm is derived in Sec. IV.
Sec. V extends the algorithm to color images and discusses a
modification that regularizes jointly in all channels. Sec. VI
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TABLE I

NOTATION

shows how the proposed algorithm can be extended to the
problem of denoising. Sec. VII demonstrates the performance
of the proposed algorithm by both quantitative and qualita-
tive experiments and results are summarized in Sec. VIII.
To improve readability, we provide a complete list of used
variables and operators in Tab. I.

II. BAYESIAN JPEG RESTORATION WITH SPARSE PRIORS

We start by shortly recalling how the JPEG compres-
sion/decompression works and describing the MAP solution of
the JPEG decompression problem. We assume that readers are
familiar with the basic principles of JPEG compression [41],
namely that it is based on the quantization of DCT (discrete
cosine transform) coefficients, where the DCT is applied to
small blocks of usually 8× 8 pixels.

For grayscale images, the JPEG compression-decom-
pression process can be described by a sequence of operators

y = C−1 Q−1 [QCx] (1)

where x is an original image, y the decompressed image,
Q and C the linear operators of quantization and DCT, respec-
tively. The square brackets denote the operator of rounding,
which can be thought of as a quantization noise. We can
imagine that images x and y are vectors and operators
Q and C matrices, even though the matrices will never be
formed explicitly. C is a block diagonal matrix made up
of the square matrices of DCT. C is orthogonal, because
all the DCT sub-matrices are orthogonal. Q is a diagonal
matrix corresponding to element-wise division by quantization
coefficients from the quantization table stored in each JPEG
file (64 values for 8 × 8 blocks), i.e. Q contains vector-
ized coefficients replicated for each block along diagonal.
We will denote the vector of these coefficients as q , i.e. Q =
diag(q). For color images, the image is first transformed into
Y ′CBCR space and individual channels are stored separately.
The luminance (brightness) is stored as described above but
chrominance channels are often stored at smaller resolution,
which complicates the degradation model. This is described
in Sec. V.

Given an observation y, a model describing the probabil-
ity distribution of possible observations p(y|x) and a prior

probability p(x), the Bayesian MAP approach maximizes the
posterior probability p(x |y) ∼ p(y|x)p(x). Since in our case
of rounding to the nearest integer the likelihood p(y|x) is
uniform within the quantization interval −0.5 < QCy −
QCx ≤ 0.5. MAP estimation corresponds to the maximization
of the prior probability p(x) over all x satisfying this interval
constraint, the QCS.

It is quite common in the MAP based image restoration that
p(x) is given by a sparsity inducing regularization p(x) ∼
exp(−τ

∥
∥�T x

∥
∥

1), where �T is a linear analysis operator
(transform to a sparse domain) such as the gradient, wavelets,
or an overcomplete dictionary. We in addition constrain the
operator to satisfy ��T = I , which is called a normalized
or Parseval frame [33]. Slightly more generally, we can define
tight frames as satisfying ��T = t I (for a scalar constant t),
which naturally arises for example from concatenating several
orthogonal bases. Nevertheless, since tight frames can always
be normalized, it is a common practice to derive algorithms for
normalized frames but use the general term tight frames. This
is the case of this paper too. In our experiments, we use mainly
the DT-CWT tight frame [34] that represents well natural
images and has a linear computational complexity. We also
show results for the data specific tight frame [39]. Note that the
well known constructions of overcomplete systems [35]–[37]
describe well cartoon-like images but are not so good for nat-
ural images. For the TV and FoE priors in general ��T �= I
and therefore the procedure we derive cannot be used directly.
In this case we can use less efficiently a similar procedure
with ADMM replaced by its variant [27] or an alternative not
requiring the tight frame condition [30], [42]–[45].

As mentioned in the introduction, an alternative to the
QCS is the approximation of quantization error by a Gaussian
function with variance σ 2

q

QCy = QCx + e, e ∼ N(0, Iσ 2
q ), (2)

where σ 2
q = 1/12 is the variance of the unit quantization

noise [9]. Assuming that the errors introduced by rounding
of DCT coefficients are independent, since C is orthogonal
and Q diagonal, the covariance matrix of spatial domain
noise is E[C−1 Q−1eeT Q−T C] = C−1 Q−1 E[eeT ]Q−T C =
C−1 Q−2Cσ 2

q .
The MAP solution for this model is a convex problem

arg min
x

1

2σ 2
q
‖ ỹ − QCx‖2 + τ

∥
∥
∥�T x

∥
∥
∥

1
, (3)

where ỹ = QCy are the quantization coefficients stored in
JPEG format. Equation (3) is a special case of what is also
known as the analysis-based approach to sparsity restoration
[46] with a special form of the degradation operator QC and
observation in DCT domain ỹ = QCy. The scalar parameter
τ can be estimated from training data by fitting distribution

p(x) ∝ τ N e−τ
∥
∥�T x

∥
∥

1, (4)

where N is the dimension of x . The maximum likelihood
estimate is straightforward by setting the derivative of (4) to
zero, which gives τ = N/

∥
∥�T x

∥
∥

1.
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Fig. 1. Comparison of the mean ISNR (over 50 images) for combinations
of three ML estimates of τ and three different numbers of iterations. τDB
is trained from a database of images, τGT from ground truth and τJ PG is
estimated from input image. In all cases, 5 iterations achieve the best ISNR,
10 iterations is best visually, 20 iterations is visually close to full convergence.

III. ALTERNATING DIRECTION METHOD OF MULTIPLIERS

The main optimization tool we use is the alternating direc-
tion method of multipliers (ADMM) [27], [29]. ADMM is a
method to minimize the sum of two functions

min
x

f (x)+ g(Gx), (5)

where f and g are convex not necessarily differentiable
functions and G a linear operator. ADMM consists of
iteratively executing three update steps

x ← arg min
x

f (x)+ μ

2
‖Gx − a − d‖2 , (6)

a ← arg min
a

g(a)+ μ

2
‖Gx − a − d‖2 , (7)

d ← d − (Gx − a), (8)

where scalar μ > 0 is a parameter, a is an auxiliary variable
representing a sparse domain counterpart of x and d a dual
variable. Convergence is proved in [29]. Stopping criteria are
discussed for example in [47], Section 3.3.1.

IV. ALGORITHM

Since (3) is obviously a special case of (5), its global
minimum can be found by ADMM described in the previous
section. Since (3) can be multiplied by σ 2

q without changing its
optimum, we can hide σ 2

q in τ and without loss of generality
assume σ 2

q = 1. After this simplification, ADMM alternates
solution of two convex problems

arg min
x

1

2
‖ỹ − QCx‖2 + μ

2
‖�T x − a − d‖2 (9)

and

arg min
a

τ‖a‖1 + μ

2
‖�T x − a − d‖2 (10)

supplemented by a simple update of the dual variable.
Equation (10) is a fast element-wise thresholding operation

a← sgn
(

�T x − d
)

max

(

0; |�T x − d| − τ

2μ

)

. (11)

As a consequence, the critical point of the algorithm is a fast
solution of (9), which can be expressed as a linear system

(CT QT QC + μ��T )x = CT QT ỹ + μ�(a + d). (12)

The operator we invert can be interpreted as the regularized
Hessian of image degradation.

Let us assume that � is a tight frame (��T = I ). To further
simplify notation, let us denote �(a+ d) as z and CT QT ỹ =
CT QT QCy as ȳ, which replaces (12) by

(CT QT QC + μI )x = (ȳ + μz) . (13)

Recall that DCT is orthogonal, i.e. CCT = CT C = I .
Multiplying by C from left

(QT Q + μI )Cx = C (ȳ + μz). (14)

Since Q is diagonal, QQT + μI = diag(q2 + μ) is also
diagonal and has a trivial inverse. We get a non-iterative
x-update

x ← CT diag(
1

q2 + μ
)C (ȳ + μ�(a + d)) , (15)

which only consists of element-wise operations and two DCTs.

V. EXTENSION TO COLOR AND JOINT REGULARIZATION

For decompression of color images, let us first consider
three channels of Y ′CbCr space independently of each other.
As a rule, JPEG images store its chrominance channels at half
resolution, which gives a slightly modified problem

arg min
x

1

2
‖QC Dy − QC Dx‖2 + τ

∥
∥
∥�T x

∥
∥
∥

1
(16)

where D is a down-sampling operator. In practice, there are
two options for D. It is either a direct sampling at half
resolution, i.e. taking every second pixel in each direction,
or it is combined with a low-pass operator, which means
that D computes the mean value of each square of size
2 × 2 pixels (in general we will consider averaging over
m × n pixels). Denoting DT CT QT QCy as ȳc, we get the
x-update as

x ← (DT CT QT QC D + μI )−1 (ȳc + μz) (17)

Again, our purpose is to compute this inverse directly in one
step. Sherman-Morrison-Woodbury matrix inversion formula

(A+U RV T )−1 = A−1 − A−1U(R−1+V T A−1U)−1V T A−1

(18)

after substitution A = μI , U = DT CT QT , R = I , V T =
QC D transforms the inverse in (17) to

1

μ

(

I − DT CT QT
(

QC DDT CT QT + μI
)−1

QC D

)

.

It can help only if DDT = k I , because then CkCT = k I .
Indeed, it holds for both variants we consider. For simple
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Fig. 2. Difference between the iteration with best ISNR (left), full convergence (middle) and early stopping rule (right) for TV-based method [3] and proposed
combination of the Gaussian approximation of the QCS and DT-CWT prior. Best viewed electronically. (a) Original. (b) JPEG, quality = 50, 0 dB, 0.05
s. (c) State of the art [20]: 1.21 dB, 140 s. (d) TV [3], max. ISNR: 0.82 dB, 1.5 s, 7 it. (e) TV [3], converged: -0.35 dB, 178 s, 991 it. (f) TV [3], early
stopping: 0.63 dB, 2.8 s, 15 it. (g) Proposed DT-CWT, max. ISNR: 0.79 dB, 0.4 s, 5 it. (h) Proposed DT-CWT, converged: 0.36 dB, 30 s, 500 it. (i) Proposed
DT-CWT, early stopping: 0.68 dB, 0.7 s, 10 it.

down-sampling DDT = I . In the variant with a low-pass filter
averaging over m × n pixels k = 1/(mn),1 i.e. for the most

1Proof is trivial for direct subsampling. Because DT replicates one pixel
to a square of m × n pixels and D picks one of them, we get DDT = I .
In the latter case, DT replicates each pixel to m × n pixels multiplied by
a scalar k = 1/(mn). D computes an average of the same values, together
giving DDT = k I .

common 2 : 1 chroma subsampling [1] k = 1/4. We obtain

x ← 1

μ

(

I − DT CT QT
(

k QQT + μI
)−1

QC D

)

(ȳc + μz)

= 1

μ

(

I − DT CT diag(
q2

kq2 + μ
)C D

)

(ȳc + μ� (a + d))

(19)
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Algorithm 1 Proposed Algorithm for Decompression of Color
Images. For Grayscale Images the Sum in Point 5) Disappears,
in Other Respects it is a Special Case With k = 1 and D = I

which is for D = I equivalent to (15) and compared to (15)
adds one up-sampling and one down-sampling operation per
iteration.

The procedure described above can be modified to utilize
the correlation between color channels by regularizing jointly
in all channels

min
x

1

2

3
∑

i=1

∥
∥
∥Qi C Di yi − Qi C Di x i

∥
∥
∥

2 + τ

∥
∥
∥
∥
∥
∥

√
√
√
√

3
∑

i=1

∣
∣�T x i

∣
∣
2

∥
∥
∥
∥
∥
∥

1

,

(20)

where the absolute value and square power in the regulariza-
tion term are element-wise operations. Quantization tables and
down-sampling operators are specific to each channel i . This
approach is a special case of now widely used group sparsity
but can be traced back to work on gradients of multi-valued
images [48]. Applied to luminance-chrominance model as in
this paper, joint regularization was used for example in [49].

Again, we can apply ADMM, which can be done indepen-
dently for each channel except thresholding (10), solution of
which becomes

ai ← �T x i − di

√
∑3

j=1 |�T x j − d j |2
·

max

⎛

⎝0;
√
√
√
√

3∑

j=1

|�T x j − d j |2 − τ

2μ

⎞

⎠. (21)

For high quality factors, there is little difference between
separate and joint regularization. The added value of joint
regularization becomes apparent for highly compressed
images, where strong quantization of down-sampled chromi-
nance channels typically damages edges. As edge information
is preserved in the luminance channel, it is transferred
by joint regularization to chrominance channels. The resulting
algorithm, including chrominance channels and joint
regularization, is summarized in Alg. 1.

VI. BAYESIAN JPEG DENOISING

An interesting consequence of approximating the quantiza-
tion noise by a Gaussian distribution is a simple extension

to denoising. More precisely, we consider the situation of an
image degraded by a Gaussian noise n ∼ N(0, σ 2

g ) and then
compressed by the JPEG algorithm. The task is to recover the
original image by maximizing the posterior probability using
the same priors we use in the JPEG decompression.

For simplicity, we first show the derivation for grayscale
images. The only difference with respect to (3) is introducing
color noise to the observation QC(x+n) = QCx+QCn. DCT
is orthogonal, so Cn is still white but the multiplication by Q
generates a diagonal covariance matrix E[QCnnT CT QT ] =
QC E[nnT ]CT QT = σ 2

g QQT = σ 2
g diag(q2). Combined with

the Gaussian approximation of quantization noise (noises are
independent of each other) we end up with covariance matrix
� = σ 2

q I +σ 2
g diag(q2) = diag(σ 2

q +σ 2
g q2). Instead of (3) we

solve

arg min
x

1

2
(ỹ − QCx)T �−1 (ỹ − QCx)+ τ

∥
∥
∥�T x

∥
∥
∥

1
,

which can be again solved by ADMM. The only difference is
in the x-update, where instead of (9) we solve

arg min
x

1

2
(ỹ−QCx)T �−1 (ỹ−QCx)+μ

2
‖�T x − a − d‖2,

(22)

which is equivalent to

(CT QT �−1 QC + μ��T )x = CT QT �−1 ỹ + μ�(a + d).

(23)

Assuming again ��T = I , denoting ȳ = CT QT �−1 ỹ, z =
�(a + d) and multiplying from left by C gives

(

QT �−1 Q + μI
)

Cx = C (ȳ + μz)

x ← CT diag(
1

q2

σ 2
q+σ 2

g q2 + μ
)C (ȳ + μ�(a + d)). (24)

We can see that we obtained almost the same formula
as (15), except the multiplication by the diagonal covariance
matrix in the constant term on the right side and that weighting
of quantization coefficients now depends on its frequency.

The situation is analogous for chrominance channels regard-
less of whether we use separate or joint regularization. The
noise covariance becomes � = diag(σ 2

q + kσ 2
g q2), the right

hand side changes to ȳc = DT CT QT �−1 ỹ and (17) becomes

x ← (DT CT QT �−1 QC D + μI )−1 (ȳc + μz). (25)

In the inversion formula (18) we add R = �−1, which in the
x-update (19) changes only the diagonal term diag( q2

kq2+μ
)

giving

x ← 1

μ

⎛

⎝I − DT CT diag(
q2

kq2
f + μ

(

σ 2
q + kσ 2

g q2
) )C D

⎞

⎠

·
(

DT CT diag(
q

σ 2
q + kσ 2

g q2 )ỹ + μ� (a + d)

)

. (26)
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TABLE II

QUANTITATIVE COMPARISON OF EXPERIMENT IN FIG. 5, JPEG QUALITY = 30. ISNR/PSNR VALUES ARE IN DB. ALL VALUES ARE FOR Y ′ CHANNEL

Fig. 3. Statistical comparison of the maximum achievable ISNR on a
set of 50 images for the algorithm with the QCS or proposed Gaussian
approximation and two different priors. The order of the variants in each
group representing the same quality from left to right: Gaussian approx. with
DT-CWT, QCS with DT-CWT, Gaussian approx. with learned frame [39],
QCS with learned frame [39].

Fig. 4. Statistical comparison of the maximum achievable ISNR on
a set of 50 images for different JPEG decompression algorithms. The
order of the methods in each group representing the same quality is from
left to right: Proposed with DT-CWT, proposed with learned frame [39], QCS
with TV priors [3], QCS with TGV priors [5], state-of-the-art method [20].

VII. EXPERIMENTS

In this section, we experimentally demonstrate our contribu-
tions. Statistical experiments are carried out on a database of
fifty outdoor images pre-processed to contain almost no noise.
This was achieved by taking RAW images by a full-frame SLR
camera under good lighting conditions and decreasing image
resolution by a factor of eight in each direction. Since each
pixel of the resulting image was computed as an average of
64 original pixels, noise standard deviation decreased eight
times. In addition, we use also images taken from [20]. In all
statistical experiments (Figs. 3, 4 and 8) the improvement is
given in terms of the ISNR computed only on the luminance
channel in the iteration with the best ISNR. In our opinion it

is a reasonable option how to show the power of models we
compare independently of various stopping rules. We used a
variant of the box-and-whisker plot, showing the median value,
and first and third quartiles. Wherever in the experiments a
variant is denoted as “proposed”, it is meant that it uses the
Gaussian approximation of the QCS and ADMM as described
in the paper. For several example images, we give the values
of the ISNR, PSNR and SSIM [50].

The proposed methods were implemented in Matlab without
any parallelizations. For comparison we used the imple-
mentation of [3], [5], and [20] available on authors’ web
pages, all of them also in Matlab. For time measurements,
we modified [3], [5] to use the DCT implementation from
Phil Salee’s Matlab JPEG toolbox, which is much faster than
the original implementations. JPEG data were also read using
this toolbox.

A. JPEG Decompression

We start by demonstrating the fact that the Gaussian approx-
imation of the QCS condition does not harm the reconstruction
and even improve results. Fig. 3 shows for two different
priors (DT-CWT and the tight frame learned from patches
collected from the image database using [39]) that the ISNR
is significantly better using the Gaussian approximation than
using the QCS. It also shows that the learned frame is slightly
better than DT-CWT, which comes at the cost of longer
running time. Note that the QCS has no additional parameters
and the regularization parameter τ for the case of Gaussian
approximation was set by the ML estimate from the image
database. The combination of the QCS with the DT-CWT or
the learned frame was optimized also using ADMM (Sec. III)
with an indicator function instead of the least squares in (3).
We describe this algorithm (similar to [3] and [5]) in [6].

A similar experiment in Fig. 4 compares two variants
of the proposed approach (Gaussian approximation of the
QCS, the DT-CWT and learned frame [39] as priors) with
QCS-based algorithms (TV [3], TGV [5]) and the state-of-
the-art algorithm [20]. As mentioned earlier in all cases we
chose the iteration with the best ISNR but similar differences
would be observed using the early stopping rule proposed
in [3] and [5]. We can see that the learned frame is slightly
better than DT-CWT except very high quality factors, Gaussian
approximation overcomes the QCS (except qualities 20 and 30,
where DT-CWT is slightly worse than TV and TGV) and [20]
gives the best ISNR at all qualities except 90. On the other
hand, it comes at the cost of much higher running time (see
next experiment Fig. 5 and Tab. II). Surprisingly, in terms
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Fig. 5. Visual comparison of the proposed approach using DT-CWT or learned priors [39] with TGV [5] and Liu et al. [20]. The ISNR, PSNR and SSIM
values are summarized in Table II. Best viewed electronically.

of ISNR in Fig. 4, the results of TGV-based method [5]
can be slightly worse than those of the TV-based [3]. This
holds especially for higher qualities and small number of
iterations, where we get the optimal SNR. For full conver-
gence it would be the other way round (see also Fig. 2(e)).
Results are always better than standard JPEG decompression
with improvement from 0.4 to 1.1 dB (1.8 dB for [20]).

Even though this improvement does not look large, it is
important to realize that this occurs mainly along edges that
constitute only a small proportion of total image area.

Analogously to other image reconstruction problems, there
is a trade-off between quality of reconstruction and time
requirements. One of motivations for our research was our
experience that elegant formulations with l1 priors give in
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Fig. 6. Comparison of the proposed approach (DT-CWT prior) with (c, f) and without (b, e) joint regularization of channels shown on RGB (top) and
Cb (bottom) channels. Best viewed electronically.

practice results almost as good as much more complicated
models. Fig. 5 and Tab. II shows this trade-off for our case of
JPEG decompression. While the state-of-the-art method [20]
gives the best SNR and preserves more details than the rest,
we can see that visually both the QCS with TGV [5] and the
proposed algorithm give results that are hard to distinguish
from [20] at a fraction of time. Similarly, it is hard to tell
visually whether the more time consuming data specific tight
frame [39] is better than TGV or DT-CWT, although it wins
in numbers.

Behavior of reconstruction algorithms can be strikingly
different depending on the chosen stopping criterion. This
is shown in Fig. 2, where we compared the results for
convergence stopped in the iteration with the best SNR, early
stopping rule (for [3] it is based on the value of dual gap,
our algorithm was simply stopped after 10 iterations) and full
convergence. As a rule, full convergence makes the result
inferior both visually and in numbers. We can see that the
DT-CWT prior is more natural than TV in the sense that the
result has about the same character after a small number of
iterations as for full convergence. For [3] and our algorithm,
the best SNR is achieved around 5 iterations and visually best
results in 10-15 iterations.

The regularization parameter τ can be set in various ways.
It can be found experimentally and fixed for each quality level
or can be estimated as the value with maximum likelihood (see
end of Sec. II). The ML estimate can be obtained either from
an image database or simply from the input image. Fig. 1
compares these two options with the estimate from ground
truth. We can see the ISNR does not depend much on which
option we choose. The best results are achieved for a small
number of iterations and this number is important mainly for
high compression ratios. In our experiments, we estimate τ
from the image database.

The last experiment in this section compared the joint
regularization described in Sec. V with reconstruction of each
channel independently (Fig. 6). Although the differences in
color images appear mostly invisible because of the reduced
sensitivity to colors of human eye, they are present on small
color objects as e.g. the traffic sign and colors are in general
faded out due to the smoothing in chrominance channels. This
is further supported by the images of the Cb channel, where
e.g. the tower was reconstructed based on the information
from luminance channel. Interestingly, joint regularization
does not affect the PSNR and SSIM values of the luminance
channel.
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Fig. 7. Comparison of the proposed combined JPEG-denoising approach with DT-CWT priors and 10 iterations (c) with standard JPEG decompression
(a) and state-of-the-art JPEG decompression method [20] (b). Noise standard deviation was 10, quality factor 80. Best viewed electronically.

Fig. 8. Statistical comparison (maximum achievable ISNR on a set of
50 images) of combined JPEG-denoising approach with JPEG decompression
alone and standard l2-denoising, all of them with the same DT-CWT priors.
Original images were distorted by additive Gaussian noise with σg = 10
and compressed at nine different quality levels. The order of the methods
in each group representing the same quality is from left to right: Proposed
JPEG decompression without considering noise, l2-denoising, and proposed
combined JPEG-denoising approach.

B. Combined JPEG Decompression and Denoising

In Sec. VI we derived a simple extension of the proposed
JPEG decompression algorithm to combination with image
denoising. Given that image noise is partially suppressed by
JPEG compression, the question arises, whether such model
is necessary. Fig. 7 shows an example, where the answer is
affirmative. The image was degraded by Gaussian noise (σ =
10 out of 256 levels) and compressed with quality factor 80.
Standard JPEG decompression contains visible artifacts, which
are not removed even by the state-of-the-art algorithm [20] set
manually to achieve the best possible result. Our approach,
using known noise standard deviation, removes the artifacts
satisfactorily. Fig. 8 demonstrates benefits of the combined
approach in comparison with JPEG decompression alone and
standard MAP-based l2-denoising, all of them with the same
DT-CWT priors. Results are intuitive. If image noise is much
stronger than quantization, which in our example happens for
quality factors higher than 60, standard l2-denoising works

well, even though slightly worse than the combined approach.
On the other hand, if image noise is much smaller than
quantization noise, it is basically removed by JPEG compres-
sion and it is sufficient to use JPEG decompression without
denoising modification. Benefits of combined approach are
mostly visible in situations where image noise is of about the
same strength as quantization.

VIII. CONCLUSION

In this paper, we derived a fast solution of the prob-
lem of JPEG decompression based on the MAP formulation
with sparse priors by ADMM. The main contribution is
the observation that using a Gaussian approximation of the
quantization noise and a tight frame in the sparse prior
based on l1-norm allows for fast computation of the inverse
critical for the ADMM method. Derived formulas allow to
solve the formulation with the Gaussian approximation of
the QCS by other proximal techniques to further speed up
convergence [30], [42]–[45].

We showed that the Gaussian approximation of the QCS
gives a better SNR than using the QCS. This counter-
intuitive fact probably results from the partial inadequacy
of sparse priors preferring smooth functions in our situa-
tion, where high frequencies are damaged by JPEG com-
pression. Gaussian approximation favors solutions closer to
original JPEG decompression, which prevents the algorithm
to make result too smooth. As an example of tight frame
priors we used the dual-tree complex wavelets and learned
frames [39] and demonstrated that if they are coupled with the
Gaussian approximation of the QCS, they are superior to the
TV-based [3] and TGV-based [4], [5] methods in terms of
SNR. On the other hand, differences are not large and even the
simple TV prior can give very good reconstructions if stopped
early enough. We also investigated the trade-off between the
time and quality of reconstruction compared to the state-of-
the-art method [20]. While [20] restores slightly more details,
results are sometimes hard to distinguish from two orders
of magnitude faster methods such as the method proposed
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in this paper. Also using more time-consuming priors such
as [39] is justified only when computational aspects are less
important.

Finally, we showed that thanks to the approximation of the
likelihood by a Gaussian distribution, the proposed decom-
pression algorithm can be naturally extended to solve simul-
taneously the denoising problem in basically the same time
as the original algorithm. Benefits of combined approach
are mostly visible for noise of about the same strength as
quantization.

A simplified version of the proposed algorithm was used
in the image forensics tool [51]. Matlab code of several
variants of the algorithm described in this paper is available
at http://zoi.utia.cas.cz/jpegrestoration.
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