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Abstract—Standard decompression of JPEG images produces
artifacts along edges and a disturbing checkerboard pattern.
To reduce these artifacts, decompression can be formulated as
an image reconstruction problem within Bayesian maximum a
posteriori probability framework. In this type of problem, the
prior information about an image is typically given by the [;
norm of its sparse domain representation. In this paper, we
show how the solution of this problem can be achieved very
efficiently using the alternating direction method of multipliers if
the sparsity domain forms a tight frame. The proposed algorithm
restores images without disturbing JPEG artifacts in several
iterations, typically considerably less than competing algorithms.
The quality of reconstruction both visually and in terms of SNR
primarily depends on the tight frame used.

Index Terms—image processing, image restoration, sparsity,
JPEG, ADMM

I. INTRODUCTION

Lossy compression using the JPEG standard [1] is probably
the most common method to store image data. The loss
of information caused by the compression process typically
results in artifacts along strong edges and a visually disturbing
checkerboard pattern. For this reason it is natural to look at
JPEG decompression as an image restoration problem.

There are many JPEG decompression methods, from simple
filters, locally reducing what is disturbing from a human
perspective, to more elaborate methods based on more rigorous
statistical formulations. The latter usually uses the maximum
a posteriori probability (MAP) principle, looking for a so-
Iution with the highest posterior probability. Following the
Bayes formula, this posterior probability is proportional to
the product of the likelihood, describing the error introduced
during the compression process, and of an approximation of
the prior probability. As a rule, instead of maximizing the
probability, we equivalently minimize negative log-probability,
which transforms the product to the sum of negative log-
likelihood and a regularization function.

In JPEG, the log-likelihood corresponds to the quantization
constraint set (QCS), which is the set of images compression
of which would result in what has actually been stored in
the JPEG file. Since the compression is based on rounding
the weighted coefficients of the discrete cosine transform
(DCT), this set is given by intervals around the stored integer
coefficients. This formulation was used in [2], [3], [4], [5]. An
alternative approach is to approximate the QCS by a Gaussian
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distribution, which simplifies optimization and speeds up con-
vergence [6], [7].

The quality of reconstruction depends mainly on the
choice of image prior probability distribution represented by
the corresponding regularization function. Early publications
used smooth priors [6], [2], later methods incorporated non-
differentiable sparse priors providing state-of-the-art results
for other image restoration problems [8]. These include the
total variation (TV) [3], [9], fields of experts (FoE) [7], total
generalized variation (TGV) [4], [5], wavelets [10], sparse
dictionaries [11], [12] and non-local means based algorithms
[13]. State-of-the-art algorithms usually build on the ideas of
sparsity and non-local means denoising [14], [15], [16], [17]
or neural networks [18], achieving good results at the cost of
longer run times.

The choice of the algorithm to optimize the MAP criterion
depends on image priors. Early methods that used smooth
priors applied gradient descent or for the QCS the projected
gradient descent [6], [9]. Convexity of the QCS motivated the
use of the projection on convex sets (POCS) method [19], with
smoothness priors replaced by inequalities.

Bayesian estimation with sparse priors based on the [;
norm found its use in many image processing, compressed
sensing and machine learning applications. Resulting non-
smooth functions are difficult to optimize by standard methods,
which helped spread first-order techniques for non-smooth
optimization, which are relatively simple to implement and fast
enough to be practical [20], [21]. Probably the most popular
are the alternating direction method of multipliers (ADMM)
[22], also known as the split-Bregman method [20], and the
Arrow-Hurwicz type algorithm [23].

For JPEG decompression, the algorithm [23] with TV
regularization was used in [3]. The main disadvantage of TV
in this context is that it favors unnatural piecewise constant
functions, which is exactly the character of JPEG artifacts on
block boundaries. To alleviate this problem, in [24], the same
authors proposed a modified regularization term, the TGV.

In this paper, we investigate the use of ADMM to solve
the MAP formulation of the JPEG decompression problem
with sparse priors. This corresponds to the minimization of a
regularization function subject to the convex QCS constraint.
The regularization function is considered in the form of the
1 norm of a linear operator applied on the image, where the



linear operator is constrained to be a tight frame. In Sec. IV,
we derive a closed-form solution to the most demanding algo-
rithmic step of ADMM, which makes the proposed approach
very efficient. This is our main contribution.

In the experimental section (Sec. V), we compare the
convergence of ADMM with [23] used in the recent papers
[31, [4], [5] and show that ADMM can be set to converge to
acceptable visual reconstruction in several iterations. We also
compare the behavior of the algorithm for several tight frames,
including the dual-tree complex wavelets [25], a tight frame
composed of several orders of standard Daubechies wavelets
and the recent tight frames learned from data [26]. The authors
of [26] claim that they can achieve performance similar to
standard sparse dictionaries.

II. MAP FORMULATION OF JPEG DECOMPRESSION
PROBLEM

JPEG compression [27] is a lossy type of compression based
on the quantization of DCT coefficients, where DCT is applied
to small blocks of usually 8 x 8 pixels. We first describe this
process in detail and introduce mathematical notation we use.
For grayscale images, the lossy part of JPEG compression can
be expressed as

y = [QCx], (1)

where z is a vectorized original image, y integer coefficients
stored in the JPEG file, Q and C are matrices, and the
square brackets denote the operator of rounding. C is the
matrix of the block DCT made up of the square matrices
of the DCT. C is orthogonal, because all the DCT sub-
matrices are orthogonal. ) is a diagonal matrix corresponding
to element-wise division by quantization coefficients from the
quantization table stored in each JPEG file (64 values for
8 x 8 blocks) replicated for each block along diagonal. We will
denote the vector of these coefficients as ¢, i.e. @ = diag(1/q).
In the next section, we will see that matrices () and C
do not need to be formed explicitly. For color images, the
image is first transformed into Y'CpCR space and individual
channels are stored separately. The brightness Y is treated as
described above but chrominance channels are often stored at
smaller resolution, which complicates the degradation model.
Formally,

y = [QCDx], 2)

where D is a matrix describing the process of decreasing
resolution (see Sec. IV). The grayscale case can be considered
a special case of (2) with D = I, i.e. identity.

Given an observation y, a model describing the probabil-
ity distribution of possible observations p(y|z) and a prior
probability p(x), the Bayesian maximum a priori probability
(MAP) approach maximizes the posterior probability p(z|y) ~
p(ylx)p(x). Since in our case of rounding to the nearest
integer the likelihood p(%|x) is uniform within the quantization
constraint set —0.5 <y — QCz < 0.5 (QCS), we get

1 1
,y+)- 3)

max p(x) s.t. QCDx € <y ~ 3 >

It is quite common in the MAP based image restoration that
the prior probability p(x) is considered in the form p(z) ~
exp(— || ®7'z|,), where ®7'is a linear transform to a sparse
domain such as the gradient, wavelets, or an overcomplete
dictionary. Importantly, the inner part || @7z ||, is convex. We
in addition constrain the transform to satisfy ®dT = ], which
we call a tight frame [28]. Note that sometimes tight frames are
defined more generally as ®®7 = ¢I for a positive constant
t. Nevertheless, since tight frames can always be normalized,
we derive algorithms for ¢ = 1 but use the general term tight
frame.

In our experiments we use three type of tight frames.
First, the dual-tree complex wavelet transform (DT-CWT) [25]
represents well natural images and has a linear computational
complexity. For comparison, we show results for a union of or-
thogonal Daubechies wavelets normalized to satisfy ®®7 = I.
Finally, frames can be learned from data [26]. For the TV and
FoE priors in general ®®7 = I and therefore the procedure
we derive cannot be used directly. Instead, we could use the
algorithm [23].

Since the exponential function is increasing, the MAP
formulation (3) is in our case equivalent to minimization

1 1
min || ®7z||; s.t. QCDz € <y 5yt 2) )

In this paper, we restore the Y’ CpCg channels independently
of each other.

I1I. ADMM

The main optimization tool we use is the alternating di-
rection method of multipliers (ADMM) [22], [21] with many
applications in image restoration and machine learning [29].
ADMM is a method to minimize the sum of two functions

min f(z) + 9(Gx), (%)

where f and g are convex not necessarily differentiable func-
tions and G is a linear operator. ADMM consists of iteratively
executing three update steps

x(—argminf(x)—i—%||Gx—a—d||2, (6)
a(—argming(a)—i—g |Gz —a—d|?, (7
d«d—(Gr—a), (8)

where scalar ¢ > 0 is a parameter, ¢ is an auxiliary variable
representing a sparse domain counterpart of x and d a dual
variable. As a rule, the variable « is initialized by an initial
estimate x( and d is initially zero. Iterations are stopped, when
||z —a|| is smaller than a threshold or the number of iterations
exceeds a limit. The convergence of the algorithm is proved
in [22].

IV. ALGORITHM

At the end of Sec. II we explained how JPEG decompression
can be formulated as the solution of problem (4) for each color

272



Algorithm 1 JPEG decompression by ADMM for one chromi-
nance channel. The grayscale version of the algorithm is a
special case with D = I and k£ = 1. The operators used
denote: D - down-sampling, C' - block DCT, @ - division by
quantization coefficients g, ® - transform from sparse domain;
DT CT, T are respective transposes and y quantized block
DCT coefficients stored in JPEG file. P ,(z) is projection
of x on interval (I, u) taken element-wise.

1) Initialize ap = ®TDTQ'CTy, dy =0

2) repeat

3)

k

. 1
DTCT dlag(qu)P<y7%7y+%75> (

1
Thy1 = (I — DTD> O (ay, +di) +

QCD(I) (ak —+ dk))
4)

a1 = sgn (DT g1 — dy) -
1
max (0; [EX — - )
2p
5) dit1 = dp — T app1 + argr
6) until stopping criterion is satisfied

channel. For the purpose of optimization, we first reformulate
(4) using an indicator function as

mwinH(I)Tle +IQCDwE<y—%7y+%)(x)' ©)

The indicator function of a set gives zero for vectors
in the set and infinity otherwise. The indicator function
of a convex set is convex. For technical reasons we re-
place the interval (y— %,y + 1) by its closed approxi-
mation (y — 3,y + 5 —¢) for a sufficiently small constant
e > 0, getting a special case of (5) with f(z) =
IQCDw€<y7%,y+%7E (r) and g(z) = |®Tz|,. Its global
minimum can be found by ADMM. ADMM alternates solution
of two convex problems

1 1
argm'}nH(I)Tm —a—d|| st. QCDz € <y ——y+=— g>

2 2
(10)
and

Y

supplemented by a simple update of the dual variable d.
Equation (11) is the fast element-wise soft thresholding

argmin ||al|; + gH(I)Tx —a—d|?
a

1
a + sgn ("2 — d) max (0; |07z —d| — 2) .12
w

The critical point of the algorithm is a fast solution of (10).
Let us assume that ® is a tight frame (®®7 = I). Denoting
a + d as w, the definition of norm implies

|7z —w|? = ||z — dw|]® + w ®Tdw — wlw.  (13)

Because the right terms of (13) are independent of x, this
transforms (10) to

1 1
argmmin |z —Pw]| s.t. QCDzx € <y - §,y+ 57 €> , (14)

which can be interpreted as a projection of ®w on the convex
set given by the QCS. Let us assume that D = I (grayscale
image or the brightness channel of a color image). Recall that
the DCT is orthogonal, i.e. CCT = CTC = I. Since Q is
diagonal, Q! <y — %, Y+ %> is a box (with edges of different
lengths) aligned with axes and C~1Q~! < - %, Y+ %> a ro-
tated version of the box. Therefore projection can be computed
as

A

Ly+i—e) (QCPw),

(15)

where P<y denotes the element-wise projection

—%,y+%—s>
on the interval <y — %,y + % — 5>, defined as Py, 3, (y) =
min(max(b1,y),b2). A formal proof will be given later as a
special case of what holds for the chrominance channels.

For the decompression of chrominance channels, the prob-
lem is complicated by the down-sampling operation D in (2).
Unfortunately, D is not fully specified in the JPEG standard
and there are two options how to implement it. It is either
the direct sampling at half resolution, i.e. taking every second
pixel in each direction, or D computes the mean value of
each square of size 2 x 2 pixels (in general, averaging over
m x n pixels). On the other hand, it turns out that in both
cases DDT = EkI' and therefore, denoting A = QCD,
AAT = QCDDTCTQT = kQQT = diag(kq?) is a diagonal
matrix. For simple down-sampling, DD” = I. In the variant
with averaging over m X n pixels k = 1/(mn), i.e. for the
most common 2 : 1 subsampling [1] & = 1/4. Under these
assumptions we can use Lemma 1 and compute the x-update
projection as

z— dw— AT (AAT)_1 (A@w — P<y7; y+i—e) (Adw)) .
(16)
We are obtaining
2 Dw — AT diag(—) (Acbw -P (Ac1>w))
Sy (vy—%w+i-e) (17’)

1
z + dw— DTCT diag(k—q)~

: (QC’D(I)w ~ Py

syes o (@QCDOW)), (18)

IProof is trivial for direct subsampling. Because D7 replicates one pixel
to a rectangle of m X n pixels and D picks one of them, we get DDT = I.
In the latter case, DT replicates each pixel to m X n pixels multiplied by a
scalar k = 1/(mn). D computes the average of the same values, together
giving DDT = kI.
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and finally

— (I;DTD)<I>(a+d)+

(19)

1
pDTcT diag(qu)P@ ) (QCD® (a+4d)).
Note that for D being identity and k£ = 1, the update (15)
is a special case of (19). Eq. (15) only consists of element-
wise operations, two DCTs and the transform to the sparse
domain and back, Eq. (17) requires one additional up-sampling
DT and one down-sampling D. The resulting algorithm is

summarized as Alg. 1.

V. EXPERIMENTS

The first experiment was focused on the quality of recon-
struction in comparison with ground truth. It was performed
on a database of 60 images of historical city architecture. The
images were taken from full-frame SLR camera under good
lighting conditions. We further reduced noise by decreasing
resolution eight times in both directions. Each image was
compressed into the JPEG format with quality factors 10 to
90 with step 10 and decompressed/restored by the proposed
algorithm with 3 different tight frames (details at the end
of section II). The algorithm did 50 iterations for every
preset ADMM parameter ;1 and the common g giving best
reconstructions in terms of improvement of signal-to-noise
ratio (ISNR) was used to statistically compare the frames
(Fig. 1). The best ISNR performance around 0.6 dB across
all the quality factors gave the tight frame learned from data.

The second experiment focused on convergence properties
of ADMM in comparison with [23], using for both cases the
same priors. Note that [23] was used in recent papers [3],
[4], [5] with different priors. This was done for the same
image database with fixed quality factor 50 and minimization
parameters (¢ and two others in [23]) manually tuned to
achieve the fastest possible convergence using the tight frame
learned from data. The mean value of the functional (4)
over all images in each iteration is plotted in Fig. 2. Our
algorithm converged in several iterations to acceptable visual
reconstructions, a plateau of the ADMM curve. The competing
algorithm could not be set up to converge so fast at the
beginning but had better convergence close to the minimum.
Behavior of ADMM in later iterations can be improved by
increasing p in each iteration, though [30].

Fig. 3 shows an example of ADMM-based reconstruction
using the DT-CWT tight frame. We show the result with
parameter ;1 and number of iterations optimized to achieve
the best ISNR (Fig. 3(b)), in contrast to the case of parameters
optimized to converge fast to the minimum of the functional
(Fig. 3(c)). Both approaches reduced the typical JPEG checker-
board pattern (sky) but the artifacts along edges (towers) are
removed only for the converged image. Although the ISNR
got worse in this case, visual perception of this reconstruction
is better then for the image with the best ISNR.
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Figure 1. Statistical comparison of three different tight frames on a set of

60 images. In each group of boxplots (from left to right): DT-CWT (in blue),
concatenated Daubechies wavelets (in red) and the tight frame learned from
data [26] with kernels of size 8x8 pixels (in black). The box shows the
median value and first/third quartiles, whiskers extend to the most extreme
data points not considered outliers, and outliers are plotted individually. The
notches indicate the confidence intervals of the median.

x 10

2.35
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- = = [25]

0 2 5 10 20 50
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Figure 2. Mean convergence curves of ADMM and algorithm [23] obtained
from the reconstructions of 60 images with minimization parameters tuned to
achieve the maximum speed performance.

VI. CONCLUSION

We have presented an algorithm for image reconstruction
from quantized DCT coefficients stored in the standardized
JPEG format. The algorithm is formulated as a Bayesian
maximum a posteriori probability problem with the tight frame
sparse priors based on the l;-norm. Convex minimization
problems with convex constraints can be solved using ADMM
but its application to the JPEG compression model consisting
of the DCT, quantization and down-sampling operations is not
straightforward. We derive a closed-form solution for the pro-
jection necessary to efficiently compute the most demanding
algorithmic step, under the assumption that the linear operator
used in regularization forms a tight frame. This result reduces
the projection only to element-wise operations, two DCTs and
the transform to a sparse domain and back. In the end, the
algorithm alternately computes the derived projection and a
simple operation of soft thresholding in the sparse domain. In
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(a) Original image

(b) Best ISNR image

(c) Converged image

(d) JPEG image, quality = 30

Figure 3. Example of the restoration from a JPEG image stored at quality factor 30 using the DT-CWT tight frame. Whereas image b) is restored to achieve
the best possible ISNR, image c) is close to the minimum of (4) after the algorithm converged.

our case a satisfactory solution is found within few iterations,
typically less than for alternatives. In our experience, the
number of iterations does not depend on image size, which
means that the algorithm is approximately linear in the number
of pixels.

The quality of reconstruction primarily depends on the tight
frame used. In our experiments, the tight frame learned from
data [26] gives the best performance, followed by the dual-tree
complex wavelets [25], irrespective of how the reconstruction
quality is measured. Even with the learned tight frame, the
proposed algorithm restores slightly less details than state-of-

the-art algorithm [17] but is much faster (seconds vs. minutes).
A more detailed treatment of this topic is given in our
paper [31], which describes the application of ADMM to the
formulation with the Gaussian approximation of QCS and its
extension to combined JPEG restoration and denoising.
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APPENDIX

Lemma 1. Projection Pa,c(p, 5,)(2) = argmin, ||z — z|, s.t.
Az € <b17b2>, where , b; < bo, A e Rm*n, b; e R, m <n,
A full rank, AA” diagonal, can be written as Paye (b, 5,)(2) =
z — AT(AAT)_l(AZ — P(bl,b2>(AZ))’ where P{bl,b2>(y)
min(max(by,y), ba).

Proof: By the Karush-Kuhn-Tucker conditions, A4, A_ >
0 exist so that we can instead minimize
% e — 2|2+ \D(Ax — by) + AL (= Az + b)), (20)
We set its gradient equal to zero
z—z+AT(Ap —A2)=0. 1)
From complementary slackness conditions
Ar > 0= Az = by, (22)
Ao >0= Az = b;. (23)

For Ay > 0 Ax # by(since by # b2) and therefore (23) and
non-negativity of A_ implies A\_ = 0. Similarly A_ > 0 =
A4 = 0. The gradient condition (21) implies # = z— AT (A —
A_), or in the other direction Ay — A_ = (AAT)f1 (Az —
Az), which will be finally inserted into the former. There are
three cases according to the position of Az with respect to the
interval (b, ba).

If Ay = A_ =0, (21) implies x = z, i.e. also Az = Az
and from primal feasibility condition Az € (by,by) follows
Az € (b1,ba). If Ay > 0 (that is by (22) also Az = bs),
Ay — A > 0. Then (21) and (22) implies by = Az =
Az — AAT(Ay — X\_). Since AAT is diagonal with positive
entries (its diagonal contains the squared norms of rows of
A), AAT(A\y — A_) > 0 and therefore by < Az. Similarly
A_ > 0 implies b; > Az. Since b; < bo, these two cases
are exclusive. Taken together with the case A\ = A_ = 0,
this defines the projection. Indeed, if Az < by, necessarily
A_ > 0 and therefore by (23) Ax = b;. Analogously, if
Az > bo, necessarily Ay > 0 and by (22) Az = b. Finally,
if Az € (b1,b2), Ax =A_ =0and Az = Az. [ |
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