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Abstract. Moment invariants are one of the techniques of feature ex-
traction frequently used for pattern recognition algorithms. A moment is
a projection of function into polynomial basis and an invariant is a func-
tion returning the same value for an input with and without particular
class of degradation. Several techniques of moment invariant creation
exist often generating over-complete set of invariants. Dependencies in
these sets are commonly in a form of complicated polynomials, further-
more they can contain dependencies of higher orders. These theoretical
dependencies are valid in the continuous domain but it is well known
that in discrete cases are often invalidated by discretization. Therefore,
it would be feasible to begin classification with such an over-complete
set and adaptively find the pseudo-independent set of invariants by the
means of feature selection techniques. This study focuses on testing of
the influence of theoretical invariant dependencies in discrete pattern
recognition applications.
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1 Introduction

One of the difficult tasks in image processing is a recognition of shapes degraded
by some transformation. Several approaches to the invariant recognition exist.
Those are methods based on brute force, i.e. methods which are focused on
training data alteration in such way that they add artificial training data de-
formed with all possible transformations in question. This approach is adopted
for example by deep convolutional networks. It has several disadvantages such
as impossibility to generate all of the possible transformations or to cover some
of the transformation classes. Approach that overcomes these disadvantages is
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using computed features which are mathematically invariant to a certain family
of transformations.

General moment is defined as a projection of a function to polynomial basis

Mpq =

∫∫
Ppq(x, y)f(x, y)dxdy.

Moment invariant is then a function of moments satisfying invariance to partic-
ular class of deformations. As a simple example of invariant’s creation we can
demonstrate construction of invariants to translation from geometric moments.
We define geometric moment as

mpq =

∫∫
xpyqf(x, y)dxdy,

with only m00 being invariant to translation. We can construct other invariants
using m00 as follows

µpq =

∫∫
(x− xt)p(y − yt)qf(x, y)dxdy,

where xt = m10/m00 and yt = m01/m00.
This technique is equivalent to shifting the center of gravity to the origin.

Moments µpq are called central moments. Similar approaches can be used to
create invariants to rigid or affine transform. For more examples please refer
to [1–3]. Several techniques of affine moment invariants generation exist. Most
of them produce over-complete sets containing dependencies.

In our experiments, we use the graph method of generating affine invariants.
The core of this approach is in generating invariants using undirected multi-
graphs [3].

If we define ’cross product’ of two image points (x1, y1) and (x2, y2) as

C12 = x1y2 − x2y1,

then after the image affine transform it holds

C ′12 = J · C12,

where J denotes the Jacobian. Therefore, C12 is relative affine invariant. Basic
idea of invariants creation is integration of the cross product as a moment. After
Jacobian elimination by normalization we get the affine invariants. This means
that for N ≥ 2 (degree of the invariant – the number of moments multiplied in
one term), we can define

I(f) =

+∞∫
−∞

· · ·
+∞∫
−∞

N∏
k,j=1

C
nkj

k,j ·
N∏
i=1

f(xi, yi)dxidyi, (1)

where nk,j are nonnegative integers. After affine transform, we get

I ′ = Jw|J |N · I, (2)



where w =
∑N

jk njk is the invariant’s weight. Normalizing by µw+N
00 gives an

invariant (
I

µw+N
00

)′
= (sign(J))

w

(
I

µw+N
00

)
. (3)

For example N = 2;n12 = 2 gives

I(f) =

+∞∫
−∞

· · ·
+∞∫
−∞

(x1y2 − x2y1)2f(x1, y1)f(x2, y2)dx1dy1dx2dy2 =

= 2(m20m02 −m2
11).

Every affine invariant created by this method can be represented by a multi-
graph where each point (xk, yk) corresponds to a vertex, and the cross product
C

njk

jk corresponds to a multiedge with multiplication factor njk connecting ver-
tices k and j. Then the problem of affine invariant generation is equivalent to
problem of generation single connected component multigraphs with w edges
and number of vertices grater or equal to 2.

1.1 Dependencies and completeness

In the present time, the search for the dependencies among moment affine invari-
ants generated by the graph method is based on brute force approaches. First,
the duplicities in generated invariants are found by reduction of polynomials to
their irreducible forms. Next, the trivial dependencies are eliminated (zero in-
variants), after that the linear and polynomial dependencies are searched using
brute force algorithm. This is a time costly process, because the whole invari-
ant space needs to be searched. Therefore, finding higher order dependencies is
practically impossible.

For example, from all 2 533 942 752 generated invariants of order ≤ 12 there
are 2 532 349 394 zero invariants and 1 575 126 identical invariants, 14 538 linear
combinations and 2 105 products. After this first reduction, there are still 1 589
irreducible invariants from which we know that only 80 are independent.

The cardinality of complete and independent invariant set can be calculated
using following formula [4]

c =

(
r + d

r

)
−DOF (T ), (4)

where r denotes the order of invariant; d is number of image dimensions and
DOF (T ) denotes the degrees of freedom of the degradation operator T (in our
case the affine transform). In this way we can easily calculate, that for moment
invariants of 4th order and affine transform of 2D image the complete indepen-
dent set has cardinality equal to 9. In other words, there are independent sets of
cardinality 9 within I1− I32 (affine invariants of order 4 generated by the graph
method). Some of these sets are known and had been proven to form a complete
set, e.g. {I1, I2, I3, I4, I6, I7, I8, I9, I22} [5].



In our study, we want to investigate the relations between theoretical prop-
erties of affine invariants in combination with practical methods of feature se-
lection. Therefore, we designed our experiments to test the strength of known
dependencies against discriminative powers of individual invariants.

From the known set of dependencies of 4th order, 5 can be produced by set of
9 invariants. Let d1 - d5 denote the following known dependencies (corresponding
to dependencies no. 1 ,2 ,6 ,8 and 12 in [5]):

d1 : −4I31I
2
2 + 12I21I2I

2
3 − 12I1I

4
3 − I2I24 + 4I33I4 − I25 = 0

d2 : −16I31I
2
7 − 8I21I6I7I8 − I1I26I28 + 4I1I6I

2
9

+ 12I1I7I8I9 + I6I
2
8I9 − I7I38 − 4I39 − I210 = 0

d3 : −4I1I2I9 + 4I1I
2
16 + I2I

2
8 + 4I23I9 − 4I3I8I16 + I218 = 0 (5)

d4 : −I1I2I15 − I1I2I16 + 2I1I3I11 + I2I22

+ I23I15 + I23I16 − 2I3I32 − I4I11 = 0

d5 : 2I1I3I24 + I1I15I17 − I4I24 − I15I28 − I17I22 + I18I22 = 0

2 Method

We proposed several experiments to test whether the theoretical relations be-
tween individual image affine moment invariants are reflected in discrete world
of pattern recognition tasks. For this purpose, we utilize well known feature
selection algorithms, classifiers and datasets.

2.1 Feature Selection Algorithms

Sequential Forward Selection (SFS) A method which starts with an empty
set and then sequentially selects features with best possible classification out-
come. It is a basic method of selecting relatively good subset of features for low
dimensional problems. Its main advantage is its computational speed. But the
most prominent disadvantage is that the algorithm does not allow to remove any
feature previously selected.

Sequential Forward Floating Search (SFFS) An algorithm, which in each
turn adds the most significant feature and then repeatedly tries to remove fea-
tures by comparing the performance with the best performance achieved so far
for the same-sized subset. This way, it tries to deal with fore-mentioned disad-
vantage of greedy approach of SFS [6].



2.2 Classifiers

Support Vector Machine (SVM) Support Vector Machine [7] is one of the
widely used and well performing classification algorithm. In our experiments, we
used SVM with RBF kernel. Parameters which were used were tuned to give
best possible classification performance on full feature set for given problems.

Neural Network (NNET) As a second classification algorithm, we used fully
connected classification neural network with two hidden layers with 50 neurons
both. The network was finely tuned to give best classification performance on
both the problems. The reason behind using neural network for this task is its
theoretical ability to discover complex dependencies.

2.3 Datasets

MNIST A well-known database with handwritten digits [8]. The dataset con-
sists of 60 000 training and 10 000 testing digits images (see Figure 2.3 for
illustration). For the purpose of this study, we calculated first 32 normalized
affine moment invariants for all images in the dataset.

Fig. 1. Examples of MNIST database with handwritten digits. White corresponds to
zero and black to one.

MEW 2014 The next database we used for our experiments is a database of
segmented tree leaves [9, 10]. The affine moment invariants were calculated on
the segmented images directly (see Figure 2.3 for illustration). The database
contains 15 074 images distributed to 201 classes. In each of the experiments we
used subset of 100 classes to reduce computational time and complexity of the
classification task.

3 Experiments

3.1 SFS

The experiments were designed to investigate probability with which the feature
selection algorithm selects the set of invariants from all 4th order invariants that
does not produce any of the known polynomial dependency. There is a known
set of 32 irreducible affine invariants and the set of known dependencies [5].
All invariants were calculated from the original binary images from MNIST



Fig. 2. Examples of MEW 2014 database with segmented tree leaves (white=0,
black=1).

and MEW 2014 databases. Because of the magnitude differences of individual
invariants, it is usual to normalize them prior to classification. The normalization
technique used in this work is based on two phase technique

µ′pq = µpq · π
p+q
2 ·

(
p+ q

2
+ 1

)
(6)

I ′ = sign(I) · d
√
|I|, (7)

where d denotes degree of the invariant. First, the moments within each invari-
ant are normalized in such a way that their corresponding complex moments are
equal to 1 when calculated on unitary circle (6). Next, the invariants are normal-
ized to degree (7). This covers the cases in which the products of many moments
within a invariant can result in very large numbers. Furthermore, each invariant
was scaled by a learned factor to produce the best classification performance on
both the databases independently.

We started with the SFS method to progressively select most discriminative
feature (invariant), one at a time. The feature selection process was forced to
continue after peak classification performance was reached, until set of 9 features
was selected. To introduce diversity to the experiment, each feature selection
process was executed on random subset of classes.

Subsequently, we performed a search for defined dependencies (Section 1.1)
on the resulting sets. Our goal was to estimate the influence of theoretical de-
pendencies of the invariants in continuous domain to discrete world of machine
learning. The statistics of feature selection process can be viewed as the indica-
tors of discriminative powers of individual moment invariants.

3.2 SFFS

Our next effort was to improve the feature selection performance by using SFFS
method, again on both datasets. But, in this case we omitted the usage of the
NNET classifier. The reason being, that the outcome of neural network classi-
fiers depends on random initialization and the optimization function of neural



network has typically many local minimums, and cannot provide the level of
classification consistency SFFS process requires to run efficiently. To success-
fully utilize neural networks for SFFS would mean to run the classification many
times over to produce meaningful statistics of current classification performance.
This would be impractical and time consuming.

The outputs of the experiments are the same statistics as in case of SFS.

3.3 Adding dependent feature

Our next task was focused on studying the strength of particular invariants
discriminability vs. invariant dependency. We took the histogram of all selected
features in previous experiments as a measure of each invariants discriminative
power. Furthermore, we performed uncorrelated estimation of each invariants
discriminative power by running classification statistics on sets represented by
single invariants at a time.

For all known dependencies of invariants of order 4, we started the feature se-
lection process with all the invariants from given dependency except the one with
highest discriminability. This experiments goal is to study the level of particular
dependency when in contradiction to strong discriminative ability.

4 Results

4.1 SFS

Starting from empty sets we have run 200 sequential feature selection trials on
MNIST datasets with both classifiers. One of these runs (what is 0.5% cases)
ended up with invariant set producing dependency d1, see Eq. (5). Histogram of
selected invariants can be seen in Figure 3 left.

The second part of this experiment was to run the same task for MEW 2014
database. The dependent set was again generated in 1 case out of 200 (0.5%)
with dependency d2 in Eq. (5). See Figure 3 right for resulting feature histogram.

Note that the sets of selected invariants differ, because discriminative powers
of individual invariants changes with the classification task.

Fig. 3. Histogram of affine invariants selected by the SFS process. The images indicate
relative discriminative powers of invariants I1 − I32(x-axis) when used in classification
task of MNIST (left) and MEW 2014 (right) datasets.



4.2 SFFS

In first batch of all 200 feature selections on MNIST database, one (0.5%) re-
sulted in dependent set being generated. In this case dependency d2 in Eq. (5)
emerged.

Fig. 4. Histogram of affine invariants selected by the SFFS process. The images indicate
relative discriminative powers of invariants I1 − I32(x-axis) when used in classification
task of MNIST (left) and MEW 2014 (right) datasets.

The next experiment was the same configuration run on MEW 2014, resulting
in 4 dependent sets being generated out of 200 trial runs, all of them having
dependency d2 in (5). Histogram of both experiments can be seen in Figure 4,
resp.

4.3 Adding dependent feature

Because the feature selection processes in our experiments produced only de-
pendencies d1 and d2, see Eq. (5), we will focus in this experiment on generat-
ing those two. We estimated discriminability for the individual affine invariant
by running classification on each of them separately. Because the discrimina-
tive strength of invariants is data-related, we performed the calculation for each
dataset independently. We assumed, that the most discriminative invariant over-
all for both the dependencies is the invariant I1, as it represents image reference
ellipse and due to relatively small polynomial exponents is producing smallest
numerical computational instabilities.

Our experiments showed that invariants with greatest discriminative power
are I18 and I22 respectively. However, when we study the generation of depen-
dency d1 in Eq. (5), we found I4 to be most discriminative within the dependent
group (see Figure 5 top). For the study of dependency d2 in Eq. (5), we found
the I1 to be the one with greatest discriminative power (see Figure 6 top).

Dependency d1 We ran SFS process initialized not with an empty set, but
with set of {I1, I2, I3, I5} (i.e. removing the strongest I4 from dependent set)
for both dataset and both the classifiers to test the strength of the dependency
d1 in (5).



Fig. 5. Statistics on invariants discriminative powers when invoking d1 (5) dependency.
Left: MNIST dataset, right: MEW 2014; top: the mean classification accuracies for in-
dividual invariants I1−I32; middle top: the mean classification accuracies for invariants
I4, I6− I32, when added to starting set (I1, I2, I3 and I5). Bad performance of individ-
ual invariants suggests strong correlation with the I1, I2, I3, I5 set. Middle bottom: the
mean difference graph showing relative performance gain/loss for individual invariants.
Note the relative decrease in performance for I4 which completes the dependent set.
Bottom: histogram of invariants selected in the process.



Fig. 6. Statistics on invariants discriminative powers when invoking d2 (5) dependency.
Left: MNIST dataset, right: MEW 2014; top: the mean classification accuracies for in-
dividual invariants I1−I32; middle top: the mean classification accuracies for invariants
I1 − I5, I11 − I32 when added to starting set (I6 − I10). Bad performance of individual
invariants suggests strong correlation with the starting set. Middle bottom: the mean
difference graph showing relative performance gain/loss for individual invariants. Note
the decrease of I1 performance due to the dependency to the starting set I6 − I10.
Bottom: histogram of invariants selected in the process.



In the result, dependent feature sets were selected in 12/200 (6%) cases on
MNIST database and 51/200 (25.5%) dependent feature set selected on MEW
2014. See Figure 5 bottom for histogram of both datasets. This corresponds
to I4 having greater relative discriminability in MEW 2014, or more correlated
in MNIST dataset. The middle bottom images of Figure 5 show the relative
changes in individual invariants performance and indicate the strong correlation
of invariants in relation to the starting set.

Dependency d2 The setup for testing the strength of d2 in (5) was the same,
only we initiated Feature Selection with {I5, I6, I7, I8, I9}.

Invoking dependency d2 resulted in 60/200 (30%) cases of selecting I1 for
MNIST dataset and 52/200 (26%) for MEW 2014, showing significant discrim-
inative power of this invariant. The clear I1 significance declination is depicted
in middle bottom images in Figure 6.

5 Conclusion

In our work, we have shown the importance of studying the theoretical depen-
dencies between affine moment invariants and their direct impact on the classifi-
cation performance. Our experiments show that the chance of generating set of
affine moment invariants with polynomial dependency by the means of feature
selection processes is less or equal to 2% in all cases. Some of these cases were
positively identified as a situation where, during feature selection process, there
were more invariants with the same classification performance, so the one with
the smaller index was chosen, hence producing the dependent set. Those cases
can be considered random noise.

In the second part of our experiments, we focused on the strength of depen-
dencies d1 and d2 by removing most significant invariant from the dependent
sets. We have confirmed that although it was possible to forcefully invoke inde-
pendent set of affine moment invariants, this occurred in less than 30% of the
cases, again showing power of the invariant dependencies in accordance to theory
prediction.

This signifies that studying of the affine invariant dependencies have its pur-
pose and is to be considered when using invariants as image features in pattern
recognition tasks.

Such a study was never done before and up until now it was not clear, whether
the theoretical properties of affine moment invariants have any noticeable rela-
tions to practical classification tasks in discrete computer domain, where contin-
uous domain relations does not have to necessarily hold, due to the discretization
process, numerical instabilities or even precision limitations of the computation.

In our ongoing work, we would like to broaden this study to include invariants
of higher orders and confirm, that the same holds also for those more complex
features. We would also like to be able to further study the numerical proper-
ties of discrete affine moment invariants in relation to calculation and usage in
classification optimization processes.
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