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Abstract—This paper deals with a modeling of data by several
mixtures of different distributions within a task of clustering.
This issue can be required from a practical point of view,
e.g., for a multi-modal system, which generates measurements
described by different distributions. The approach is based on
the partition of the data on several parts, the factorization of the
joint probability density function according to these parts and
the estimation of each conditional mixture separately. Due to the
data-based construction of the general model from the estimated
components, the most suitable combination of the components
is used at each time instant. The illustrative experiments are
demonstrated.

Index Terms—clustering, sub-mixtures, different distributions

I. INTRODUCTION

This paper deals with a modeling of data by several mixtures
of a different type of distributions. The task is considered
within the cluster analysis. The clustering is often required in
many application fields (medicine, industry, marketing, etc.),
where the measurements should be grouped according to some
similar attributes [1]. A variety of clustering approaches can be
found in literature, such as, e.g., well-known centroid, density
based methods, hierarchical clustering algorithms, etc. The
overview of the clustering methods is available in [2], [3],
etc.

The model-based clustering with the use of mixture models
is one of approaches in this area. It describes the clusters in the
data space by the components of a mixture model, see, e.g.,
[4], [5], etc. Normal components are probably most often used
in this field.

The presented paper primarily focuses on the mixture of
components, which have different distributions. This issue can
be required from a practical point of view, e.g., for a multi-
modal system, which generates measurements described by
different distributions. The most significant application of the
approach can be expected, for example, in modeling the traffic
flow. In this case, the exponential distribution can be applied
for modeling the traffic flow during congestions, the normal
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distribution for the free flow, the uniform distribution at night
and the Bernoulli distribution for the queue existence. The air
traffic as well as the train control can be also considered as
the potential application fields.

The problem seems to be not sufficiently discussed in
literature. Only several papers have been found. For instance,
paper [6] deals with the mixture of the exponential, gamma
and Weibull distributions. Paper [7] considers the estimation of
the mixture of the normal-t distributions and the skew t-skew
normal distributions. Paper [8] investigates the estimation of
the t-, slash, contaminated normal and normal distributions.
All of the papers found are based on the maximum likeli-
hood estimation of parameters using the iterative expectation-
maximization (EM) algorithm [9].

However, the EM algorithm is not suitable here, since the
presented project avoids numerical computations as far as
possible. The methodology applied within the project is based
on the recursive Bayesian estimation algorithms [10], [11],
[12], where the algebraic re-computation of the model statistics
is used. In this area, the recursive estimation of the mixture
with a different type of distributions has been discussed in
[13]. One exponential and several normal components were
considered and estimated separately with a common model of
switching.

The presented paper takes the individual components as
mixtures and constructs the general joint model from them.
This opens a way for obtaining the estimation algorithm for
a mixture of different distributions in the general form, which
does not depend on the component type. However, the statistics
of the probability density functions (pdf) should have the re-
producible form. The proposed approach is based on (i) the
partition of data on several parts, (ii) the factorization of the
joint pdf according to these parts so that the mixture model of
each part is conditioned by the previous one and (iii) the esti-
mation of each conditional mixture separately. The switching
models are conditional according to the factorization as well.
Hence, the task of clustering with such a model consists in
(i) the parameter estimation of all of the components and the
switching models and (ii) the determination of the components,
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which generate data at the current time instant. Due to the data-
based construction of the general model from the estimated
components, the most suitable combination of the components
is used at each time instant.

For the demonstration of the approach, an example with the
model of three mixtures is presented in the paper. One of them
is the mixture of exponential components and two others are
the mixtures of normal components. The verification of the
approach is performed with the help of simulated data and the
comparison with theoretical counterparts.

The paper is organized in the following way. Section II
describes the main idea, introduces the models and formulates
the problem. Section III presents the general solution and the
algorithm specified for the models, which are chosen for the
illustrative example. Section IV demonstrates the validation
results. Conclusions and some open problems can be found in
Section V.

II. PROBLEM FORMULATION

A. Main Idea

Let the observed multi-modal system generate measure-
ments denoted by y. The measurements are assumed to be
divided among several groups, where each group exhibits the
different behavior. It means that the groups of the data have
the different distributions. The groups are denoted as follows:

y1 =
{
y1

1 , · · · , y1
n1

}
,

y2 =
{
y2

1 , · · · , y2
n2

}
,

· · · ,

yk =
{
yk1 , · · · , yknk

}
,

where nk is the number of the data entries in the k-th group
of the data. The general model can be written in the form of
the joint pdf, which can be subsequently factorized according
to the chain rule [11] as follows:

f
(
y1, y2, · · · , yk

)
= f

(
y1
)
f
(
y2|y1

)
· · · f

(
yk|y1, y2, · · · , yk−1

)
, (1)

where the factorization is performed according to the defined
groups. Each pdf in (1) represents one of the new sub-models,
which will be used for the construction of the joint model. The
pdfs in (1) describe the variables in the individual data groups.
They are conditional, i.e., the variables modeled by them are
mutually dependent via the conditions of the pdfs.

The idea is to consider each pdf in (1) as the mixture model
and to represent the general joint model with the help of these
individual sub-models (i.e., sub-mixtures).

Each sub-mixture is composed of several components with
the corresponding distributions. Generally, the mixture model
works so that at each time instant the most suitable component
is selected to represent the whole model. Here, each sub-
mixture operates similarly and the resulting model is produced
by the optimal components from the sub-mixtures. Obviously,
the combination of the optimal components can be different

at each time instant. Thus, the variability in setting the joint
model is much wider compared with the whole joint pdf
presented by a single mixture with components of different
distributions.

B. Model Composed of Sub-Mixtures

In this paper, three groups of variables measured at time
instants t = 1, 2, . . . are considered with the following dimen-
sions

y1
t =

[
y1

1;t, y
1
2;t

]′
, y2

t =
[
y2

1;t, y
2
2;t, y

2
3;t

]′
, y3

t =
[
y3

1;t, y
3
2;t

]′
.

The whole data set is yt =
{
y1, y2, y3

}
t
. In this way, y1

t and
y3
t are the two-dimensional data vectors and y2

t is the three-
dimensional one. In this paper, the first group of variables y1

t

is described by the multivariate exponential distribution. The
rest of them are normally distributed.

The component pdf within each mixture has the following
form (omitting the superscript for the sake of simplicity)

f (yt|Θ, ct = i) , ∀i ∈ {1, 2, . . . ,mc}, (2)

where Θ is the collection of the component parameters.
Switching the components is modeled as the unmeasurable
discrete random variable, which is called the pointer [10].
The pointer is denoted by ct = {1, 2, . . . ,mc}, where mc

is the number of components. The value of ct at the time
instant t points to the component, which generates the actual
measurements, i.e., the so-called active component. Generally,
the components are switching according to the pointer model

f (ct = i|α) , (3)

where α is the parameter of the pointer model. Since the data
groups are modeled as mixtures in the factorized form (1),
their pointer models are interrelated. It means that the pointer
of each sub-mixture depends on the pointers of the previous
sub-mixtures.

With the presented factorized model, the clustering problem
is verbally formulated as follows:
• estimate the component parameters Θ of all of the sub-

mixtures,
• estimate the parameters α of all of the pointer models,
• determine the active component within each sub-mixture,

i.e., the value of the pointer ct
• and use the resulting combination of the components for

classifying the data.

III. ESTIMATION OF A MODEL OF SUB-MIXTURES

The estimation algorithm for the discussed model of the
sub-mixtures is based on the recursive Bayesian estimation
methods [10], [11], [12] and recent papers [14], [13]. The
terminology used and the detailed derivations can be found in
these sources.

Denoting the data collection, which is available up to the
time t − 1 by y(t − 1) = {y0, y1, y2, . . . , yt−1} and using
the denotations from Section II, the joint pdf of the unknown
variables to be estimated has the following form

f (yt, ct = i,Θ, α|y (t− 1)) (4)
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= f
(
y1
t , y

2
t , y

3
t , c

1
t , c

2
t , c

3
t ,Θ

1,Θ2,Θ3, α1, α2, α3|y (t− 1)
)
,

where
• Θ1, Θ2, Θ3 and α1, α2, α3 are the parameters of

the components and pointer models respectively of the
corresponding data groups,

• c1t , c
2
t and c3t are the pointers of the corresponding sub-

mixtures. Here, c1t is described by the model (3), which is
a vector. The pointer c2t depends on c1t , while the pointer
c3t is conditioned by c1t and c2t . Both these models are
matrices.

The joint pdf (4) is factorized under the assumption of the
mutual independence of Θ and α as follows:

f
(
y1
t |Θ1, c1t = i,

)
f
(
c1t = i|α1

)︸ ︷︷ ︸
for mixture 1

(5)

× f
(
y2
t |Θ2, y1

t , c
2
t = j

)
f
(
c2t = j|c1t = i, α2

)︸ ︷︷ ︸
for mixture 2

× f
(
y3
t |Θ3, y1

t , y
2
t , c

3
t = q

)
f
(
c3t = q|c1t = i, c2t = j, α3

)︸ ︷︷ ︸
for mixture 3

× f
(
Θ1|y (t− 1)

)︸ ︷︷ ︸
prior exponential pdf

f
(
Θ2|y (t− 1)

)
f
(
Θ3|y (t− 1)

)︸ ︷︷ ︸
prior GiW pdfs

× f
(
α1|y (t− 1)

)
f
(
α2|y (t− 1)

)
f
(
α3|y (t− 1)

)
,︸ ︷︷ ︸

prior Dirichlet pdfs

where the prior exponential pdf is used for the estimation
of Θ1 [15], [13]. The conjugate prior Gauss-inverse-Wishart
(GiW) pdfs are used for Θ2 and Θ3, see [11], [10]. The
conjugate prior Dirichlet pdfs are used for the estimation of
α1, α2 and α3 according to [12].

The pointer estimation is the key point of the discussed
recursive clustering. The recursions can be derived with the
help of the marginalization of (5) over the parameters Θ and
α according to the following scheme (omitting the superscripts
for the sake of simplicity)

f (yt, ct = i|y (t− 1)) (6)

=

∫
Θ∗

∫
α∗

(yt, ct = i,Θ, α|y (t− 1)) dαdΘ.

A. The 1st Sub-Mixture Estimation

For the mixture of the exponential components, the recursive
estimation formulas are obtained from∫

Θ∗

∫
α∗
f
(
y1
t |Θ1, c1t = i,

)
f
(
c1t = i|α1

)
(7)

×f
(
Θ1|y (t− 1)

)
f
(
α1|y (t− 1)

)
dα1dΘ1

=

∫
Θ∗
f
(
y1
t |Θ1, c1t = i,

)
f
(
Θ1|y (t− 1)

)
dΘ1

×
∫
α∗
f
(
c1t = i|α1

)
)f
(
α1|y (t− 1)

)
dα1,

where f
(
y1
t |Θ1, c1t = i,

)
for i = 1, 2, 3 are the exponential

components with the specified parameters Θ1
i = {a, b}i for

ct = i, i.e.,

f
(
y1
t |Θ1

i = {a, b}i
)

= aibi exp
{
−aiy1

1;t − biy1
2;t

}
. (8)

In the first integral in (7), f
(
Θ1|y (t− 1)

)
is the prior expo-

nential pdf

(aibi)
κ1
i;t exp {− [ai, bi] (St)i} (9)

with the re-computable statistics (initially chosen) in the form

κ1
i;t = κ1

i;t−1 + w1
i;t, (10)

(St)i = (St−1)i + w1
i;t

[
y1

1;t

y1
2;t

]
, (11)

where w1
t = [w1

1;t, w
1
2;t, w

1
3;t] is the weighting vector for the

first sub-mixture, i.e., the first part of the general model, see
[15], [13] based on [10]. This integral is evaluated with the
help of the substitution of the point estimates of the component
parameters from the previous time instant t− 1

âi;t−1 =
κ1
i;t−1

(S1;t−1)i
, b̂i;t−1 =

κ1
i;t−1

(S2;t−1)i
(12)

and the actual measurements y1
t into the model pdf, see the

mentioned sources for the details.
The second integral in (7) uses the conjugate prior Dirichlet

pdf [12] with the re-computable statistics in the form of the
three-dimensional vector and the pointer model (3). The result
of their multiplication is normalized.

For the first group of the data, the weighting vector w1
t is

obtained with the help of the multiplication of the results of
the first integral (after the substitution of the point estimates of
the parameters and the actual data item y1

t into the component
exponential pdf) and the point estimate of the parameter α1

for the time instant t− 1.
The index of the maximum weight in the weighting vector

w1
t is the point estimate of the pointer c1t , which points to the

active component within this sub-mixture.

B. The 2nd Sub-Mixture Estimation

The recursions for the second data group are derived in a
similar way, i.e., using∫

Θ∗
f
(
y2
t |Θ2, y1

t , c
2
t = j

)
f
(
Θ2|y (t− 1)

)
dΘ2 (13)

×
∫
α∗
f
(
c2t = j|c1t = i, α2

)
f
(
α2|y (t− 1)

)
dα2.

The differences are as follows. Here, the pdfs
f
(
y2
t |Θ2, y1

t , c
2
t = j

)
for j = 1, 2, 3 are the normal

components with the expectations

θ2
j

[
y1
t

1

]
and the covariance matrices r2

j . It means that within the second
sub-mixture, the parameters Θ2

j include {θ2, r2}j for c2t = j.
The conjugate GiW pdfs f

(
Θ2|y (t− 1)

)
used in the first
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integral of (13) have the re-computable statistics in the form
of the counter κ2

j;t and the information matrix (Vt)
2
j . They are

recursively updated (starting from the values chosen initially)
in the following way [10]

κ2
j;t = κ2

j;t−1 + w2
j;t, (14)

(Vt)
2
j = (Vt−1)2

j + w2
j;t

 y2
t

y1
t

1

 [y2
t , y

1
t , 1

]
, (15)

where w2
t = [w2

1;t, w
2
2;t, w

2
3;t] is the weighting vector of the

second sub-mixture. The first integral in (13) is evaluated by
substituting the previous-time point estimates of the parame-
ters Θ2 and the actual data item y2

t into the normal component
pdf, see [13] based on [10]. The point estimates for each
component are obtained according to [11] using the partition

(Vt)
2
j =

[
Vyy V

′

y

Vy V1

]
, (16)

where Vyy , V ′y and V1 are matrices and vectors of the appro-
priate dimensions depending on the dimensions of the vectors
y2
t and y1

t . The point estimates are [11]

(θ̂2
t )j = V −1

1 Vy, (r̂2
t )j =

Vyy − V
′

yV
−1
1 Vy

κ2
j;t

. (17)

The pointer model used in the second integral of (13) is
conditional due to the factorization (1). It is represented by
the following table:

f
(
c2t = j|c1t = i, α2

)
= (18)

c2t = 1 c2t = 2 c2t = 3
c1t = 1 α2

1|1 α2
2|1 α2

3|1
c1t = 2 α2

1|2 α2
2|2 α2

3|2
c1t = 3 α2

1|3 α2
2|3 α2

3|3

The second integral in (13) is evaluated again with the prior
Dirichlet pdf according to [12] with the re-computable statis-
tics. However, here the statistics is the (3 × 3)-dimensional
matrix, which is updated similarly to the dynamic pointer
model in [13] but with c1t in the condition. The point estimate
of the parameter α2 is obtained by the normalization of the
corresponding statistics of the pointer model.

To obtain the weighting vector w2
t of the second sub-

mixture, it is necessary to multiply the results of the first
integral, the weighting vector w1

t and the point estimate of
the parameter α2 from the previous time instant. The point
estimate of the pointer c2t as well as the active normal
component are determined similarly to the previous case.

C. The 3rd Sub-Mixture Estimation

Here, the situation is practically identical with the previous
normal mixture. However, due to the factorization (1), the
conditions of the pdfs of the third sub-mixture are enriched by
the measurements and the pointers from the first and second
mixtures. It means that the recursions are obtained using∫

Θ∗
f
(
y3
t |Θ3, y1

t , y
2
t , c

3
t = q

)
f
(
Θ3|y (t− 1)

)
dΘ3 (19)

×
∫
α∗
f
(
c3t = q|c1t = i, c2t = j, α3

)
f
(
α3|y (t− 1)

)
dα3.

The normal components f
(
y3
t |Θ3, y1

t , y
2
t , c

3
t = q

)
for q =

1, 2, 3 have the expectations

θ3
q

 y2
t

y1
t

1


and the covariance matrices r3

q , i.e., the parameters Θ3
q in-

clude {θ3, r3}q for the pointer c3t = q. The statistics of the
corresponding GiW pdfs are re-computed similarly to (14),
see [10], i.e.,

κ3
q;t = κ3

q;t−1 + w3
q;t, (20)

(Vt)
3
q = (Vt−1)3

q + w3
q;t


y3
t

y2
t

y1
t

1

 [y3
t , y

2
t , y

1
t , 1

]
, (21)

where w3
t = [w3

1;t, w
3
2;t, w

3
3;t] is the weighting vector for this

data group. The point estimates of the component parameters
are computed according to (17), see [11].

The pointer model f
(
c3t = q|c1t = i, c2t = j, α3

)
is the (3×

3)-dimensional table, which exists for each value of the pointer
c1t . For each i = 1, 2, 3, it has the following form

f
(
c3t = q|c1t = i, c2t = j, α3

)
= (22)

c3t = 1 c3t = 2 c3t = 3
c2t = 1 (α3

1|1)i (α3
2|1)i (α3

3|1)i
c2t = 2 (α3

1|2)i (α3
2|2)i (α3

3|2)i
c2t = 3 (α3

1|3)i (α3
2|3)i (α3

3|3)i

The evaluation of the integrals in (19) is performed identically
to Section III-B. The weighting vector w3

t is also obtained
similarly using w2

t and α3 for the multiplication.

D. Clustering with the Model of Sub-Mixtures

In this way, the sub-mixtures are estimated in a standard
way of the recursive Bayesian estimation [10], [12], [14], [13].
The substantial difference is the dependence of each pointer on
the pointers of the previous sub-mixtures used in the factorized
form (1) of the general model.

The resulting general model is composed of the active com-
ponents of the sub-mixtures corresponding to the maximum
weights in the actual weighting vectors w1

t , w2
t and w3

t at the
time instant t. The indices of these maximum weights are the
point estimates of the pointers c1t , c2t and c3t respectively.

The clustering algorithm with the resulting model can be
summarized as follows.
Initialization for t = 1

1) Set the number of sub-mixtures and components.
2) Set the initial statistics of the prior pdfs for components

and pointers.
3) Compute the point estimates of all of the parameters.
4) Set the initial weighting vectors. Details about the ini-

tialization can be found, e.g., in [16].
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On-line clustering for t = 2, 3, . . .

1) Measure the data items y1
t , y2

t and y3
t .

2) For each sub-mixture, substitute the previous point es-
timates of the parameters and the actual measurements
into the component pdfs.

3) For the first sub-mixture, multiply the result of Step 2
and the previous point estimate of the pointer parameter
α1 (i.e., at time t− 1), see Section III-A. Normalize the
result of this multiplication and obtain the weighting
vector w1

t actualized by the data.
4) For the second sub-mixture, multiply the result of Step 2,

the weighting vector w1
t and the previous point estimate

of the pointer parameter α2, see Section III-B. Obtain
w2
t with the help of the normalization.

5) For the third sub-mixture, multiply the result of Step 2,
the weighting vector w2

t and the previous point estimate
of the pointer parameter α3, see Section III-C. Obtain
w3
t with the help of the normalization.

6) For each sub-mixture, update the statistics of all of the
components and pointers using the new weights.

7) Re-compute the point estimates of the parameters.
8) Obtain the point estimates of the pointers as indices of

the maximum weights in the weighting vectors.
9) Classify the data items according to the point estimates

of the pointers, which give the active components.
10) Go to Step 1 of the on-line part of the algorithm and

use the re-computed point estimates of the parameters.
The details about the estimation can be found in [10], [12],
[14], [13], etc.

IV. VALIDATION EXPERIMENTS

The presented approach was verified with the help of
the comparison with the k-means method [2] known as a
successful classifier.

For the experiments, 20 data sets with 300 values of the
vectors y1

t , y2
t and y3

t (see Section II-B) were simulated in
Scilab (www.scilab.org) using different random generators.
The obtained clustering results were of the similar quality for
all of the data sets. The typical results are presented below.

A. Clusters

In the case of the seven-dimensional data space, the visual-
ization of the clusters is possible only for the data pairs, i.e., by
plotting two variables against each other. For the exponential
data y1

t , the results of the proposed clustering are shown in
Figure 1 (top), where the variables y1

1;t and y1
2;t are plotted

against each other. The clusters are compared with the results
of the k-means algorithm [2] in Figure 1 (bottom). The clusters
in both the figures have the similar shapes and locations. The
only difference can be found near value 25 of the variable y1

1;t,
where the data item belongs to cluster 2 in Figure 1 (top) and
to cluster 1 in Figure 1 (bottom).

The results for the normal data y2
t are presented in Figure 2

(top) and compared with the k-means clustering in Figure 2
(bottom). The variables y2

2;t and y2
3;t from the vector y2

t are
chosen for the cluster visualization. Here, the clusters of both

the methods have the similar shapes and locations with the
exception of several data items around value 10 of the variable
y2

3;t. They were classified into cluster 1 by the proposed
method and into clusters 2 and 3 by the k-means algorithm.

Fig. 1. The clustering with sub-mixtures (top) and the k-means (bottom) for
the exponential variables y11;t and y12;t

Fig. 2. The clustering with sub-mixtures (top) and the k-means (bottom) for
the normal variables y22;t and y23;t

The clusters detected in the third group of the normal data
y3
t are demonstrated in Figure 3, where the variables y3

1;t and
y3

2;t are plotted. Similarly to the previous case, the sub-mixture
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clustering (top) and the k-means results (bottom) are close to
each other. The insignificant difference can be seen around the
values 0 and 70 of the variable y3

1;t.

Fig. 3. The clustering with sub-mixtures (top) and the k-means (bottom) for
the normal variables y31;t and y32;t

The clusters were shown for each data group separately
using the point estimates of the pointers of the correspond-
ing sub-mixtures. In the case of plotting the variables from
different data groups, the number of clusters grows because
of the conditional models of the pointers. In this case, the
cluster visualization is not suitable. However, the quality of
the clustering was validated using the data prediction from
the corresponding active components. To save space, the
prediction is not shown here.

B. Discussion

The main aim of this study was the model-based clustering
of the data with different distributions, where the data groups
were described by sub-mixtures. It should be noticed that the
clustering of the exponential and normal measurements was
successfully validated by the comparison with the theoretical
counterpart. However, the successful results were obtained so
far for the non-overlapping exponential components. In the
case of exponential components located about 0 the obtained
clusters were mixed.

The potential application of the approach can be found in
the fields of the multi-dimensional data analysis, where mul-
tivariate variables with different distributions measured on the
multi-modal system should be modeled (e.g., transportation,
fault detection, smart city, big data, etc.).

The limitation of the approach is the assumption of distri-
butions with the re-computable statistics.

V. CONCLUSION

The paper proposed the algorithm of the recursive clustering
with the model of sub-mixtures of a different type of distri-
butions. The main contribution of the approach is to combine
the general model from the active components of the used
sub-mixtures. The proposed algorithm is expected to bring
advantages of the more flexible “combined” model for the
detection of the active components.

The application of the algorithm to the other types of
distributions (for instance, uniform and categorical) is planned
within the presented project. It can be beneficial for the case of
dependent variables of the uniformly distributed data vector.
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