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∗Department of Signal Processing

The Institute of Information Theory and Automation of the Czech Academy of Sciences,
Prague, Czech Republic

Email: suzdalev@utia.cas.cz
†Faculty of Transportation Sciences, Czech Technical University

Prague, Czech Republic
Email: nagy@utia.cas.cz

Abstract—The paper deals with the mixture-based clustering
of anonymized data of patients with leukemia. The presented
clustering algorithm is based on the recursive Bayesian mixture
estimation for the case of exponential components and the data-
dependent dynamic pointer model. The main contribution of
the paper is the online performance of clustering, which allows
us to actualize the statistics of components and the pointer
model with each new measurement. Results of the application
of the algorithm to the clustering of hematological data are
demonstrated and compared with theoretical counterparts.

Index Terms—mixture-based clustering, recursive mixture es-
timation, exponential components

I. INTRODUCTION

The cluster analysis [1] is required in many application areas
(e.g., bioinformatics, marketing, social fields, transportation,
fault detection, big data, etc). Its primary task is to find the
groups of data with similar characteristics in the data space.
In the area of bioinformatics it is relevant for e.g., gene
expression analysis, drug discovery, cancer-related research
and many others [2]–[4].

There are many approaches to the task of clustering de-
scribed in literature, e.g., hierarchical methods [5], [6], par-
titioning methods categorized among centroid-based methods
such as the famous k-means [7]–[9] as well as k-medoids [10]
and density-based methods such as e.g., DBSCAN [11], etc.
The overview of clustering methods can be found in many
sources, e.g., [9].

One of the approaches is the cluster analysis based on the
use of mixture models [12], [13], where clusters in the data
space are described by distributions of mixture components.
This approach is used in the presented paper. The focus is on
clustering with the help of the mixture models, which consist
of components in the form of probability density functions
(pdfs) describing individual regimes of working a considered
system and a model of their switching. The mixture-based
clustering starts from some initial (mostly resulting from the
prior data analysis) location of components and performs a
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search for density clusters in the data space with the aim of
fitting component models to the data.

Distributions for the description of the mixture components
are chosen in dependence on the nature of data to be modeled.
Studies dealing with the investigation of various distributions
for the tasks of mixture-based clustering can be found in
literature, for example, [14]–[16]. Normal distributions are
the most frequently used components, e.g., [17], [18], etc.
However, the assumption of normality is not always applicable
and can bring limitations in data modeling.

This paper deals with clustering with the mixture of expo-
nential components. The similar issue is considered in e.g.,
[19], [20]. However, unlike most algorithms, the presented
clustering is performed in the online mode, which can be
the key point for diagnostics systems, where fast evaluation
of the current state is necessary taking into account each
new data item. The clustering algorithm is based on the
recursive Bayesian mixture estimation [21]–[24], where the
main subtasks to be solved are (i) the parameter estimation for
components and the switching model and (ii) the classification
of data to the active component. The algebraic recursions are
used for updating the pdf statistics without using numerical
computations such as the EM algorithm [25]. In this area the
paper [26] is already published for the case of a mixture of a
single exponential and several normal components.

In this paper, the clustering algorithm is applied to the data
set of anonymized hematological measurements of patients
with leukemia including such variable as blasts, neutrophils,
platelets, overall survival, gene expression and death. Selected
results of the clustering experiments are demonstrated. Their
results are compared with k-means clustering, which success-
fully validates the location and shapes of detected clusters.

The remainder of the paper is organized in the following
way. Section II introduces models used in the paper and
formulates the problem. Section III presents the general solu-
tion to the formulated problem of clustering and provides the
algorithmic summary. Section IV is devoted to the application
of the approach to hematological data and the initialization of
the clustering algorithm. Section V demonstrates results of the
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experiments and discusses them in the discussion. Conclusions
and open problems can be found in Section VI.

II. PROBLEM FORMULATION

A. Models

Let’s consider a multi-modal system, which at each discrete
time instant t = 1, 2, .... generates the continuous data vector
yt of the dimension N and the discrete data zt with the set of
its possible values {1, 2, . . . ,mz}. It is assumed that the ob-
served system can generate the data yt in mc working modes.
The working modes of the observed system are described by
mc components, which comprise a mixture model.

1) Components: The mixture components have the form of
the following pdfs

f(yt|Θ, ct = i), i ∈ {1, 2, . . . ,mc}, (1)

where Θ = {Θi}mc
i=1 is a collection of unknown parameters

of all components and ct is a discrete random variable,
which is called the pointer [21]. Its values point to the
active component which describes the data generated by the
system at time t, i.e., ct ∈ {1, 2, . . . ,mc}. Θi includes
parameters of the i-th component according to its distribution,
i.e., f (yt|Θ, ct = i) = f (yt|Θi) for ct = i.

A distribution of the component (1) is chosen according
to the nature of data and assumptions made about modeled
variables. In this paper, the pdfs (1) are the exponential
distributions (

N∏
l=1

(al)i

)
exp {−a′iyt} , (2)

i.e., here ai ≡ Θi and (al)i > 0 are the l-th entries of the N -
dimensional vector ai with l = {1, 2 . . . , N}. Currently, the
independence of entries of the vector yt is assumed.

2) The Pointer Model: Switching the active components
is described by the dynamic data-dependent model of the
pointer ct in the form of the following probability function
(also denoted by pdf)

f (ct = i|α, ct−1 = j, zt = k) = (3)

ct = 1 ct = 2 · · · ct = mc

ct−1 = 1 (α1|1)k (α2|1)k · · · (αmc|1)k
ct−1 = 2 (α1|2)k · · ·
· · · · · · · · · · · · · · ·

ct−1 = mc (α1|mc
)k · · · (αmc|mc)k

where the unknown parameter α is the (mc×mc)-dimensional
matrix, which exists for each value k ∈ {1, 2, . . . ,mz} of
the discrete variable zt. Its entries (αi|j)k are non-negative
probabilities of the pointer ct = i under condition that the
previous pointer ct−1 = j with i, j ∈ {1, 2, . . . ,mc} and the
variable zt = k.

B. Clustering Problem Specification

The main task of the recursive mixture-based clustering is
to estimate online which component is active at each time t.
It means that based on the data measured up to the time t, it
is necessary to obtain the value of the pointer ct and classify
the actual data item to the active component indicated by the
pointer.

With the introduced models, the clustering problem is
comprised from the following sub-tasks:
• the estimation of the component parameters Θ,
• the estimation of the parameter α of the pointer model
• and the estimation of the value of the pointer ct, which

indicates the active component at time t.

III. RECURSIVE CLUSTERING WITH EXPONENTIAL
COMPONENTS

Based on the Bayesian methodology on recursive estimation
[21]–[24], the mixture estimation algorithm is obtained with
the help of construction of the joint pdf of all of the unknown
variables and application of the Bayes and chain rules, e.g.,
[23]. This enables us to use the algebraic recursive update of
statistics of the used distributions.

Denoting the data collection available up to the time instant
t as D(t) = {D0, D1, . . . , Dt}, where D0 denotes the prior
knowledge and the data item Dt includes the pair {yt, zt},
the joint pdf of the unknown variables Θ, α and ct has the
following form

f(Θ, ct = i, ct−1 = j, α|D(t))

∝ f(yt,Θ, ct = i, zt = k, ct−1 = j, α|D(t− 1))

obtained using the chain and Bayes rule and then decomposed

= f (yt|Θ, ct = i)︸ ︷︷ ︸
(1)

f(Θ|D(t− 1))︸ ︷︷ ︸
prior pdf of Θ

× f (ct = i|α, ct−1 = j, zt = k)︸ ︷︷ ︸
(3)

f(α|D(t− 1))︸ ︷︷ ︸
prior pdf of α

× f(ct−1 = j|D(t− 1)),︸ ︷︷ ︸
prior pointer pdf

(4)

∀i, j ∈ {1, 2, . . . ,mc} and for k ∈ {1, 2, . . . ,mz}. To obtain
recursive formulas for the estimation of ct, which is the
main goal from a clustering point of view, it is necessary to
marginalize (4) over the parameters Θ and α firstly and then
over the values of the past pointer ct−1.

The marginalization of (4) over parameters Θ provides the
proximity (i.e., the closeness) of the current data item yt
to individual components at each time instant t [27]. It is
evaluated similarly to the approximated likelihood [22] with
the use of the point estimates of parameters. The proximity is
the value of the component pdf obtained by substituting the
point estimates of parameters of each i-th component from
the previous time instant t − 1 and the currently measured
yt into the pdf. According to [27], in the case of exponential
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components, it is advantageous to use a rapidly decreasing
function instead of the component pdf. In this paper, the
polynomial in the form

exp{−(2 ∆t)
5} (5)

is used as the proximity function, where ∆t is the distance

∆t = yt − E[yt], (6)

with the expectation E[yt] computed for the exponential
components as follows

1

(âl;t−1)i
(7)

using the point estimates âl;t−1 of the l-th entries of the
parameter a from (2) from the previous time instant t − 1,
see, e.g., [28].

The proximities from all mc components form the mc-
dimensional vector denoted by m.

Similarly, the integral of (4) over α provides the computa-
tion of its point estimate denoted by (α̂t−1)k with the help
of the normalization of the previous-time statistics (vt−1)k of
the conjugate prior Dirichlet pdf f(α|D(t− 1)) according to
[22] for the actual value k of zt.

After the marginalization of (4) over the parameters Θ and
α the pdf f(ct = i, ct−1 = j|D(t)) is obtained. It is joint for
the actual pointer ct and and past pointer ct−1, which is also
unknown.

To obtain the component weights expressing the probability
of the component activity, the proximities are multiplied entry-
wise by the previous-time point estimate of the parameter α
and the prior mc-dimensional weighting vector wt−1, whose
entries are the prior (initially chosen) pointer pdfs (ct−1 =
j|D(t− 1)), i.e.,

Wt ∝ (wt−1m
′) . ∗ (α̂t−1)k (8)

where Wt denotes the square mc-dimensional matrix com-
prised from pdfs f(ct = i, ct−1 = j|D(t)) joint for ct and
ct−1, and .∗ is a “dot product” that multiplies the matrices
entry by entry, see also [29].

The matrix Wt is normalized so that the overall sum of all
its entries is equal to 1, and subsequently it is summed up over
rows, which allows us to obtain the vector wt with the updated
component weights wi;t for all of the components. The maxi-
mum entry wi;t defines the currently active component, i.e.,
the point estimate of the pointer ct at time t.

A. The Component Statistics Update

Using the obtained weights wi;t at time t, the component
statistics are updated as follows. In (4), f(Θ|D(t− 1)) is the
prior Gamma pdf proportional to(

N∏
l=1

(al)i

)κi;t

exp {−a′i(St)i} , (9)

where the re-computable statistics (initially chosen) are up-
dated in the following form

κi;t = κi;t−1 + wi;t, (10)
(St)i = (St−1)i + wi;tyt, (11)

see, e.g., [28] or [26] based on [21]. The point estimates âi;t
of the parameters ai are obtained as follows

(âl;t)i =
κi;t−1

(Sl;t−1)i
, (12)

where i ∈ {1, 2, . . . ,mc} and l = {1, 2 . . . , N}.

B. The Pointer Model Statistics Update

The statistics of the pointer model is re-computed similarly
to the update of the individual categorical model [21], [22]
using the joint weights Wi,j;t [26], [29] from the matrix (8),
where the row j corresponds to the value of ct−1 and the
column i to the current pointer ct

(vi|j;t)k = (vi|j;t−1)k + δ(k; zt)Wj,i;t, (13)

and the Kronecker delta function δ(k; zt) = 1 for zt = k and
0 otherwise. The point estimate of the parameter α [22] of the
pointer model (3) is then obtained by the normalization

(α̂i|j;t)k =
(vi|j;t)k∑mc

l=1(vl|j;t)k
. (14)

C. The Clustering Algorithm

Using the above derivations, the clustering algorithm can be
summarized in the following form.
Initialization of the algorithm (for t = 1)

1) Set the number of components mc (e.g., based on the
prior data analysis or expert knowledge).

2) For all components, set the initial (expert-based or
random) values of the statistics κi;0, which is a scalar
and (S0)i, which is the N -dimensional vector.

3) For the pointer model, set the uniform initial values of
the statistics (v0)k, which is the (mc×mc)-dimensional
matrix for each value ∀k ∈ {1, 2, . . . ,mz} of the
variable zt.

4) Using these initial statistics, compute the point estimates
(12) and (14).

5) Set the initial mc-dimensional weighting vector w0

uniformly.
Online clustering (for t = 2, 3, . . .)

1) Measure the data item yt, zt.
2) For all components, compute (7) and put it into (6)

to obtain the distances for the polynomial proximity
functions.

3) For all components, substitute (6) with yt into (5) to
obtain the proximities.

4) Using (14) for the actual value k of zt, the obtained
proximities and the weighting vector, compute Wt via
(8).
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5) Normalize Wt and sum up over rows to obtain the actual
weighting vector wt.

6) Declare the active component according the maximum
entry of the vector wt, which is the point estimate of
the pointer ct at time t and classify the data item yt
according to the pointer value.

7) For all components, using the actual weights, update the
component statistics (10), (11) and the pointer statistics
(13).

8) For all components, re-compute the point estimates (12)
and (14) for the pointer model and go to Step 1 of the
online clustering part of the algorithm.

IV. APPLICATION TO HEMATOLOGICAL DATA

This section is devoted to the application of the presented
algorithm to the clustering of anonymized hematological data.
The primary aim of the algorithm application is the search for
clusters in the data space which can indicate some specific
groups of the leukemia patients characterized by similar fea-
tures. The measured variables comprising the vector yt are as
follows:
• y1;t – blasts [%],
• y2;t – neutrophils [509/l],
• y3;t – platelets [109/l)],
• y4;t – overall survival [month],
• y5;t – gene expression [in a log scale].

The discrete variable zt has two possible values: 1 denotes
that the patient died and 2 – didn’t die.

A. Choice of Component Distributions

The components with the exponential distribution can be
chosen based on the analysis of histograms of the available
prior measurements. Fig. 1 and Fig. 2 show histograms for
prior data of blasts, neutrophils, platelets as well as overall
survival. It can be clearly seen in these figures that the
measured values in the histograms demonstrate the exponential
nature of the variables. The histograms of blasts, platelets and
overall survival more correspond to a mixture of exponential
distributions, while the neutrophils not. However, mixture
models are known to be universal approximations for modeling
the data variables [30]. A histogram of gene expression plotted
in Fig. 3 (top) is also close to the exponential course, although
not so significantly as the rest of the variables from the vector
yt. The last histogram in Fig. 3 (bottom) belongs to the discrete
variable zt, which is used in the condition of the pointer model.

B. Initialization of Component Number

The number of components for the online clustering algo-
rithm can be initialized using the visualization of the data pairs
from a smaller set of prior data against each others. Fig. 4
(top) shows the prior values of platelets plotted against gene
expression. Two clusters can be seen around values of 100
and 200 of the platelets and the third one can be guessed
between values 500 and 600 [109/l]. Fig. 4 (bottom) plots the
prior values of platelets against the values of blasts, where

Fig. 1. Histograms of blasts and neutrophils

Fig. 2. Histograms of platelets and overall survival

Fig. 3. Histograms of gene expression and death

the similar location of three clusters can be visually guessed.
This initial guess also corresponds to the frequencies in the
histograms in Fig. 1 (top) and Fig. 2. It allows us to initialize
the number of components as 3.
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It would be also appropriate to apply some classifier in the
offline mode to the prior data set to pre-estimate the number of
components. Here, only the prior data visual analysis is done
for this purpose. The suitability of the model construction is
validated during the online estimation via the monitoring of
the component weights (it will be explained later).

Fig. 4. Prior values of platelets plotted against gene expression (top) and
blasts (bottom)

The rest of initial settings are chosen according to the
initialization part of the algorithm in Section III-C. After the
initialization, the online part of the clustering algorithm can be
started. The obtained results are presented in the subsequent
section.

V. RESULTS

The whole capacity of the data set available for the research
is 284 data items. This limited amount is explained by a small
number of patients with rare forms of leukemia. This can
complicate the search for clusters, e.g., some of the clusters
can be formed by several data items only unlike the extensive
data set, where they would have been much larger.

The results of the application of the presented algorithm
were evaluated according to the following criteria:
• The regular activity of all of the components is observed

by monitoring the weights of the components during the

online part of the algorithm. It means that in the case of
the properly initialized number of components, all of the
weights are regularly approaching to 0 or 1 and none of
of the components remains non-active for a longer time
or is non-active at all.

• The evolution of the switching of the components is worth
observing as well.

• Using real data, the pointer values indicating the active
components cannot be compared with its true values,
because the pointer variable is not measured. The location
and shape of the clusters found can be validated by
the comparison with theoretical counterparts, i.e., other
successful clustering methods.

A. Weights of Components

The evolution of the component weights expressing the
probability of the component activities is demonstrated in
Fig. 5. The results for all of the three components during the
online clustering are shown in the top, middle and bottom plots
respectively. It can be seen that all of the weights are regularly
close to the values of 1 and 0. It brings the unambiguous
decision about the current component activity at each time t.

Fig. 5. The evolution of component weights during the online clustering

B. Switching the Components

Switching the components during the online part of the
algorithm can be found in Fig. 6. The pointer estimates
indicating the active components are placed in axis y. Three
components show the regular activity during the estimation. In
the case of a rare activity of any of the components it would
be necessary to reduce the initialized number of components.
However, here the results shown in Fig. 5 and Fig. 6 confirm
that the model was initialized correctly.

C. Clusters

In the multi-dimensional data space such as in the case of
the five-dimensional data vector yt, the clusters can be shown
by plotting the variables from the vector against each other.
The most illustrative results from a clustering point of view
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Fig. 6. The pointer estimation during the online clustering

were obtained for the variable y3;t, which is the platelets.
It creates the clusters of the clearly visible form with all of
the modeled variables. Fig. 7 (top) demonstrates the detected
clusters for the platelets and the blasts and validates them via
comparison with the k-means method [9], see Fig. 7 (bottom).
The location and shape of the clusters are compared. The
insignificant difference can be seen in clusters 1 (denoted by
’�’) and 2 (denoted by ’v’) near the value of 15% of blasts.
However, the rest of the measurements are distributed among
the clusters similarly for both the compared algorithms, i.e.,
clusters 1, 2 and 3 have the very similar location and shapes.

Fig. 8 compares clusters of the platelets and the neutrophils
obtained with the presented algorithm (top) and k-means
(bottom). Again, with the insignificant difference in cluster
3 near the value of 100 of the platelets, the location and
shapes of the clusters are almost identical. Two data items
corresponding to the values of 30 and 60 of the neutrophils
are outliers.

Fig. 9 and Fig. 10 provide the results of clustering obtained
for the overall survival against the platelets and the gene
expression against the platelets respectively. The location and
shapes of the detected clusters are verified by the k-means
method, i.e., the quality of the clustering is similar to the
results in Fig. 7 and Fig. 8.

D. Discussion

The main goal of the presented study was to apply the
mixture-based clustering algorithm to hematological data and
find the clusters in the available data set. The clusters are
expected to express groups existing in the patients’ data which
are characterized by similar, but non-specified features.

It can be said that the application of the algorithm was
successful. Three clusters were detected and their location and
shapes were confirmed by another well-known classifier such
as k-means, which does not model the data vector, but itera-
tively looks for the data groups. This makes the comparison
in some sense independent. However, it should be noticed that
the presented algorithm performs the clustering online, i.e., it

Fig. 7. Comparison of clusters of platelets and blasts

updates the estimates recursively by each new data item, which
was measured. The k-means looks for clusters in the offline
mode, which means it works with the whole data set and in
order to make the clustering with the new measurement, it is
necessary to run computations again with all of the data.

The clearly visible, practically non-overlapping clusters
were detected for the data pair of platelets with the rest of
the modeled variables, including the overall survival, which
is the most interesting relationship in the data. The detected
clusters of these two variables can be of a potential practical
interest and should be investigated in further studies.

However, clusters detected for the rest of data pairs were
much more overlapping (not shown here simply to save space)
or even mixed. Their clustering with the help of k-means gave
the same results, which means that in the available data set
the groups of data with similar features should be searched
only in the relationship of platelets with other variables.

The potential application of the presented algorithm can
be found in the online diagnostics systems using patients’
measurements for evaluating their state from a required point
of view. However, the area of the potential application is
not restricted by the biostatistical field and could be found
elsewhere with relevant requirements for the online clus-
ter analysis (for example, driver assistance systems in the
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Fig. 8. Comparison of clusters of platelets and neutrophils

transportation field, online state prediction and fault detection
systems in the field of industrial processing plants, smart city
and big data areas, etc.).

A limitation of the approach is the use of components de-
scribed by distributions, which have the re-producible statistics
to be used in the recursive update.

VI. CONCLUSION

The paper presented the online clustering algorithm based
on the recursive Bayesian mixture estimation and its applica-
tion to the anonymized data of leukemia patients. The main
tasks solved in the paper are the parameter estimation of ex-
ponential components as well as the data-dependent dynamic
pointer model and the online clustering of data according to the
pointer value. The performed experiments with hematological
data report the detection of clusters between platelets and the
rest of the modeled variables.

The further issues planned to be considered within the
presented study include: (i) modeling and prediction of the
discrete variable zt, which is here the death of the patient, (ii)
prediction of the overall survival.
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