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Abstract

We propose a new framework for measuring connectedness among financial vari-
ables that arise due to heterogeneous frequency responses to shocks. To estimate
connectedness in short-, medium-, and long-term financial cycles, we introduce a
framework based on the spectral representation of variance decompositions. In an
empirical application, we document the rich time-frequency dynamics of volatility
connectedness in U.S. financial institutions. Economically, periods in which con-
nectedness is created at high frequencies are periods when stock markets seem to
process information rapidly and calmly, and a shock to one asset in the system will
have an impact mainly in the short term. When the connectedness is created at
lower frequencies, it suggests that shocks are persistent and are being transmitted
for longer periods.
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The connectedness of financial markets is central to many areas of research, including

risk management, portfolio allocation, and business cycle analysis. Being aware of the
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unsuitability of standard correlation-based measures, academics have concentrated on de-

veloping more general frameworks. An abundant body of literature, however, still over-

looks several fundamental properties of connectedness and hence possible sources of

systemic risk. In our work, we argue that to understand the sources of connectedness in an

economic system, it is crucial to understand the frequency dynamics of the connectedness,

as shocks to economic activity impact variables at various frequencies with various

strengths. To consider the long-, medium-, and short-term frequency responses to shocks,

we propose a general framework that will allow us to measure the financial connectedness

at a desired frequency band.

The main reason why we should believe that agents operate on different investment

horizons represented by frequencies lies in the formation of their preferences. Ortu,

Tamoni, and Tebaldi (2013) disaggregate consumption growth into cyclical components

classified by their level of persistence, and they develop an asset pricing model in which

consumption responds to shocks due to heterogeneous preference choices. The authors

hence extend the growing literature on consumption-based asset pricing models that price

long-run risk in consumption growth (Bansal and Yaron, 2004). In an earlier contribution,

Cogley (2001) decomposes the approximation errors in stochastic discount factor models

by frequency and applies the frequency decomposition to a number of consumption-based

discount factor models. Bandi and Tamoni (2016) further argue that consumption growth

should be separated into a variety of cyclical components because investors may not focus

on very high-frequency components of consumption representing short-term noise; instead,

they may focus on lower-frequency components of consumption growth with heteroge-

neous periodicities. In a financial system, asset prices driven by consumption growth with

different cyclical components will naturally generate shocks with heterogeneous frequency

responses, and thus, various sources of connectedness will create short-, medium-, and

long-term systemic risk. In turn, when studying connectedness, we should focus on linkages

with various degrees of persistence underlying systemic risk.

The importance of the distinction between the short-term and the long-term parts of

the system became evident even earlier with the dawn of co-integration (Engle and

Granger, 1987). Subsequent literature builds a preliminary notion of disentangling

short-term from long-term movements in connectedness (Blanchard and Quah, 1989;

Quah, 1992; Gonzalo and Ng, 2001). Given the decomposition to the long-term common

stochastic trend and deviations from the trend, one can move the projection in such a way

that an error to one series will be a shock to the long-term trend, an error to another will

be a shock to the deviation from the trend. A shock with a strong long-term effect will

have high power at low frequencies, and in case it transmits to other variables, it points to

long-term connectedness. For example, in the case of stock markets, long-term connected-

ness may be attributed to permanent changes in expectations about future dividends

(Balke and Wohar, 2002). To capture the frequency dynamics of connectedness, we

propose a general framework for decomposing the connectedness to any frequency band

of interest. Similar to Dew-Becker and Giglio (2016), who set asset pricing into the

frequency domain, we view the frequency domain as a natural place for measuring the

connectedness.

Focusing on shocks of an individual financial institution that have an impact on the

wider system, our research contributes to the large body of literature measuring systemic

risk both theoretically and empirically. As noted by Benoit et al. (2017), system-wide
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connectedness, or systemic risk, is often considered a “hard-to-define-but-you-know-it-

when-you-see-it” concept. Generally, the literature views systemic risk as the risk that

many market participants are simultaneously affected by severe losses, which then spread

through the system.1 The financial crisis of 2007–2009 has reminded us that liquidity

shocks, insolvency, and losses can quickly propagate and affect institutions, even in dif-

ferent markets. Consequently, there has been a growing demand for the design of finan-

cial regulations that are aimed to control individual institutions. From the perspective of

market supervision, securing ourselves against this type of risk requires a sound quantifi-

cation of systemic risk. Whereas measures specific to a particular risk channel are useful

for calibrating regulatory tools, global measures aiming to quantify the contribution of

financial institutions to total systemic risk are necessary to identify systematically import-

ant institutions. In cases where the contribution of institutions is persistent—instead of

affecting the system solely in the short term—the systemically important financial institu-

tions (SIFIs) may then be subject to higher capital requirements or a systemic risk tax.

Because systemic risk threatens the stability of the entire financial sector, knowing the

frequency-specific source of the instability is key for policymakers who are looking for

tools to monitor the accumulation of risk.

Individuals who are interested in the frequency sources of connectedness in variables

may consider using different forecast horizons of variance decomposition.2 Staying in the

time domain, heterogeneous frequency responses to shocks are simply aggregated through

frequencies. To see this, let us consider two examples of a system of a bivariate autoregres-

sive (AR) process with opposite signs of coefficients. The positive coefficients in the first ex-

ample will create large connectedness driven by low frequencies of the cross-spectral

density. With the increasing forecast horizon of variance decompositions, one will measure

higher connectedness in the process. In the second example, the negative coefficients of the

same magnitude will create equal connectedness as in the first case at all forecasting hori-

zons, although connections come solely from the high frequencies due to the anti-persistent

nature of the process. Hence, simply assessing connectedness at different horizons to cap-

ture the heterogeneous frequency responses due to differing expectations of investors is not

sufficient.

Instead of assessing the overall error variation in a variable a due to shock arising in a

variable b, we are interested in assessing shares of forecast error variation in a variable a

due to shock to a variable b at a specific frequency band. This is a natural step to take, as it

will show the long-, medium-, and short-term impacts of a shock, which can conveniently

be summed to a total aggregate effect, if needed. For the purpose of frequency-dependent

measurement, we define the spectral representation of generalized forecast error variance

decomposition (GFEVD). To achieve this, we work with the Fourier transforms of the im-

pulse response functions, that is, frequency responses. In the frequency domain, we are sim-

ply interested in the portion of forecast error variance at a given frequency band that is

1 For a comprehensive review of the systemic risk literature, see Benoit et al. (2017).

2 As noted by Diebold and Yilmaz (2009, 2012), and later Diebold and Yilmaz (2014), variance decom-

positions from approximating models are a convenient framework for empirical measurements of

connectedness. More precisely, Diebold and Yilmaz (2009) define the measures based on assessing

shares of forecast error variation in one variable due to a shock arising in another variable in the

system.
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attributed to shocks in another variable. Our work is inspired by the previous research of

Geweke (1982, 1984, 1986) and Stiassny (1996), who use related measures in more restrict-

ive environments.

In addition to introducing frequency dynamics into the measurement of connectedness,

we study how cross-sectional correlations impact the connectedness. A higher contempor-

aneous correlation does not necessarily indicate connectedness in the sense that the litera-

ture tries to measure it. A good example is the recent crisis of 2007–8, when stock markets

recorded strong cross-sectional correlations that biased the contagion effects estimated by

many researchers (Forbes and Rigobon, 2002; Bekaert, Harvey, and Ng, 2005).

The paper starts with a theoretical discussion. This is followed by a relevant application

on financial data that show the usefulness of the framework and guide users in applying the

introduced methods appropriately. Concretely, we study an important problem of connect-

edness in financial systems with a special focus on the frequency-specific measurement of

systemic risk. We use the spectral representations of variance decompositions locally to re-

cover the time-frequency dynamics of the connectedness of the main U.S. financial institu-

tions, and we document rich dynamics in the frequency responses of shocks in volatilities.

We find that the dynamics of connectedness are not exclusively driven by one band of fre-

quencies; different frequency bands play varying roles at different times. The dynamic cor-

responds intuitively to the events that occurred in the global financial markets.

1 Measuring Connectedness in Frequency Domain

System connectedness can be characterized through variance decompositions from a vector

auto-regression approximating model (Diebold and Yilmaz, 2009, 2012). Variance decom-

positions provide useful information about how much of the future uncertainty of variable j

is due to shocks in variable k. One can measure how the system is interconnected using ag-

gregation of the information in variance decompositions for many variables. Diebold and

Yilmaz (2014) further argue that variance decompositions are closely linked to modern net-

work theory as well as recently proposed measures of various types of systemic risk, such as

expected shortfall (Acharya et al., 2017) and CoVaR (Adrian and Brunnermeier, 2016).

A natural way to describe the frequency dynamics (the long-term, medium-term, or

short-term) of the connectedness is to consider the spectral representation of variance de-

compositions based on frequency responses to shocks. Stiassny (1996) introduced a first

notion of spectral representation for variance decompositions, albeit in a restrictive set-

ting. In our work, we define the general spectral representation of variance decompos-

itions, and we show how we can use it to define the frequency-dependent connectedness

measures.

The spectral representations of variance decompositions can also be viewed as a possible

way of measuring causality in the frequency domain. Geweke (1982) proposes a frequency

domain decomposition of the usual likelihood ratio test statistic for Granger causality, and

Dufour and Renault (1998), Breitung and Candelon (2006), and Yamada and Yanfeng

(2014) provide a formal framework for testing causality on various frequencies. Geweke

(1984) and Granger (1969) develop multivariate extensions; however, all the analysis is

done using partial cross-spectra and is therefore silent on the indirect causality chains.

Hence, we are also motivated by this part of the econometrics literature to propose a more

general framework.
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Before defining the connectedness measures in the frequency domain, we briefly discuss

the method of measuring connectedness introduced by Diebold and Yilmaz (2012) using

GFEVDs, as we build on these ideas in the frequency domain later in the text.

1.1 Measuring Connectedness with Variance Decompositions

The connectedness measures are built from the variance decomposition matrix of a vector

autoregressive (VAR) approximating model. In particular, consider a covariance stationary

N-variate process xt ¼ x1;t; . . . ; xN;t

� �0
at t ¼ 1; . . . ;T described by the VAR model of order

p as

xt ¼ U1xt�1 þU2xt�2 þ � � � þUpxt�p þ et;

with U1; . . . ;Up coefficient matrices, and et being white noise with (possibly non-diagonal)

covariance matrix R. In this model, each variable is regressed on its own p lags as well as

the p lags of each of the other variables in the system; hence, matrices of the coefficients

contain complete information about the connections between variables. It is useful to work

with N �Nð Þ matrix lag-polynomial U Lð Þ ¼ IN �U1L� � � � �UpLp
� �

with IN identity

matrix, as the model can be written concisely as U Lð Þxt ¼ et. Assuming that the roots of

jU zð Þj lie outside the unit circle, the VAR process has the following vector moving average

(i.e., MA(1)) representation

xt ¼ W Lð Þet;

where W Lð Þ matrix of infinite lag polynomials can be calculated recursively from

U Lð Þ ¼ W Lð Þ½ ��1 and is key to understanding dynamics. Since W Lð Þ contains an infinite

number of lags, it needs to be approximated with the moving average coefficients Wh calcu-

lated at h ¼ 1; . . . ;H horizons. The connectedness measures rely on variance decompos-

itions, which are transformations of the Wh and allow the measurement of the contribution

of shocks to the system.

Since a shock to a variable in the model does not necessarily appear alone, that is, or-

thogonally to shocks to other variables, an identification scheme is crucial step in the calcu-

lation of variance decompositions. Standard approaches relying on Cholesky factorization

depend on the ordering of the variables and complicate the measures. Generalized identifi-

cation proposed by Pesaran and Shin (1998) produces variance decompositions invariant to

ordering.

Generalized variance decompositions can be written in the form3 (for a detailed deriv-

ation of the formula, see Appendix A.1)

hHð Þj;k ¼
r�1

kk

XH

h¼0
WhRð Þj;k

� �2

XH

h¼0
WhRWh

0ð Þj;j
; (1)

where Wh is a N �Nð Þ matrix of moving average coefficients at lag h defined above, and

rkk ¼ Rð Þk;k. The hHð Þj;k denotes the contribution of the kth variable to the variance of

3 Note to notation: (A)j,k denotes the jth row and kth column of matrix A denoted in bold. (A)j denotes

the full jth row; this is similar for the columns. A
P

A, where A is a matrix that denotes the sum of

all elements of the matrix A.
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forecast error of the element j, at horizon h. As the rows of the variance decomposition ma-

trix hH do not necessarily sum to one, each entry is normalized by the row sum as

~hH

� �
j;k
¼ hHð Þj;k

,XN
k¼1

hHð Þj;k:

Now the
PN

j¼1
~hH

� �
j;k
¼ 1 and the sum of all elements in ~hH is equal to N, by construction.

Note that ~hH

� �
j;k

provides a measure of pairwise connectedness from j to k at horizon

H. This information can be aggregated to measure the total connectedness of the system.

The connectedness measure is then defined as the share of variance in the forecasts contrib-

uted by errors other than own errors or as the ratio of the sum of the off-diagonal elements

to the sum of the entire matrix (Diebold and Yilmaz, 2012)

CH ¼ 100 �

X
j6¼k

~hH

� �
j;kX

~hH

¼ 100 � 1� Trf~hHgX
~hH

 !
; (2)

where Tr �f g is the trace operator, and the denominator signifies the sum of all elements of

the ~hH matrix. Hence, the connectedness is the relative contribution to the forecast vari-

ances from the other variables in the system.

1.2 Spectral Representation for Variance Decompositions and

Connectedness Measures

A natural way to describe the frequency dynamics (the long-term, medium-term, or short-

term) of the connectedness is to consider the spectral representation of variance decompos-

itions based on frequency responses to shocks instead of impulse responses to shocks. As a

building block of the presented theory, we consider a frequency response function,

W e�ix
� �

¼
P

h e�ixhWh, which can be obtained as a Fourier transform of the coefficients

Wh, with i ¼
ffiffiffiffiffiffiffi
�1
p

. The spectral density of xt at frequency x can then be conveniently

defined as a Fourier transform of MA(1) filtered series as

Sx xð Þ ¼
X1

h¼�1
E xtx

0
t�h

� �
e�ixh ¼ W e�ix

� �
RW0 eþix

� �
:

The power spectrum Sx xð Þ is a key quantity for understanding frequency dynamics, since it

describes how the variance of the xt is distributed over the frequency components x. Using

the spectral representation for covariance, that is, E xtx
0
t�h

� �
¼
Ð p
�p Sx xð Þeixhdx, the follow-

ing definition naturally introduces the frequency domain counterparts of variance

decomposition.

Definition 1.1. The generalized causation spectrum over frequencies x 2 �p; pð Þ is

defined as

g xð Þð Þj;k �
r�1

kk

			 W e�ix
� �

R
� �

j;k

			2
W e�ixð ÞRW0 eþixð Þð Þj;j

;

where W e�ix
� �

¼
P

h e�ixhWh is the Fourier transform of the impulse response Wh.
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It is important to note that g xð Þð Þj;k represents the portion of the spectrum of the jth

variable at a given frequency x due to shocks in the kth variable. We can interpret the

quantity as within-frequency causation, as the denominator holds the spectrum of the jth

variable (on-diagonal element of cross-spectral density of xt) at a given frequency x. To ob-

tain a natural decomposition of variance decompositions to frequencies, we can weight the

g xð Þð Þj;k by the frequency share of the variance of the jth variable. The weighting function

can be defined as

Cj xð Þ ¼
W e�ix
� �

RW0 eþix
� �� �

j;j

1
2p

ðp

�p
W e�ik
� �

RW0 eþik
� �� �

j;j
dk
;

and it represents the power of the jth variable at a given frequency, which sums through fre-

quencies to a constant value of 2p. Note that while the Fourier transform of the impulse re-

sponse is generally a complex-valued quantity, the generalized causation spectrum is the

squared modulus of the weighted complex numbers, thus producing a real quantity.

The following proposition establishes spectral representation of the variance decompos-

ition from j to k, and it is central to the development of the connectedness measures in the

frequency domain.

Proposition 1.1. Suppose xt is wide-sense stationary with r�1
kk

P1
h¼0

j WhRð Þj;kj < þ1;8j; k:
Then,

h1ð Þj;k ¼
1

2p

ðp

�p
Cj xð Þ g xð Þð Þj;kdx:

Proof. See Appendix A.2. h

Using the result in Proposition 1.1, hHð Þj;k at H !1 can be viewed as the weighted

average of the generalized causation spectrum g xð Þð Þj;k, which gives us the strength of the

relationship on given frequency weighted by the power of the series on that frequency. The

integral over admissible frequencies perfectly reconstructs the theoretical value of the ori-

ginal h1ð Þj;k. The proposition not only is an important theoretical result but also reminds

us that when measuring connectedness with hHð Þj;k at H !1 in the time domain, we are

looking at information aggregated through frequencies and ignoring heterogeneous fre-

quency responses to shocks. It is also important to note that effects over the entire range of

frequencies influence h1ð Þj;k.

In economic applications, we are usually interested in assessing short-, medium-, or

long-term connectedness rather than connectedness at a single given frequency. Hence, to

better follow the economic intuition, it is more convenient to work with frequency bands

that we define as the amount of forecast error variance created on a convex set of frequen-

cies. The quantity is then given by integrating only over the desired frequencies x 2 a;bð Þ.
Formally, let us have a frequency band d ¼ a; bð Þ : a;b 2 �p; pð Þ; a < b: The general-

ized variance decompositions on frequency band d are defined as

hdð Þj;k ¼
1

2p

ð
d

Cj xð Þ g xð Þð Þj;kdx: (3)
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Because the introduced relationship is an identity and the integral is a linear operator, sum-

ming over disjoint intervals covering the entire range �p; pð Þ will recover the original vari-

ance decomposition. The following remark formalizes this fact.

Remark 1.1. Denote by ds an interval on the real line from the set of intervals D that

form a partition of the interval �p; pð Þ, such that \ds2Dds ¼ ; and [ds2Dds ¼ �p; pð Þ. Due

to the linearity of integral and the construction of ds, we have

h1ð Þj;k ¼
X
ds2D

hds

� �
j;k
:

Using the spectral representation of generalized variance decomposition, it is straightfor-

ward to define connectedness measures on a given frequency band.

Definition 1.2. Let us define scaled generalized variance decomposition on the frequency

band d ¼ a;bð Þ : a;b 2 �p;pð Þ; a < b as

~hd

� �
j;k
¼ hdð Þj;k=

X
k

h1ð Þj;k;

where hd and h1 are defined as by Equation (3) and Proposition 1.1

• The within connectedness on the frequency band d is then defined as

CWd ¼ 100 � 1� Trf~hdgX
~hd

 !
:

• The frequency connectedness on the frequency band d is then defined as

CFd ¼ 100 �
X

~hdX
~h1
�

Tr ~hd


 �X
~h1

 !
¼ CWd �

X
~hdX
~h1

;

where Tr �f g is the trace operator, and the
X

~hd signifies the sum of all elements of the ~hd

matrix.

The Definition 1.2 works with two notions: the frequency connectedness and the within

connectedness. The within connectedness gives us the connectedness effect that occurs

within the frequency band and is weighted by the power of the series on the given frequency

band exclusively. However, the frequency connectedness decomposes the overall connect-

edness defined in Equation (2) into distinct parts that, when summed, give the original con-

nectedness measure C1. The following proposition formalizes the notion of reconstruction

of the overall connectedness.

Proposition 1.2 (Reconstruction of Frequency Connectedness). Denote by ds an interval

on the real line from the set of intervals D that form a partition of the interval �p;pð Þ, such

that \ds2Dds ¼ ; and [ds2Dds ¼ �p;pð Þ. We then have that

C1 ¼
X
ds2D

CFds
; (4)

where C1 is defined in Equation (2) with H !1.
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Proof. See Appendix A.2. h

To illustrate the difference between frequency and within connectedness, recall that the

typical spectral shape of economic variables has the most power concentrated on low fre-

quencies (long-term movements or trend). Hence, we could decompose the connectedness

into two parts: one that covers long-term movements and another that covers short-term

movements. Suppose that 90% of the spectral density is concentrated in long-term move-

ments, and hence, 10% is in short-term movements. Now, suppose that the connectedness

in short-term movements is high, say 80%, and low on long-term movements, say 25%.

The 80% and 25% connectedness numbers represent the within connectedness. The total

connectedness will be much closer to 25% because the short-term connectedness of 80%

will be down-weighted by the very low amount (10%) of spectral density on the short-term

frequencies. Stated otherwise, although the short-term activities are very connected because

of the small share of variance on the short-term frequencies, this connection becomes negli-

gible in the aggregate system connectedness. This can be clearly observed in the simulations

in the following section.

We conclude the theoretical section with the remark showing that the two concepts—

the within and the frequency connectedness—coincide when the entire frequency band d

¼ �p; pð Þ is considered.

Proposition 1.3. Let us have d ¼ �p; pð Þ. We then have

CFd ¼ CWd ¼ C1: (5)

Proof. See Appendix A.2. h

1.3 Estimation of Connectedness in the Frequency Domain

The estimation of the previously defined connectedness measures relies heavily on the pre-

cise estimation of coefficients from the VAR approximating model. While standard VAR

estimators work well in many cases, advanced techniques that include shrinkage or

Bayesian approaches can help in situations of large dimensional data, deviations from dis-

tributional assumptions, etc.

Variance decomposition of forecast errors is computed directly from moving average co-

efficients. Because the computation of these theoretical quantities is based on an infinite

process, we make it feasible with a finite horizon H approximation, as used in the defin-

itions above, noting that the error-from approximation disappears as H grows (Lütkepohl,

2007). The Ŵh coefficients are then computed through standard recursive scheme Ŵ0 ¼ I;

Ŵh ¼
Pmax fh;pg

j¼1 U jð ÞŴh�1; where p is the order of VAR and h 2 f1; . . . ;Hg. Here, we note

that by studying the quantities in the frequency domain, H serves only as an approximation

factor, and it has no interpretation as in the time domain. In the applications, we advise set-

ting the H sufficiently high to obtain a better approximation, particularly when lower fre-

quencies are of interest.

The spectral quantities are estimated using standard discrete Fourier transforms. The

following definition accurately specifies the used estimates of the quantities.
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Definition 1.3. The cross-spectral density on the interval d ¼ a; bð Þ : a;b 2 �p;pð Þ; a < bð
d

W e�ix
� �

RW0 eþix
� �

dx

is estimated as X
x

Ŵ xð ÞR̂Ŵ
0
xð Þ;

for x 2 aH
2p

� 
; :::; bH

2p

� 
 �
where

Ŵ xð Þ ¼
XH�1

h¼0

Ŵhe�2ipx=H;

and R̂ ¼ ê0ê= T � zð Þ, where z is a correction for a loss of degrees of freedom, and it depends

on the VAR specification.

The decomposition of the impulse response function at the given frequency band is then

estimated as Ŵ dð Þ ¼
P

x Ŵ xð Þ. Definition 1.3 finally allows the estimation of the general-

ized variance decompositions at a desired frequency band as

ĥd

� �
j;k
¼
X

x

Ĉj xð Þ ĝ xð Þ
� �

j;k
;

where

ĝ xð Þ
� �

j;k
�

r̂�1
kk Ŵ xð ÞR̂

� �
j;k

� �2

Ŵ xð ÞR̂Ŵ
0
xð Þ

� �
j;j

is estimated generalized causation spectrum, and

Ĉ j xð Þ ¼
Ŵ xð ÞR̂Ŵ

0
xð Þ

� �
j;j

Xð Þj;j

is estimate of the weighting function, where X ¼
P

x Ŵ xð ÞR̂Ŵ
0
xð Þ.

Then, the connectedness measures ĈW and ĈF at a given frequency band of interest can

be readily derived by plugging the ðĥdÞj;k estimate into Definition 1.2.4

2 Simulation Study

To motivate the usefulness of the proposed measures, we study the processes that generate

frequency-dependent connectedness by simulations. We look at connectedness that is

induced through cross-sectional correlations or interactions between bivariate AR proc-

esses. The emergence of connectedness and its spectral footprints is then illustrated through

4 The entire estimation is done using the package frequencyConnectedness in R software. The pack-

age is available on CRAN or on https://github.com/tomaskrehlik/frequencyConnectedness.
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a change in the coefficients in the bivariate VAR(1) case. Suppose the data have been gener-

ated from the following equations:

x1;t ¼ b1x1;t�1 þ sx2;t�1 þ �1;t
x2;t ¼ sx1;t�1 þ b2x2;t�1 þ �2;t;

(6)

where �1;t; �2;t
� �

� N 0;Rð Þ with R ¼
1 q

q 1

 !
:

By altering the true coefficients that generate the data, we study several cases with

known values of theoretical connectedness estimates. We start with a symmetric process of

b ¼ b1 ¼ b2, with three important cases generating distinctly connected variables x1;t and

x2;t. The first case is the b ¼ b1 ¼ b2 ¼ 0, when we have two independent processes that

have zero connectedness at all frequencies. Second, we study the connectedness of two sym-

metrically connected AR processes with the parameter b ¼ b1 ¼ b2 ¼ 0:9 and s¼0.09 or

b ¼ b1 ¼ b2 ¼ �0:9 and s ¼ �0:09 generating equal total connectedness with different

sources from low and high frequencies of cross-spectral densities for positive and negative

values of coefficients, respectively.

In addition to motivating the importance of the frequency dynamics of connectedness,

we show the importance of cross-sectional correlations, which translates to all frequencies

and may bias the connectedness measures. Hence, for all cases, we consider two extremes

of cross-sectional dependence: no correlation q¼ 0 and a correlation of q ¼ 0:9. To show

how the cross-sectional correlations affect the connectedness measures, we compute the

measures with an additional step in the estimation, considering only the diagonals of the co-

variance matrix of residuals and removing the cross-sectional dependence. In this way, we

disentangle the influence of correlations from the true dynamics. In the text, we always pre-

sent only the estimates on the simulated data and save the true values of measures in Table

4 in Online Appendix B.2.

Table 1 shows the results. We can observe that the system’s connectedness of two un-

connected and uncorrelated processes is zero up to Monte Carlo noise in both the total and

all spectral parts. In case of correlated noises, the total connectedness with the estimated

correlation matrix is estimated at approximately 45, with an equal footprint on all scales.

Considering only diagonal elements from the estimated covariance matrix of the residuals

and removing the cross-sectional dependence correctly estimates no connectedness at all

frequencies.

For an AR coefficient equal to 0.9, the uncorrelated case shows that the connection be-

tween the processes is on the long-term part (as expected, due to the spectral density of the

underlying process). However, introducing correlation increases the total connectedness

and most of all obfuscates the source of the dynamics. Considering only the diagonals of

the covariance matrix of the estimated residuals, we can see that the correlation in the esti-

mated covariance matrix correctly exposes the underlying dynamics. The remaining case

with the coefficient equal to �0.9 is very similar to the previous case, except the spectral

mass is concentrated on the short frequencies. Otherwise, the qualitative results remain the

same.

It is important to note that whereas coefficients with opposite signs of 0.9 and �0.9 gen-

erate the time series with equal connectedness, the source is from different parts of the
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spectra. This example motivates the usefulness of our measures, which are able to precisely

locate the part of cross-spectra generating the connectedness.

Next, we move to the case where the two processes are not symmetric. With the simula-

tion, we want to illustrate two important cases of how the connectedness arises. First, let us

keep the parameter s that governs the connection of the two processes through the lagged

observation constant and change the spectral structure of the processes through the coeffi-

cient b2.

Table 2 shows that in this case, the connectedness is arising due to the increase in the

spectral similarity of the processes in question. This is an important example, as it shows

that even a relatively small interaction at some frequency band can create strong connected-

ness among variables. Keeping the structure of the processes constant and increasing the

parameter of interconnection increases the connectedness, as is documented by Table 3 in

Online Appendix B.2.

The simulation exercise suggests possible sources of connectedness and motivates the

usefulness of our measures. The role of covariance among the processes can be studied

through the exclusion of the covariance terms, and the role of similarity can be examined

through individual spectral densities; however, as mentioned, most of the economic series

have similar spectral densities (Granger, 1966). Our measures estimate the rich dynamics

precisely.

3 Systemic Risk in the U.S. Financial Sector

In the past few decades, the literature has extensively studied the question of how financial

firms are interconnected. Focusing on studying causality effects, co-movement, spillovers,

connectedness, and systemic risk, researchers primarily try to answer the question using

Table 1. Simulation results

Connectedness Connectedness without correlation

b s q Total ðp=2; pÞ ðp=4; p=2Þ ð0; p=4Þ Total ðp=2; pÞ ðp=4; p=2Þ ð0; p=4Þ

0.00 0.00 0.00 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01

(0.02) (0.02) (0.02) (0.02) (0.01) (0.01) (0.01) (0.01)

0.00 0.00 0.90 44.75 44.75 44.75 44.76 0.04 0.04 0.04 0.04

(0.11) (0.12) (0.11) (0.12) (0.05) (0.05) (0.05) (0.05)

0.90 0.09 0.00 40.23 0.33 0.94 40.89 40.21 0.33 0.94 40.87

(1.21) (0.11) (0.11) (1.14) (1.21) (0.03) (0.06) (1.15)

0.90 0.09 0.90 49.45 44.21 44.38 49.49 40.45 0.34 0.95 41.10

(0.08) (0.13) (0.12) (0.08) (1.46) (0.04) (0.08) (1.38)

�0.90 �0.09 0.00 40.36 40.63 0.31 0.21 40.35 40.62 0.30 0.20

(1.32) (1.30) (0.08) (0.09) (1.32) (1.29) (0.03) (0.02)

�0.90 �0.09 0.90 49.45 49.47 44.31 44.28 40.50 40.77 0.31 0.21

(0.07) (0.07) (0.13) (0.13) (1.23) (1.20) (0.02) (0.02)

Notes: The first three columns describe the parameters for the simulation as described in Equation (6). We set

b ¼ b1 ¼ b2. The estimate is computed averaging over the 1000 simulations of VAR with length 104, and the

standard error is the sample standard deviation.
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methods measuring the aggregate effects. Our interest is to measure frequency sources of

volatility connectedness; hence, sources of systemic risk, as shocks to volatility, will impact

future uncertainty differently. For example, fundamental changes in investors’ expectations

will have an impact on the market in the long term. These expectations are then transmitted

to surrounding assets in portfolios differently than shocks with a short-term impact.

The early literature measuring the connectedness of markets in general was predomin-

antly interested in contagion effects in market prices during crises. In a seminal paper,

Forbes and Rigobon (2002) show that if we account for volatilities of the price processes,

the contagion effects disappear. This led to a rather strong statement of no-contagion, and

interdependence among the markets remained the main effect of interest. However, as Ross

(1989) shows in his famous paper, volatility is the carrier of information in standard mar-

tingale price models. Hence, most of the later literature concentrates on the connectedness

of volatilities. Tse and Tsui (2002) concentrate on investigating the connection in the multi-

variate GARCH framework. They report high cross-correlations on the Forex market, na-

tional stock market, and Hang Seng sectoral indices. Bae, Karolyi, and Stulz (2003)

investigate the co-incidence of the extreme returns across markets and connect this measure

by extreme value theory. They evaluate the contagion effects among various parts of the

world, finding a high co-incidence of negative returns across markets. Engle, Gallo, and

Velucchi (2012) provide an exhaustive review of the empirical literature on volatility

spillovers.

A broader picture concerning spillovers was later provided by Diebold and Yilmaz

(2009), who explicitly investigated volatilities and returns separately and uncovered

Table 2. Simulation results

Connectedness Connectedness without correlation

b1 b2 s q Total ðp=2; pÞ ðp=4;p=2Þ ð0; p=4Þ Total ðp=2; pÞ ðp=4;p=2Þ ð0; p=4Þ

0.90 0.90 0.09 0.00 40.23 0.33 0.94 40.89 40.21 0.33 0.94 40.87

(1.21) (0.11) (0.11) (1.14) (1.21) (0.03) (0.06) (1.15)

0.90 0.90 0.09 0.90 49.45 44.21 44.38 49.49 40.45 0.34 0.95 41.10

(0.08) (0.13) (0.12) (0.08) (1.46) (0.04) (0.08) (1.38)

0.90 0.40 0.09 0.00 5.72 0.32 0.89 7.57 5.70 0.32 0.89 7.54

(0.50) (0.10) (0.11) (0.65) (0.48) (0.03) (0.08) (0.61)

0.90 0.40 0.09 0.90 46.08 44.24 44.48 46.55 5.67 0.32 0.88 7.49

(0.10) (0.11) (0.11) (0.10) (0.52) (0.02) (0.06) (0.67)

0.90 0.00 0.09 0.00 2.60 0.32 0.80 3.98 2.58 0.32 0.80 3.96

(0.26) (0.09) (0.08) (0.41) (0.23) (0.02) (0.06) (0.35)

0.90 0.00 0.09 0.90 45.39 44.25 44.51 45.97 2.56 0.31 0.79 3.92

(0.11) (0.10) (0.10) (0.12) (0.25) (0.02) (0.06) (0.38)

0.90 �0.90 0.09 0.00 0.46 0.47 0.45 0.45 0.45 0.45 0.45 0.45

(0.03) (0.10) (0.05) (0.10) (0.03) (0.03) (0.03) (0.03)

0.90 �0.90 0.09 0.90 44.75 44.26 44.97 45.26 0.45 0.44 0.45 0.45

(0.11) (0.12) (0.11) (0.10) (0.03) (0.02) (0.03) (0.04)

Notes: The first three columns describe the parameters for the simulation, as described in Equation (6). The es-

timate is computed averaging over the 1000 simulations of VAR with length 104, and the standard error is the

sample standard deviation.
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contagion effects in volatilities. In the same paper, the authors side-stepped the controver-

sial topic of contagion, which had already been tied predominantly to financial crises and

introduced the concept of spillovers, which refer to varying interdependency between the

markets. Borrowing from both the contagion and interdependence notions, Diebold and

Yilmaz (2009) define a rigorous framework for measuring spillovers of returns and volatil-

ity across markets. These authors coin the term connectedness in their subsequent work

(Diebold and Yilmaz, 2014), in which they measure systemic risk in the U.S. financial sec-

tor. Over the course of a few years, hundreds of studies in the literature successfully used

this methodology to measure connectedness effects. However, the literature is still silent

about the origins of the connectedness on business-cycle levels.

3.1 Data

Considering volatility connectedness, we investigate the question of how market risk is con-

nected at different frequencies. We study the intra-market connectedness of the U.S. finan-

cial sector. We concentrate on the 11 major financial firms representing the financial sector

of the U.S. economy: Wells Fargo Co. (WFC), U.S. Bancorp (USB), Morgan Stanley (MS),

J.P. Morgan (JPM), Goldman Sachs (GS), Citibank (C), Bank of New York Mellon (BK),

Bank of America (BAC), American Express (AXP), American International Group (AIG),

and PNC Group (PNC). The dataset spans the years 2000–16. We also investigate the con-

nectedness of the system by adding Fannie Mae (FNM) and Freddie Mac (FRE) for the

period ending in 2010. Because FNM and FRE went on the OTC market after 2010, the

data are not publicly available, and the analysis cannot be performed on a longer time-

span, although we argue that qualitative results for the overall connectedness are the same

for smaller and larger systems. The complementary discussion is available in Online

Appendix B.1.

For the computation of volatility, we restrict the analysis to daily logarithmic realized

volatility, which is computed using 5-min returns5 during the business hours of the New

York Stock Exchange, from 9:30 a.m. to 4:00 p.m. The data are time-synchronized by the

same timestamps. We further eliminate transactions executed on Saturdays and Sundays,

U.S. federal holidays, December 24–26, and December 31 to January 2 because of the low

activity on these days, which could lead to estimation bias. The data span the years 2000–

16, providing a sample of 4216 trading days. The period under study is informative in

terms of market development, sentiment, and expectations, as we cover the 2007–8 finan-

cial crisis and its aftermath years. The original raw data were obtained from TICK Data

and www.price-data.com.

The descriptive statistics of the data can be found in Table 5 in Online Appendix B.2.

3.2 Time-Frequency Decomposition of U.S. Systemic Risk

One of the issues that has recently gained importance in volatility modeling is giving up the

assumption of global stationarity of the data (St�aric�a and Granger, 2005; Engle and

Rangel, 2008) and focusing on local stationarity instead. When studying the connectedness

of market risk using variance decompositions, it is important to face the nonstationarity of

realized volatilities as zero frequency may dominate the rest of the frequencies when we

study unconditional connectedness. The discussion gains importance when studying

5 Realized volatility for a given day is computed as the sum of squared intra-day returns.
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frequency dynamics because applying our measures blindly to the nonstationary data

would result in false inferences.

Giving up the assumption of global stationarity of the data, we assume that the dy-

namics come from shifts in the unconditional variance of returns. This leads us to a con-

venient approximation of nonstationary data locally by stationary models. In essence, our

approach is closely related to the one adopted by St�aric�a and Granger (2005), although we

study a multivariate system with quite different tools.

As our final model specification, we use a vector auto-regression with two lags, includ-

ing a constant on the logarithm of volatilities to capture the dynamics in the window. We

have experimented with different lag lengths with no material changes in the results. This

only confirms the appropriateness of the approach because large changes in time-frequency

dynamics due to different lags in the approximating VAR model would point to nonstatio-

narities within windows, where a larger number of lags would approximate the information

in the low frequencies.6 In large systems, a small-sample bias can occur; hence, we use a

parametric bootstrap to obtain unbiased estimates of the connectedness measures, as sug-

gested in Engsted and Pedersen (2014).

Focusing on the locally stationary structure of the data, we study the time-frequency dy-

namics of connectedness. Figure 1(a) reports the rich time dynamics of the total connected-

ness of system, as measured by time domain variance decompositions. Figure 1(b) presents

the decomposition of the total connectedness into frequency bands up to 1 week, 1 week to

1 month, and 1 month to 300 days, computed as CFds
on the bands corresponding to short-

term (d1 2 1; 5½ �), medium-term (d2 2 5; 20ð �), and long-term (d3 2 20;300ð �). Note that

the lowest frequency is bound at each time point by the window length.

Focusing first on the overall connectedness in Figure 1(a), we can see that it ranges be-

tween 55% and 85%, with a substantial variation over the course of 16 years. Such a vari-

ation is expected because the studied period includes both calm and turbulent times in

(a) (b)

Figure 1. Dynamic frequency connectedness of the U.S. financial sector. Plot (a) represents the total

connectedness C, computed on a moving window with a length of 1 year (300 days). Plot (b) repre-

sents the frequency connectedness CFds
with d1 2 ½1; 5� days in black bold, d2 2 ð5; 20� black,

and d3 2 ð20; 300� gray bold. Note that all lines through the frequency bands ds sum to the total

connectedness C.

6 In some sense, this analysis serves as a robustness check. We can make these results available

upon request.
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which shocks transmit across the system with different strengths. The overall connectedness

bottoms during the calm times of 2005 and 2006, when shocks to uncertainty were trans-

mitting less across the studied banks, thereby creating a less connected system.

Connectedness peaks during the 2008 U.S. financial crisis, when shocks created a large por-

tion of future uncertainty and hence strong connectedness in the system. We also attribute

the peak in connectedness to high uncertainty due to an insecure economic situation, in

which banks were accused to be the main source of the economic instability. In this situ-

ation, shocks in the system created further uncertainty, which then transmitted across the

system. As a result, banks were connected more strongly during the period following the

crisis, including the beginning of 2012, when the European debt crisis peaked. Finally, con-

nectedness starts declining after the “Whatever it takes” speech by the ECB president

Mario Draghi.7

Total connectedness is a useful measure that reveals how systemic risk changed over the

studied period. It provides aggregate information over various economic cycles, and our

main interest is to study the frequency sources of connectedness. In other words, Figure

1(a) reveals that the total connectedness peaks during financial crises due to high uncer-

tainty transmission, but it does not reveal whether shocks that create large connectivity in

the system impact the system in the short term or in the long term. Since agents operate on

different investment horizons, they may focus on different components of their consump-

tion and in turn value assets through the expected utility from consumption with different

persistence levels.8 Hence, cyclical components will naturally generate shocks with hetero-

geneous responses and thus various sources of connectedness, creating short-term, medium-

term, and long-term systemic risk.

Periods in which connectedness is created at high frequencies are periods when financial

markets seem to process information rapidly, and a shock to one asset in the system mainly

affects short-term cyclical behavior (with responses at high frequencies). If the connected-

ness comes from the opposite part of the cross-spectral density, lower frequencies, it sug-

gests that shocks are being transmitted for longer periods (with responses mainly at low

frequencies). This behavior may be attributed to fundamental changes in investors’ expect-

ations, which affect systemic risk in the longer term. These expectations are then transmit-

ted to surrounding assets in portfolios. In a financial system where asset prices are driven

by consumption growth with different cyclical components, shocks with heterogeneous re-

sponses create linkages with various degree of persistence and hence various sources of

system-wide connectedness and systemic risk.

Figure 1(b)9 reveals the frequency decomposition of connectedness, which supports our

discussion as it shows rich time-frequency dynamics of connectedness. The first striking ob-

servation from the decomposition is that the periods of high total connectedness discussed

above are driven mostly by low-frequency components (d3 movements longer than

1 month). Hence, shocks creating uncertainty in the long-term drive connectedness during

7 Our analysis of total connectedness suggests a picture that is qualitatively the same as Diebold

and Yilmaz (2014).

8 Asset pricing implications at different frequencies have been discussed in the literature by Bandi

and Tamoni (2016) and Dew-Becker and Giglio (2016).

9 Complementary Figure 6(a) in Online Appendix B.2 shows individual components with bootstrapped

confidence bands.
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the 2001–mid-2003, mid-2007–mid-2010, and 2012 periods. The intuition behind this is

the overall high uncertainty about the financial system during these periods coupled with

high uncertainty about the economic situation. This situation is accompanied by declining

stock market prices with increasing volatility. The increasing uncertainty then translates

into more persistent responses of investors to shocks. The observation of high connected-

ness of the system driven by low-frequency responses to shocks is then translated into the

long-term uncertainty driving increasing systemic risk in these periods.

The structure of systemic risk dramatically changes during the rest of the sample period.

We observe rich dynamics with short-term and medium-term components driving the con-

nectedness. After the turbulent periods of high uncertainty, markets start to stabilize, and

investors start to show less fear. The decreasing uncertainty in stable, growing markets

translates into the fact that shocks creating future uncertainty in the system will transmit

much faster, and their impact on the system will diminish after a few days, hence creating

short-term connectedness. Figure 1(b) documents the behavior by increased short-term

components after the consolidation from mid-2003. In addition, we document the rebound

of short-term connectedness during 2010 before the European debt crisis peaks. The 2013–

14 period shows a strong influence of short-term components. This indicates that stock

market participants were expecting that shocks to future uncertainty would have a short-

term impact; hence, they were more certain about the long-term stability of the system. The

overall systemic risk in this period was driven more by shocks with short-term responses.

Interestingly, since the total connectedness increases from the beginning of 2015 until

the end of the studied period, the increase is driven by all of the components. Hence, market

participants process the shock responses homogeneously during this period.

Figure 2 contains the same information as Figure 1(b) but shows the time-frequency dy-

namics from a different point of view, which serves as a helpful complementary visualiza-

tion. In this figure, frequency bands form colored ribbons, where the color shows the

strength of the connection, whereas the horizontal axis still holds time. One can view this

representation as the three-dimensional space of connectedness at the time and frequency

domains from the top, where the third axis showing the strength of connectedness at each

time-frequency point is highlighted by color. The heat map representation is useful because

it more clearly visualizes the decomposition of the connectedness into time-frequency space.

The interpretation is the same as Figure 1(b) described in the previous paragraph. In add-

ition, Figure 6 in Online Appendix B.2 shows a larger format picture with a 5%;95%ð Þ
confidence band of the decomposition estimated by the bootstrap. The confidence band is

Figure 2. Time-frequency dynamics of the connectedness of the U.S. financial sector. Frequency con-

nectedness CFds
for d1 2 ½1; 5�; d2 2 ð5; 20�, and d3 2 ð20; 300� days representing day to week, week to

month, and month to half a year are depicted on the vertical axis, and the horizontal axis shows time.
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sufficiently tight around the estimate to be informative. The confidence bands for other de-

compositions are also contained therein and are not described.

Our results indicate that when evaluating the systemic risk of a financial system, we

should pay attention to short-, medium-, and long-term linkages because they all play im-

portant roles in the system and tell us a different story of what is occurring. Before making

further conclusions about the nature of the connectedness in U.S. financial markets, we

look deeper into its sources.

While the decomposition of the connectedness to frequency bands that always sums to

total connectedness is the main interest, within connectedness serves as additional insight

into the dynamics. Within connectedness shows how shocks transmit within frequency

bands, and it is not weighted by the variance share at a given band. Ignoring information

outside the considered band, connectedness within frequency bands can be understood as

pure unweighted connectedness. Figure 3(a) shows the within sectoral connectedness of the

market. All frequencies share very similar time dynamics; hence, the rich time-frequency de-

composition found in the previous part is mainly driven by the power of frequency re-

sponses, as should be expected.

The main reason why we look at the pure within connectedness is to study the effect of

cross-sectional dependence on the connectedness. When using variance decompositions, we are

mainly interested in finding causal effects, but these can be biased due to strong contemporan-

eous relationships. To determine whether there is a bias in the connectedness that we measure,

we adjust the correlation matrix of VAR residuals by the cross-sectional correlations.

Figure 3(b) shows within connectedness adjusted for this correlation effect. Strikingly,

the structure changes dramatically, indicating that the high-frequency connectedness is

mainly driven by cross-sectional correlations but that connectedness at lower frequencies is

not affected as heavily, mainly during the crisis. One can infer that the increase in system

connectedness during the crisis is mainly created by an increase in contemporaneous short-

term correlations and causal longer-term connectedness. Hence, increased systemic risk

has two main drivers. The first is an increase in contemporaneous correlations, and the

second is an increase in the persistence of the shocks creating and transmitting long-term

uncertainty.

(a) (b)

Figure 3. Dynamic within the connectedness of the U.S. financial sector on frequency bands. Plot (a)

presents the relative connectedness within the frequency band, CWds
with d1 2 ½1; 5� days in black bold,

d2 2 ð5; 20� black, and d3 2 ð20; 300� gray bold lines. Plot (b) presents the relative connectedness within

the frequency band without the effect of cross-sectional correlations.
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3.2.1 Event study of evolution of frequency connectedness

One of the main strengths of the connectedness framework of Diebold and Yilmaz (2014)

is the possibility to time the events, which means that important events usually track the

evolution of connectedness. To manifest the strengths of our frequency decomposition, we

focus on the event study of the two main periods with rich time-frequency dynamics: the

global financial crisis of 2008–10 and the European debt crisis of 2009–16. The evolution

of the frequency decomposition and timed events are shown in Figure 4.

Let us start with the global financial crisis depicted in Figure 4(a). The decomposition is

dominated by the long-term component of connectedness that steadily increases until mid-

2009, whereas the medium- and short-term connectedness steadily decreases.

(a) (b)

Figure 4. Decomposition of the influence of the main economic events in (a) the global financial crisis

and (b) the European debt crisis on the connectedness measure. The individual lines represent con-

nectedness measures at a given frequency band—more concretely: (i) connectedness from 1 day to

1 week, (ii) connectedness from 1 week to 1 month, and (iii) connectedness from 1 month to 300 days.

The events in the European debt crisis, from left to right, are “Papandreou reveals deficits,” “Greece

Activates 45bn EU/IMF Rescue Loans,” “Irish bail-out,” “Portuguese bail-out,” “First debt write-

down,” “Second Greek bail-out,” “Second debt write-down,” “Spanish bank bail-out,” “Whatever it

takes,” “Cypriot bail-out,” “Start of ECB QE,” and “Greek bail-out expires.” The events in the global fi-

nancial crisis are “FOMC lowered the Fed funds rate,” “FED announces Term Auction Facility,” “Bear

Sterns buy-out, lowering FOMC rates,” “IndyMac Bank Fails,” “Lehman Brothers go bankrupt, next

day FED buys AIG,” “U.S. General Election,” and “World Bank projected that the global production for

2009 would fall by 2.9%, the first decline since the second world war.”
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At the beginning of the period, short-term and medium-term connectedness were at the

highest levels during the “FOMC lowering the rates” or “announcement of TAF” events.

The market participants were interpreting that the shocks due to the two events would have

a short-term impact. Hence, the shocks at the beginning of the financial crisis were viewed

to have a short response and to create short-term connectedness.

The following surge in the long-term connectedness and the decline in short-term and

medium-term connectedness can be attributed to changes in investors’ beliefs about the sta-

bility of the system. More precisely, increasing uncertainty and the belief that the economic

situation had deeper, systemic roots led to the period in which the shocks were transmitting

with increasing persistence through the system. Surprisingly, the crash of “IndyMac Bank”

leveled off the development of connectedness for a while, changing investors’ beliefs after

the following crash of Lehman Brothers.

From the downfall of Lehman Brothers until mid-2009, when it was already clear that

the global economy was in its worst shape since the Second World War (as evidenced by

the announcement by the World Bank in mid-2009 that global production would decline

for the first time since that war), the evolution of frequency connectedness suggests the

decreased importance of short-term connectedness and the increased importance of long-

term connectedness. During this time, the shocks were impacting the system with increasing

persistence, creating and transmitting uncertainty in the longer term. Hence, we document

increasing uncertainty and insecurity about the studied system during this period. Overall,

the global financial crisis appears to have been a continuously evolving crisis with no major

surprises in that they were not reflected in the uncertainty and its transmission.

However, looking at Figure 4(b), we see a story that is rather different from the global fi-

nancial crisis. Starting with Greek PM Papandreou revealing deficits, the event has substan-

tially moved the financial markets, instantly increasing the short-term connectedness by more

than 5% and the medium-term connectedness likewise. Considering that the short-term con-

nectedness ranges from 10% to 35% throughout the sample, a 5% jump is significant.

Hence, investors were still considering that the shock would create short-term uncertainty.

The second Greek bail-out has changed the expectations on the markets, as the long-

term connectedness has jumped by 15%. The figure also provides evidence of the great suc-

cess of Mario Draghi’s speech in which he stated that the European Central Bank would do

“Whatever it took” to help Greece.

After the speech, both long- and medium-term connectedness decreased to unprece-

dented levels, showing the increased confidence of investors accompanied by decreasing un-

certainty. After the event, investors were more certain that shocks would have a less

persistent impact on the system creating short-run connectedness.

4 Conclusion

In this work, we contribute to the understanding of connectedness between economic vari-

ables by proposing to measure its frequency dynamics. Based on the spectral representa-

tions of variance decompositions and connectedness measures, we provide a general

framework for disentangling the sources of connectedness between economic variables.

Because shocks to economic activity have an impact on variables at different frequencies

with different strengths, we view the frequency domain as a natural place for measuring the

connectedness between economic variables.
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As noted by Diebold and Yilmaz (2009, 2012, 2014), variance decompositions from

approximating models are a convenient framework for empirical measurement of connect-

edness. A natural measure can be defined based on assessing shares of future uncertainty in

one variable due to a shock arising in another variable in the system. Focusing on the fre-

quency responses to shocks instead, we are interested in assessing shares of uncertainty in

one variable due to shocks with different persistence levels. Moreover, we elaborate on the

role of the correlation of the residuals in the magnitude of the connectedness.

In the empirical part, we investigate the connectedness of financial firms in the United

States, a powerful measure of systemic risk of the financial sector. We approximate the

data locally and obtain rich time-frequency dynamics of connectedness. Economically, peri-

ods in which connectedness is created at high frequencies are periods when stock markets

seem to process information rapidly and calmly, and a shock to one asset in the system will

have an impact mainly in the short term. When the connectedness is created at lower fre-

quencies, it suggests that shocks are persistent and are being transmitted for longer periods.

The behavior may be attributed to changes in investors’ expectations, which impact the

market in the longer term. The expectations are then transmitted to surrounding assets in

portfolios. The two event studies of the global financial crisis during 2008 and the

European debt crisis that followed in 2011 support our hypotheses. The results underline

the importance of properly measuring the dynamics across time and frequencies and em-

phasize the important role of cross-sectional correlation in the connectedness origins.

The frequency-based approach opens fascinating new routes in understanding the con-

nectedness of economic variables with important implications for the measurement of sys-

temic risk. Further research applying our measures to wider areas of interest and different

empirical modeling strategies will be important in uncovering the connectedness of assets

within a market or industry and the connectedness across asset classes and international

markets. It will also be important in providing grounds for further research in risk manage-

ment, portfolio allocation, or business cycle analysis, where understanding the origins of

connectedness is essential.

Supplementary Material

Supplementary data are available at Journal of Financial Econometrics online.

A Technical Appendix

A.1 Derivation of the GFEVD

Let us have the MA(1) representation of the generalized VAR model [details in Pesaran

and Shin (1998) and Dees et al. (2007)] given as

xt ¼ W Lð Þet; (7)

with the covariance matrix of the errors R. Because the errors are assumed to be serially

uncorrelated, the total covariance matrix of the forecast error conditional at the informa-

tion in t – 1 is

XH ¼
XH
h¼0

WhRW0h: (8)
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Next, we define the covariance matrix of the forecast error conditional on knowledge of

today’s shock and future expected shocks to jth equation. Starting from the conditional

forecasting error,

ck
t Hð Þ ¼

XH
h¼0

Wh etþH�h � E etþH�hjek;tþH�h

� ��
�; (9)

assuming normal distribution, we have

ck
t Hð Þ ¼

XH
h¼0

Wh etþH�h � r�1
kk Rð Þkek;tþH�h

�
�: (10)

Finally, the covariance matrix is

Xk
H ¼

XH
h¼0

WhRW0h � r�1
kk

XH
h¼0

Wh Rð Þk Rð Þk
0W0h: (11)

Then,

D jð ÞkH ¼ XH � Xk
H

� �
j;j
¼ r�1

kk

XH
h¼0

WhRð Þj;k
� �2

(12)

is the unscaled H-step ahead forecast error variance of the jth component with respect to

the innovation in the kth component. Scaling the equation yields the desired

hHð Þj;k ¼
r�1

kk

XH

h¼0
WhRð Þj;k

� �2

XH
h¼0

WhRWh
0ð Þj;j

(13)

A.2 Proofs

Proposition 1.1. To prove the equality we need the following:

1

2p

ðp

�p
Cj xð Þ g xð Þð Þj;kdx ¼ 1

2p

ðp

�p

W e�ix
� �

RW0 eþix
� �� �

j;j

1

2p

ðp

�p
W e�ik
� �

RW0 eþik
� �� �

j;j
dk

r�1
kk j W e�ix

� �
R

� �
j;k
j2

W e�ixð ÞRW0 eþixð Þð Þj;j
dx

¼ 1

2p

ðp

�p

r�1
kk j W e�ix

� �
R

� �
j;k
j2

1

2p

ðp

�p
W e�ik
� �

RW0 eþik
� �� �

j;j
dk

dx

¼

1

2p

ðp

�p
r�1

kk j W e�ix
� �

R
� �

j;k
j2dx

1

2p

ðp

�p
W e�ik
� �

RW0 eþik
� �� �

j;j
dk

¼
r�1

kk

X1
h¼0

WhRð Þj;k
� �2

X1
h¼0

WhRW0h
� �� �

k;k

¼ h1ð Þj;k

(14)
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Hence, the proof essentially simplifies to proving two equalities

1

2p

ðp

�p
r�1

kk

			 W e�ix
� �

R
� �

j;k

			2dx ¼ r�1
kk

X1
h¼0

WhRð Þj;k
� �2

(15)

1

2p

ðp

�p
W e�ik
� �

RW0 eþik
� �� �

j;j
dk ¼

X1
h¼0

WhRW0h
� � !

k;k

(16)

For the following steps, we will leverage the standard integral

1

2p

ðp

�p
eix u�vð Þdx ¼

1 for u ¼ v

0 for u 6¼ v:

(
(17)

This integral is mostly useful in cases when we have series
P1

h¼0 /hwh and we want to

arrive to spectral representation. Note that
P1

h¼0 /hwh ¼ 1
2p

Ð p
�p

P1
v¼0

P1
u¼0 /uwveix u�vð Þdx.

Levering this knowledge we prove Equation (15)

r�1
kk

X1
h¼0

WhRð Þj;k
� �2

¼ r�1
kk

X1
h¼0

Xn

z¼1

Whð Þj;z Rð Þz;k

 !2

¼ r�1
kk

1

2p

ðp

�p

X1
u¼0

X1
v¼0

Xn

x¼1

Wuð Þj;x Rð Þx;k

 ! Xn

y¼1

Wvð Þj;y Rð Þy;k

 !
eix u�vð Þdx

¼ r�1
kk

1

2p

ðp

�p

X1
u¼0

X1
v¼0

Xn

x¼1

Wueixu
� �

j;x
Rð Þx;k

 ! Xn

y¼1

Wve�ixv
� �

j;y
Rð Þy;k

 !
dx

¼ r�1
kk

1

2p

ðp

�p

X1
u¼0

Xn

x¼1

Wueixu
� �

j;x
Rð Þx;k

 ! X1
v¼0

Xn

y¼1

Wve�ixv
� �

j;y
Rð Þy;k

 !
dx

¼ r�1
kk

1

2p

ðp

�p

Xn

x¼1

W eix
� �� �

j;x
Rð Þx;k

 ! Xn

y¼1

W e�ix
� �� �

j;y
Rð Þy;k

 !
dx

¼ r�1
kk

1

2p

ðp

�p
W e�ix
� �

R
� �

j;k

� �
W eix
� �

R
� �

j;k

� �
dx

¼ r�1
kk

1

2p

ðp

�p

			 W e�ix
� �

R
� �

j;k

			2dx

(18)

We use the switch to the spectral representation of the MA coefficients in the second step.

The rest is a manipulation with the last step invoking the definition of modulus squared of

a complex number to be defined as jzj2 ¼ zz�. Note that we can use this simplification with-

out loss of generality, because the MA 1ð Þ representation that is described by the coeffi-

cients Wh has a spectrum that is always symmetric.
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Next, we concentrate on Equation (16) levering similar steps and the positive semidefi-

niteness of the matrix R that ascertains that there exists P such that R ¼ PP0.

X1
h¼0

WhRW0h
� �

¼
X1
h¼0

WhPð Þ WhPð Þ
0

¼ 1

2p

ðp

�p

X1
u¼0

X1
v¼0

WueixuP
� �

Wve�ixvP
� �0

dx

¼ 1

2p

ðp

�p

X1
u¼0

WueixuP
� �X1

v¼0

Wve�ixvP
� �0

dx

¼ 1

2p

ðp

�p
W eix
� �

P
� �

W e�ix
� �

P
� �0

dx

¼ 1

2p

ðp

�p
W eix
� �

RW0 e�ix
� �� �

dx

(19)

This completes the proof. h

Proposition 1.2. Using the Remark 1.1 and appropriate substitutions, we have:

X
dz2D

CFdz
¼
X
dz2D

X
~hdzX
~h1
� Trf~hdz

gX
~h1

 !
¼ 1�

X
dz2D

Trf~hdz
gX

~h1
¼

1�
Tr

X
dz2D

~hdz

n o
X

~h1
¼ C1;

(20)

where the next to last equality follows from the linearity of the trace operator. h

Proposition 1.3. Using the definition of the connectedness, we have

CW�p;pð Þ ¼ C1 (21)

CF�p;pð Þ ¼
~h �p;pð Þ
� �

j;k

n
�

Tr ~h1

 �X

~h1
¼ n

n
�

Tr ~h1

 �X

~h1
¼ 1�

Tr ~h1

 �X

~h1
¼ C1 (22)

h
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