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ABSTRACT Many economic and financial applications lead to deterministic optimization
problems depending on a probability measure. These problems can be either static (one stage)
or dynamic with finite (multistage) or infinite horizon, single– objective or multi–objective.
Constraints sets can be “deterministic”, given by probability constraints or stochastic dominance
constraints. We focus on multi–objective problems and second order stochastic dominance
constraints. To this end we employ the former results obtained for stochastic (mostly strongly)
convex multi–objective problems and results obtained for one objective problems with second
order stochastic dominance constraints. The relaxation approach will be included in the case of
second order stochastic dominance constraints.
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1 Introduction

Let (Ω,S, P ) be a probability space, ξ := ξ(ω) = (ξ1(ω), . . . , ξs(ω)) an s–dimensional random
vector defined on (Ω,S, P ), F := Fξ the distribution function of ξ, PF , and ZF the probability
measure and the support corresponding to F , respectively; EF denote the operator of mathe-
matical expectation corresponding to F. Let, moreover, gi := gi(x, z), i = 1, . . . , l, l ≥ 1 be
real–valued (say, continuous) functions defined on IRn × IRs; XF ⊂ X ⊂ IRn be a nonempty
set generally depending on F, and X ⊂ IRn be a nonempty deterministic set. If for every
x ∈ X there exist finite EF gi(x, ξ), i = 1, . . . , l, then a rather general (often employed) type of
“multi–objective” one–stage optimization problem depending on a probability measure can be
introduced in the form:

Find minEF gi(x, ξ), i = 1, . . . , l subject to x ∈ XF . (1)

There are known (from the literature) mainly XF : “deterministic”, given by probability con-
strains, by mathematical expectation and recently often appear stochastic dominance con-
straints. To define second order stochastic dominance constraints let g : IRn × IRs → IR1

be a real-valued function, Y : IRs → IR1 random value. If for x ∈ X there exists finite EF g(x, ξ),
EFY (ξ) and if

F 2
g(x, ξ)(u) =

u∫
−∞

Fg(x, ξ)(y)dy, F 2
Y (u) =

u∫
−∞

FY (y)dy, u ∈ IR1,

then we can define the second order stochastic dominance constraints XF by

XF = {x ∈ X : F 2
g(x, ξ)(u) ≤ F 2

Y (u) for every u ∈ IR1}. (2)

Consequently multi–objective stochastic programming problems with second order stochastic
dominance constraints can be defined by the relations (1), (2). Employing the results of [9](see
also Lemma 1), the multi–objective stochastic programming problem with second order stochas-
tic dominance constraints can be written in a more friendly form:

Find minEF gi(x, ξ), i = 1, . . . , l subject to x ∈ XF , (3)



where

XF = {x ∈ X : EF (u− g(x, ξ))+ ≤ EF (u− Y (ξ))+ for every u ∈ IR1}. (4)

Remark 1. Second order stochastic dominance corresponds to an order in the space of non
negative concave utility functions.

The paper [6] is focus on the investigation of stability (obtained on the base of Wasserstein
metric) and empirical estimates for the multi–objective stochastic problems. However replacing
there general convex XF by second order stochastic dominance constraints (4) we obtain an
infentisimal optimization problem for which the Slater’s condition is not generally fulfilled. The
aim of this contribution is to relax constraints set to obtain problems for which Slater’s condition
is already fulfilled and to estimate the error of approximation. To this end the stability based
on the Wasserstein metric is employed.

The stochastic multi–objective problem defined by (3),(4) is a deterministic multi–objective
problem depending on the probability measure; consequently to analyze this problem it is possi-
ble to employ classical well known results (see, e.g., [2], [6] and [7]).

2 Some Definitions and Auxiliary Assertions

2.1 Deterministic Problems

First, we recall some results from the deterministic multi–objective optimization problems. To
this end let fi(x), i = 1, . . . , l be real–valued functions defined on IRn, K ⊂ IRn be a nonempty
set. We consider a multi–objective deterministic optimization problem in the form:

Find min fi(x), i = 1, . . . , l subject to x ∈ K. (5)

Definition 1. The vector x∗ is an efficient solution of the problem (5) if and only if there exists
no x ∈ K such that fi(x) ≤ fi(x

∗) for i = 1, . . . , l and such that for at least one i0 one has
fi0(x) < fi0(x∗).

Definition 2. The vector x∗ is a properly efficient solution of the multi–objective optimization
problem (5) if and only if it is efficient and if there exists a scalar M > 0 such that for each i
and each x ∈ K satisfying fi(x) < fi(x

∗) there exists at least one j such that fj(x
∗) < fj(x) and

fi(x
∗)− fi(x)

fj(x)− fj(x∗)
≤M. (6)

Proposition 1. [4] Let K ⊂ Rn be a nonempty convex set and let fi(x), i = 1, . . . , l be convex
functions on K. Then x0 ∈ K is a properly efficient solution of the problem (5) if and only if x0

is optimal in

min
x∈K

l∑
i=1

λifi(x) for some λ1, . . . , λl > 0,
l∑

i=1

λi = 1.

A relationship between efficient and properly efficient points is introduced, e.g., in [3] or [4].
We summarize it in the following Remark.

Remark 2. Let f(x) = (f1(x), . . . , fl(x)), x ∈ K; Keff , Kpeff be sets of efficient and properly
efficient points of the problem (5). If K is a convex set, fi(x), i = 1, . . . , l are convex functions
on K, then

f(Kpeff ) ⊂ f(Keff ) ⊂ f̄(Kpeff ), (7)

where f̄(Kpeff ) denotes the closure set of f(Kpeff ).



2.2 Wasserstein Metric in Stochastic Optimization Problems

To recall the Wasserstein metric and its application to single–objective stochastic optimization
problem we consider the case l = 1. To this end let P(IRs) denote the set of all (Borel) probability
measures on IRs and let the system M1

1(IRs) be defined by the relation:

M1
1(IRs) :=

{
ν ∈ P(IRs) :

∫
IRs
‖z‖1dν(z) <∞

}
, ‖ · ‖s1 := ‖ · ‖1 denotes L1 norm in IRs. (8)

If the assumption A.0, A.1 are defined by

A.0 g1(x, z) is for x ∈ X a Lipschitz function of z ∈ IRs with the Lipschitz constant L (corre-
sponding to the L1 norm) not depending on x,

A.1 g1(x, z) is either a uniformly continuous function on X × IRs or there exists ε > 0 such
that g1(x, z) is a convex bounded function on X(ε) (X(ε) denotes the ε–neighborhood of
the setX),

and if PF , PG ∈ M1
1(IRs); Fi, Gi, i = 1, . . . , s denote one-dimensional marginal distribution

functions corresponding to F and G, then

Proposition 2. [5] Let PF , PG ∈M1
1(IRs). If Assumption A.0 is fulfilled, then

|EF g1(x, ξ)− EGg1(x, ξ)| ≤ L
s∑
i=1

+∞∫
−∞

|Fi(zi)−Gi(zi)|dzi for x ∈ X. (9)

If, moreover, X is a compact set and Assumption A.1 is fulfilled, then also

| inf
x∈X

EF g1(x, ξ)− inf
x∈X

EGg1(x, ξ)| ≤ L
s∑
i=1

+∞∫
−∞

|Fi(zi)−Gi(zi)|dzi. (10)

To study the constraints set defined by (2) we recall the next Lemma.

Lemma 1. [7] Let g(x, z), Y (z) be for every x ∈ X Lipschitz functions of z ∈ IRs with the
Lipschitz constant Lg not depending on x ∈ X. Let, moreover, PF ∈M1

1(IRs). If XF is defined
by the relation (2), then

1. XF = {x ∈ X : EF (u− g(x, ξ))+ ≤ EF (u− Y (ξ))+ for every u ∈ IR1},

2. (u − g(x, z))+, (u − Y (z))+, u ∈ IR1, x ∈ IRn are Lipschitz functions of z ∈ IRs with
the Lipschitz constant Lg not depending on u ∈ IR1, x ∈ IRn. (See before employed the
relation (4.))

If the assumptions of Lemma 1 are fulfilled, PF , PG ∈M1
1(IRs), u ∈ IR1, x ∈ X, then it follows

from Proposition 2 that

|EF (u− g(x, ξ))+ − EG(u− g(x, ξ))+| ≤ Lg
s∑
i=1

+∞∫
−∞
|Fi(zi)−Gi(zi)|dzi,

|EF (u− Y (ξ))+ − EG(u− Y (ξ))+| ≤ Lg
s∑
i=1

+∞∫
−∞
|Fi(zi)−Gi(zi)|dzi.

(11)

Further defining the sets Xε by

Xε
F = {x ∈ X : EF (u− g(x, ξ))+ − EF (u− Y (ξ))+ ≤ ε for every u ∈ IR1}, ε ∈ IR1, (12)



we can obtain

x ∈ XF =⇒ x ∈ Xε
G, x ∈ XG =⇒ x ∈ Xε

F with ε = 2Lg

s∑
i=1

+∞∫
−∞

|Fi(zi)−Gi(zi)|dzi,

and generally Xδ−ε
G ⊂ Xδ

F ⊂ Xδ+ε
G for δ ∈ IR1. (13)

2.3 Relaxation

Till now we have considered stochastic multi–objective problems with constraints set (4). Ac-
cording to the well known fact from the infitisimal programming theory, there can be problem
with Slater’s condition. Consequently to this fact Dentcheva and Ruszczynski [1] suggested to

relax one objective problems by the modification of the constraints set; replacing XF by Xa, b
F :

Xa, b
F = {x ∈ X : EF (u− g(x, ξ))+ ≤ EF (u− Y (ξ))+ for every u ∈ 〈a, b〉}, a, b ∈ IR1. (14)

However they did not specified how to choice a, b. Surely, it is desirable to determine a, b to be
a difference between XF and Xa,b

F small. More precisely, it is desirable to be small difference
between the corresponding optimal solutions and optimal values. On the other side they have
proven the following assertion.

Proposition 3. [1]. Let Ȳ := Ȳ (ξ) be a random value defined on (Ω,S, P ). Let, moreover,
Y (ξ) has a discrete distribution with realizations yi, i = 1, . . . , m, where a ≤ yi ≤ b, a, b ∈ IR1

for all i. Then the inequality

EFȲ
(u− Ȳ (ξ))+ ≤ EFY

(u− Y (ξ))+ for all u ∈ 〈a, b〉

is equivalent to

EFȲ
(yi − Ȳ )+ ≤ EFY

(yi − Y )+, i = 1, . . . , m.

If Y (ξ) is a random value defined on (Ω,S, P ) (ξ = ξ(ω)) and if a < b, a, b ∈ IR1, then we
can define a random value Y a, b := Y a, b(ξ) by

Y a, b(ξ) = Y (a) if ξ ≤ a,

Y (ξ) if ξ ∈ (a, b),

Y (b) if ξ ≥ b

(15)

and to note the corresponding distribution function by F a, bY .

Employing (15), under rather generalize assumptions, we can for constants a, b, a < b; a1 b1, a1 <
b1 define

i. the random value Y a, b(ξ) (a ≤ Y a, b(ξ) ≤ b) with the distribution function F a, bY ,

ii. for every x ∈ X the random value ga, b(x, ξ) (a ≤ ga, b(x, ξ) ≤ b) with the distribution

function F a, bg(x, ξ).

Evidently, Y (ξ), g(x, ξ), for every x ∈ X, are functions of the random vector ξ and, simulta-
neously, they are functions of the components ξ1, . . . , ξs of the random vector ξ. Consequently,
under rather general assumptions it is possible to choose a, b, a1, b1 such that



iii. a1 < b1, i = 1, . . . , s =⇒ a < Y (ξ) < b, a < g(x, ξ) < b for every x ∈ X.

The constants a1, b1 determine a distribution function F a1, b1 := F a1, b1
ξ with a support

s∏
i=1
〈a1, b1〉.

iv there exists (for a natural number m) points y1, . . . , ym ∈
s∏
i=1
〈a1, b1〉 those define discrete

distribution function F̄ a, b := F̄ a, bY with atoms y1., . . . , ym (F̄ a, bY approximates F a, bY ).

According to the above recalled assertions we can see that now it is possible to define two
constraints sets Xa, b

F := Xa1, b1
F and X̄a, b

F = X̄a1, b1 by

Xa, b
Fa, b = (Xa1, b1

F ) = {x ∈ X : EFa1, b1 (u−g(x, ξ))+ ≤ EFa1, b1 (u−Y (ξ))+ for every u ∈ 〈a, b〉},
(16)

X̄a1, b1
F̄

= {x ∈ X : EFa1, b1 (yi − g(x, ξ))+ ≤ EF̄a, b(yi − Y (ξ))+ for every i = i, . . . , m}, (17)

and to define optimization problems

To find ϕa1, b1(F a1, b1 , Xa1, b1
Fa1, b1

) = inf
{
EFa1, b1g0(x, ξ)|x ∈ Xa1, b1

F

}
, (18)

To find ϕ̄a1, b1(F a1, b1 X̄a1, b1
F̄

) = inf
{
EFa1, b1g0(x, ξ)|x ∈ X̄a1, b1

F̄
)
}
. (19)

It has been proven in [8] that the optimization problems (18), (19) already fulfil the Slater’s
condition. The next assertion follows also from [8].

Proposition 4. Let XF , X
a1, b1
F , X̄a1, b1

F be compact sets, PF ∈M1
1(IRs), Assumptions A.1, i.,

ii., iii., iv be fulfilled. If

1. g(x, z) is for every z ∈ ZF a Lipschitz function of x ∈ X with the Lipschitz constant L̄
not depending on z ∈ ZF ,

2. there exists a constant D > 0 such that

∆[Xε′
F , X

ε′′
F ] ≤ Dε for every ε′, ε′′ ∈ 〈−3ε, 3ε〉,

with ε = 2Lg max[
s∑
i=1

+∞∫
−∞
|F a1, b1
i (zi)− F̄ a1, b1

i (zi)|dzi,
s∑
i=1

+∞∫
−∞
|Fi(zi)− F a1, b1

i (zi)|dzi],

then

1.

|ϕ(F, XF )− ϕ(F, Xa1, b1
F )| ≤ 2DL̄Lg

s∑
i=1

+∞∫
−∞
|Fi(zi)− F a1, b1

i (zi)|dzi,

|ϕ(F, XF )− ϕ(F, X̄a1, b1
F̄

)| ≤ 2DL̄Lg
s∑
i=1

+∞∫
−∞
|Fi(zi)− F̄ a1, b1

i (zi)|dzi,

2. If, moreover, Assumptions A.0 is fulfilled, then

|ϕ(F, XF )− ϕa1, b1(F a1, b1 , X̄a1, b1
F̄

)| ≤ (2L+ 2DL̄Lg)[
s∑
i=1

+∞∫
−∞
|Fi(zi)− F̄ a1, b1

i (zi)|dzi,

|ϕ(F a1, b1 , Xa1, b1
F )− ϕ̄a1, b1(F̄ a1, b1 , X̄a1, b1

F̄
)| ≤

(2L+ 2DL̄Lg)[
s∑
i=1

+∞∫
−∞
|F a1, b1
i (zi)− F̄ a1, b1

i (zi)|dzi.

(20)



(∆[·, ·] = ∆n[·, ·] denotes the Hausdorff distance in the space of subsets of n-dimensional Eu-
clidean space; for more details see, e.g., [10].)

Remark 3. Evidently, it is reasonable to choose a1, b1, m to be “small” the values

|ϕ(F, XF )− ϕ(F, Xa1, b1
F )|, |ϕ(F, XF )− ϕ(F, X̄a1, b1

F )|.

To this end the relation (11) (with G := F a1, b1
ξ ), G := F̄ a, bY and Proposition 4 can be employed.

The constant a, b, has to be chosen with respect to the function g. (The assumption i. ii. iii.
iv. has to be fulfilled.)

3 Application to Multi-Objective Stochastic Programming
Problems

First, we recall one very simple assertion.

Lemma 2. Let X ⊂ IRn be a compact convex set, a, b ∈ IR1, a < b. Let, moreover, g(x, z) be
for every z ∈ IRs a concave function of x ∈ X, then

XF = {x ∈ X : EF (u− g(x, ξ))+ ≤ EF (u− Y (ξ))+ for every u ∈ IR1},

Xa, b
F = {x ∈ X : EFa‘, b‘ (u− g(x, ξ))+ ≤ EFa1, b1 (u− Y (ξ))+ for every u ∈ 〈a, b〉},

X̄a, b
F̄

= {x ∈ X : EFa1, b1 (yi − g(x, ξ))+ ≤ EF̄a1, b1 (yi − Y (ξ))+ for every i = 1, . . . , m},

are convex sets.

Proof. The assertion follows immediately from the properties of convex functions and convex
sets.

Further setting successively

fi(x) = EF gi(x, ξ), i = 1, . . . , l K = XF ,

fi(x) = EFa1, b1gi(x, ξ), i = 1, . . . , l, K = Xa, b
F ,

fi(x) = EF̄a1, b1gi(x, ξ), i = 1, . . . , l, K = X̄a, b
F ,

(21)

we obtain three “deterministic” (depending on the probability measures ) multi–objective prob-
lems. If the “original” functions gi(x, z), i = 1, . . . , l are for every z ∈ IRs convex functions,
g(x, z) for every z ∈ IRs concave function, then the corresponding problems (5) are convex
multi–objective problems. According to Proposition 1 we can obtain the sets of properly effi-
cient points and further according to Remark 2 these sets approximate the corresponding sets of
efficient points. Moreover the Slater’s condition is fulfilled for the second and the third optimiza-
tion problem in (21). Of course, the second and the third problem “approximate” the original
one. Employing the results of Subsections 2.2, 2.3 we can estimate the errors of approximations.

Furthermore, employing the results of the paper [6] we can study the stability of these problems
and their empirical estimates. It means, the case when F is replaced by empirical distribution
function or the case when F a, b, F̄ are determined by random sample. However the corresponding
results have been obtained under the assumptions of strongly convex gi(x, z), i = 1, . . . , l. (For
the definition of strongly convex functions see, e.g., [6]). The investigation in this direction is
surely very interesting and important but it is beyond of the scope of this paper. Moreover it
can be obtained on the base of the paper [6].



4 Conclusion

The contribution deals with multi–objective stochastic programming problems with second order
stochastic dominance constraints. In particular, the aim of the paper is to show a possibility to
generalize the paper [6] with rather general convex constraints set to the special case of second
order stochastic dominance constraints. To this end a relaxation approach has been employed.
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