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Abstract.

Many economic and financial situations depend simultaneously on a random
element and a decision parameter. Mostly, it is possible to influence the above
mentioned situation only by an optimization model depending on a probability
measure. This optimization problem can be static (one–stage), dynamic with
finite or infinite horizon, single–objective or multi–objective. We focus on one–
stage multi–objective problems corresponding to applications those are suitable
to evaluate simultaneously by a few objectives. The aim of the contribution is
to give a survey of different approaches (as they are known from the literature)
of the above mentioned applications. To this end we start with well–known
mean–risk model and continue with other known approaches. Moreover, we
try to complete every model by a suitable application. Except an analysis of
a choice of the objective functions type we try to discuss suitable constraints
set with respect to the problem base, possible investigation and relaxation.
At the end we mention properties of the problem in the case when the the-
oretical“underlying” probability measure is replaced by its “deterministic” or
“stochastic” estimate.
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1 Introduction

Multi–objective optimization problems with a random element correspond to many economic situations
in which an economic process is influenced by a random factor say ξ, a decision parameter say x and it is
suitable to evaluate it by a few objectives. To recall an exact mathematical definition of the optimization
problem depending on a random factor, let (Ω,S, P ) be a probability space; ξ := ξ(ω) = (ξ1(ω), . . . , ξs(ω))
s–dimensional random vector defined on (Ω,S, P ); F (:= F (z), z ∈ Rs), PF and ZF denote the distribu-
tion function, the probability measure and the support corresponding to ξ; x = (x1, . . . , xn) ∈ Rn. Let,
moreover, gi := gi(x, z), i = 1, . . . , l, l ≥ 1, g∗j := g∗j (x, z), j = 1, . . . , l′, l′ ≥ 1 be real–valued (say
continuous) functions defined on Rn ×Rs, X ⊂ Rn be a nonempty set.

The above mentioned rather general multi–objective problem with a random element (in static setting)
can be introduced in the following form:

Find min gi(x, ξ), i = 1, . . . , l

subject to g∗j (x, ξ) ≤ 0, j = 1, . . . , l′, x ∈ X. (1)

(1) is (generally) a non linear multi–objective (practically “deterministic”) programming problem every-
where when the decision x can depend on the random element ξ, it means when the realization ξ is known
in the time of the problem solution. However, it is known that such “nice” situation happen very seldom.
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On the other hand rather often it is possible to assume that the probability measure PF is known or
at least it can be estimated. Consequently, (in such case) a question arises how to determine a suitable
problem. Of course, it is possible to assume that the problem will be again multi–objective and that it
will be depending on a probability measure. To explain this situation, let us start with very simple and
well known one–objective portfolio problem (1) in which l = l′ = 1, the functions g∗1 is not depending on
the random element ξ. The problem (with random element) is the following:

Find max

n∑

k=1

ξkxk s.t.

n∑

k=1

xk ≤ 1, xk ≥ 0, k = 1, . . . , n, n = s, (2)

(xk is a fraction of the unit wealth invested in the asset k; ξk return of the asset k). Evidently, if it
is necessary to determine xk without knowledge the realization ξk, k = 1, . . . , n, then it is (very often)
reasonable to set to (2) two–objectives “deterministic” optimization problem:

Find max

n∑

k=1

µkxk; max[−
n∑

k=1

n∑

j=1

xkck, jxj ], s.t.

n∑

k=1

xk ≤ 1, xk ≥ 0, k = 1, . . . , n, (3)

in which µk = EF ξk, ck, j = EF (ξk − µk)(ξj − µj). (Symbol EF denotes the operator of mathematical
expectation corresponding to the distribution function F ; of course we suppose that the corresponding
final mathematical expectation exists).

Remark 1. The “underlying” problem with random element (2) is single –objective with deterministic
constraints, the corresponding problem (3) depending on the probability measure is two–objectives, where
one is in a form of mathematical expectation and the other is given by the second moment; constraints
set is deterministic.

To find x that maximize simultaneously both objectives is mostly impossible. Markowitz in [13]
suggested to replace the problem (3) by one–objective problem:

Find min[−
n∑

k=1

µkxk +K

n∑

k=1

n∑

j=1

xkck, jxj ] s.t.

n∑

k=1

xk ≤ 1, xk ≥ 0, k = 1, . . . , n, K ≥ 0. (4)

The Markowitz approach to the portfolio problem (3) have started the general approach to multi–objective
stochastic optimization problems, known (from the literature) as scalarizing. (This approach is well known
also from the deterministic multi–objective problems theory.)

2 Scalarizing

To explain this approach we start with more general multi–objective problem with random elements
and suppose: the decision vector x has to be determined without knowledge of the random element
realization ξ. If it is reasonable to determine the decision with respect to the mathematical expectation
of the objectives; the constraints set can be included in “deterministic” constraints depending on PF ,
then the corresponding multi–objective stochastic problem can be introduced in the form:

Find minEF gi(x, ξ), i = 1, . . . , l s.t. x ∈ XF . (5)

Remark 2.

a. We assume that the final mathematical expectation EF gi(x, ξ), EF g
∗
j (x, ξ), i1, . . . , l, j = 1, . . . , l′

exist for all x ∈ X.
b. The mathematical expectation in (5) can be replaced by another functional (see, e.g., the relation

(4)); we denote it generally by a symbol F .
c. Considering (1) with g∗j omitted, the following problem in [4] is considered:

Find min
x, u

(u1, . . . , ul) s.t. PF {gi(x, ξ) ≤ ui} ≥ βi, βi ∈ 〈0, 1〉, i = 1, . . . , l, x ∈ X.

Simultaneously, a comparison with problems mean, mean – variance, mean – standard deviation is
introduced in [4].
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A few types XF ⊂ Rn are known from the stochastic programming literature, they are “deterministic”
(XF = X); given by mathematical expectation EF g

∗
j , j = 1, . . . , l′; determined by probability constraints

(for more details see see, e.g., [1]); recently rather often stochastic dominance constraints appear. The
results obtained for deterministic multi–objective problems enable to apply these cases.

2.1 Deterministic Problems

To recall the suitable results obtained for deterministic problems, let fi(x), i = 1, . . . , l be real–valued
functions defined on Rn; K ⊂ Rn be a nonempty set. The multi–objective problem can be defined by:

Find min fi(x), i = 1, . . . , l subject to x ∈ K. (6)

Definition 1. The vector x∗ is an efficient solution of the problem (6) if and only if there exists no x ∈ K
such that fi(x) ≤ fi(x∗) for i = 1, . . . , l and such that for at least one i0 one has fi0(x) < fi0(x∗).

Definition 2. The vector x∗ is a properly efficient solution of the multi–objective optimization problem
(6) if and only if it is efficient and if there exists a scalar M > 0 such that for each i and each x ∈ K
satisfying fi(x) < fi(x

∗) there exists at least one j such that fj(x
∗) < fj(x) and

fi(x
∗)− fi(x)

fj(x)− fj(x∗)
≤M. (7)

Proposition 1. [7] Let K ⊂ Rn be a nonempty convex set and let fi(x), i = 1, . . . , l be convex functions
on K. Then x0 ∈ K is a properly efficient solution of the problem (6) if and only if x0 is optimal in

min
x∈K

l∑

i=1

λifi(x) for some λ1, . . . , λl > 0,

l∑

i=1

λi = 1.

A relationship between efficient and properly efficient points is introduced, e.g., in [6] or [7]. We
summarize it in the following Remark.

Remark 3. Let f(x) = (f1(x), . . . , fl(x)), x ∈ K; Keff , Kpeff be sets of efficient and properly efficient
points of the problem (6). If K is a convex set, fi(x), i = 1, . . . , l are convex functions on K, then

f(Kpeff ) ⊂ f(Keff ) ⊂ f̄(Kpeff )

(f̄(Kpeff ) denotes the closure set of f(Kpeff ).

2.2 Multi–Objective Stochastic Optimization Problems

Setting
fi(x) = EF gi(x, ξ), i = 1, . . . , l, K = XF , (8)

then evidently, under assumptions of convex functions gi(x, ξ), i = 1, . . . , l on convex, nonempty set
XF , we can (employing Proposition 1) to obtain the set of properly efficient points of the problem (5).
According to Remark 2 this set approximate the set of efficient points of (5). Consequently it is suitable,
first, to suppose X be nonempty convex set and to analyze properties of the sets type XF separately:

1. XF = X. In this case XF = X is a convex set.

2. XF = {x ∈ X : EF g
∗
j (x, ξ) ≤ 0, j = 1, . . . , l′}. Evidently if g∗j (x, ξ), j = 1, . . . , l′ are convex

functions on convex nonempty set X, then XF is a convex set.

3. XF given by individual probability constraints. In particular, in this case we assume l′ = s, there
exist functions ḡj(x), j = 1, . . . , s defined for x ∈ X such that g∗j (x, z) = ḡj(x) − zj , j = 1, . . . , l
and

XF := XF (α) :=

s⋂

j=1

{x ∈ X : P [ω : ḡj(x) ≤ ξj ] ≥ αj},
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where αj ∈ (0, 1), j = 1, . . . , s, α = (α1, . . . , αs), z = (z1, . . . , zs).

If ḡj(x), j = 1, . . . , s are convex functions, PF absolutely continuous with respect to the Lebesque
measure on Rs, then XF is a convex set (for more details see, e.g., [9]).

The situation with general probability constraints is rather complicated; see, e.g., [16].

4. To deal with the last case, let l′ = 1, g∗1(x, ξ) be a real-valued function, Y (ξ) a random value. If
for x ∈ X there exists finite EF g

∗
1(x, ξ), EFY (ξ) and if

F 2
g∗1 (x, ξ)

(u) =

u∫

−∞

Fg∗1 (x, ξ)(y)dy, F 2
Y (u) =

u∫

−∞

FY (y)dy, u ∈ R1,

then we can define the second order stochastic dominance constraints XF by

XF = {x ∈ X : F 2
g∗1 (x, ξ)

(u) ≤ F 2
Y (u) for every u ∈ R1}. (9)

Employing the results [14], the stochastic second order dominance constraints (9) can be rewritten
in a more friendly form:

XF = {x ∈ X : EF (u− g∗1(x, ξ))+ ≤ EF (u− Y (ξ))+ for every u ∈ R1}. (10)

If g∗1(x, ξ) is a concave function on X, then XF is a convex set.

Since for the optimization problem given by (8), (10) the Slater’s condition is not fulfilled generally,
it is necessary to relax constraints set (for more details see, e.g., [2], [11]).

The multi–objective problem given by (8) (with XF fulfilling first and third case, gi(x, ξ), i = 1, . . . , l
be strongly convex function) has been investigated in [10], where also the definition of a strongly convex
function can be found. However, [10] is mainly focus on the case when the theoretical measure PF is
replaced by empirical one given by independent random sample. To obtained these results the stability
with respect to the Wasserstein metric has been there investigated.

The special case of the functions fi has been considered in [5]. In particular, there were considered
the following multi–objective two-stage stochastic problem:

Find min fi(x) = g′i(x) + EF min q′y, i = 1, . . . , l

s.t. Ax = b,

Dx+Wy = ξ, x ≥ 0, y ≥ 0.

A, D, W, b, q are deterministic matrix of the corresponding dimensions, g′i, i = 1, . . . , l suppose to be
linear deterministic.

The stability of the last problem considered with respect PF and based on the bounded Lipschitz
metric, has been investigated in [5]. We recall this work because it has been first one dealing with the
stability of multi–objective stochastic problem.

Remark 4. An idea of scalarization has been also employed in [8]. However there the approach is
combined with utility function approach. Consequently, there the linear dependence objectives on the
probability measure is a very suitable property. In [10] this property can be replaced by more general
assumptions.

3 Multi–Objective Stochastic Objectives via Stochastic Dominance

The relations (9), (10) recalled the constraints set given by the second order stochastic dominance.
Considering in (1) the case l = 1 and g∗1 , j = 1, . . . , l′ being omitted, we can evaluate the solution x by
the stochastic dominance. To this end, first, we generalize the problem (3) and consider the problem:

Find maxEF g1(x, ξ), min ρ(g1(x, ξ))) s.t. x ∈ X, ρ(·) denotes a risk measure. (11)
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(11) is two objectives optimization problem. Evidently to optimize simultaneously both objectives is very
often impossible (see also a comment to the problem (3)). Following the approach of Markowitz we can
obtain the problem:

Find max{(1− λ)EF [g1(x, ξ)]− λρ(g1(x, ξ)} s.t. x ∈ X; λ ∈ 〈0, 1〉. (12)

To recall examples of the risk measure ρ considered in [8] we set V := g1(x, ξ). They are

1. variance – ρ(V )(:= var(V )) = EF [V − EFV ]2,

2. absolute semi–deviation – ρ(V ) (:= δ̄(V )) = EF [max (EF[V ]− V ), 0],

3. the standard semi–deviation – ρ(V ) (:= (δ(V )) = (EF [(max(EF [V ]− V, 0))2])1/2,

4. ρ(V ) (:= Average Value− at− Risk) = AV@Rα(V ) for some fixed α ∈ [0, 1].

(For the definition of AV@Rα(V ) see, e.g., [8]), [19].)

It is well known that the second order stochastic dominance corresponds to order in the space of non-
negative nondecreasing concave utility functions. If we denote by the symbol �2 second order stochastic
dominance, then the following definition can be found in [8], [15].

Definition 3. The mean–risk model (11) is called consistent with the second order (�2) stochastic
dominance if for every x ∈ X and y ∈ X,

g1(x, ξ) �2 g1(y, ξ) =⇒ Eg1(x, ξ) ≥ Eg1(y, ξ) and ρ(g1(x, ξ)) ≤ ρ(g1(y, ξ)).

It has been recalled in [8] that the mean–risk model using Average Value–at–Risk at some level α is
consistent with second order stochastic dominance relation.

Remark 5. The Markowitz mean-variance model is not consistent with second order stochastic domi-
nance relation (�2), so it is not perfectly suited as a decision aid for rational, risk averse decision marker.
In the case of absolute semi–deviation and standard semi–deviation the situation is a little bit more
complicated.

Till now we have employed univariate second order stochastic dominance order. However, there are
known also (from the literature) the definitions of multivariate stochastic orders. Evidently they are
defined on sets of vector random variables. There are known approaches those generalize univariate
stochastic order to multivariate case. To recall them let X, Y be two m–dimensional vectors with
components (X1, . . . , Xm), (Y1, . . . , Ym).

Definition 4. X dominates Y in sense of components in second order if Xj �2 Yj for every j =
1, . . . , m.

Definition 5. X dominates Y in sense of positive linear second order if aTX �2 aTY for all a ≥ 0.

The others generalized models of the multivariate stochastic dominance have appeared in the last time.
We recall a work [17] devoted very carefully to this topic.

Applications of multivariate stochastic orders to multi–objective stochastic programming problems
can be found in [8].

4 Special Approach

At the end we mention one special approach in which an objective and constraints are determined by one
decision parameter (see [12]). The problem can be introduced in the form:

Find max qTx+ η(p)

s.t. Ax ≥ b,

P{Tx ≤ d} ≥ p, p ≥ p
¯
, 0 ≤ x ≤ u.

(13)
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T (:= T (ti, j)) is a matrix with rows TT1 , . . . . T
T
s discretely distributed random vectors not necessary

independent), moreover, each component of Ti = ti, jξj , where ti, j is a scalar and ξj random variable;
q, A, b, u, d, p

¯
are given deterministic with suitable dimension; η(p) is monotone increasing function of p.

Evidently the problem (13) can find applications in production planing; qTx can be considered as a profit
of production, p

¯
can be interpreted as the lowest acceptable reliability level of quality control process or

the ready rate service level provided to customers.

5 Conclusion

We have tried to give a brief survey of the approaches to multi–objective problems with a random element.
These problems arise in applications, some of them can be found in [3], [10], [18]. However, to deal with
them is beyond of the scop of this contribution .
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[16] Prékopa, A.: Stochastic Programming. Akadémia Kiadó, Budapest and Kluwer, Dordrecht 1995.
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