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a b s t r a c t 

We examine the Dow Jones Industrial Average index components with respect to the capital asset pricing 

model (CAPM), specifically its scaling properties in the sense of different investment horizons. To do so, 

we use the novel methods of fractal regressions based on the detrended cross-correlation analysis and 

the detrending moving-average cross-correlation analysis. We report three standard groups of stocks –

aggressive, defensive and market-following – which are rather uniformly represented. For most of the 

stocks, the β parameter of the CAPM does not vary significantly across scales. There are two groups of 

exceptions. One of aggressive stocks which are even more aggressive for short investment horizons. These 

do not provide portfolio diversification benefits but allow for high profits above the market returns and 

even more so for the short investment horizons. And the other group of more defensive stocks which 

become very defensive in the long term. These stocks do not deliver short term profits but can serve as 

strong risk diversifiers. Apart from these direct results, our analysis opens several interesting questions 

and future research directions, both technical and experimental, which we discuss in more detail. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

The Global Financial Crisis and its aftermath have shown that

he notion of systematic (and also systemic) risk is not vain. Dur-

ng the critical periods, practically all stocks kept losing their value,

nd the losses and risk could not have been diversified away. Dat-

ng back to Markowitz [1] , diversification, i.e. lowering the port-

olio risk by its enlarging, is tightly connected to the correlation

tructure of the market. If the assets are all strongly correlated,

hey will rise and fall together. Only a single asset moving against

he market can lower the portfolio risk markedly. Connection be-

ween the market risk and individual assets’ risk is nicely captured

y the capital asset pricing model (CAPM), which has become one

f cornerstones of the modern financial economics since its intro-

uction in the 1960s [2–4] . The model describes the relationship

etween an asset and market in a simple linear manner. Regardless

ts simplicity, the model has several intuitive but important impli-

ations. The most important one from the portfolio construction

erspective is the existence of the market (systematic) risk that

annot be diversified away. In words, as most assets are at least

omehow connected to the global market movements, this princi-

al component cannot be gotten rid of as it is common to all said

ssets. Another appealing outcome of the model’s simplicity is that
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t is described by only two parameters one of which – β – iden-

ifies the asset as an aggressive one, a defensive one, or a market-

ollowing one. However, if the past decade has taught the financial

heorist and practitioners anything, market participants can per-

eive an asset behavior differently. There are different types of in-

estors with different trading strategies and different investment

orizons and it is hard to believe they all agree on risk specifics of

 given asset as called for by the efficient market hypothesis [5,6] .

uite the contrary, it is more realistic to assume that the market

articipants differ as well as their expectations as asserted by the

ractal market hypothesis [7,8] . Our main motivation is thus to in-

pect the stock markets via the capital asset pricing model with

 special focus on scale specifics of the model. To do so, we uti-

ize the quite newly proposed regression frameworks build on the

ractal methods, specifically the detrended cross-correlation anal-

sis and the detrending moving-average cross-correlation analysis.

n addition, we provide a novel approach towards the statistical

ignificance of the scale variability. 

The paper is organized as follows. The next section describes

he capital asset pricing model in detail and focuses on the fractal

ethods and how to approach statistical inference in the CAPM

etting. The following section introduces the analyzed data and

xplains the specific choices. The last section presents the re-

ults, provides economic interpretation and sketches some further

enues into the topic. 

https://doi.org/10.1016/j.chaos.2018.02.028
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2018.02.028&domain=pdf
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2. Methods 

2.1. Capital asset pricing model 

The capital asset pricing model (CAPM) is one of the important

building blocks of the modern financial economics as it describes

the relationship between risk and return in the rational equilib-

rium market. Building on the Markowitz modern portfolio theory

[1,9] , the CAPM was developed by several authors independently

of one another [2–4] . For individual assets, the model is stated as

E (R i ) = R f + βi (E (R m 

) − R f ) (1)

where E (R i ) is the expected return of asset i, R f is the risk-free

rate, and E (R m 

) is the expected market return. β i is the crucial

parameter of the model and it can be interpreted as a sensitivity

of the asset return to the market return (both cleared by the risk-

free rate). With respect to Refs. [2–4] , it can be shown that 

βi = ρim 

σi 

σm 

= 

cov (R i , R m 

) 

var (R m 

) 
(2)

where ρ im 

is the correlation between R i and R m 

, σ i is the standard

deviation of R i , and σ m 

is the standard deviation of R m 

. Note that

the representation of β i on the right-hand side of Eq. (2) is the

same as the least squares estimator of the simple regression 

R i − R f = αi + βi (R m 

− R f ) + u i (3)

where u i is the error term and αi is a deviation from the equilib-

rium return. 1 The β parameter can be thus easily estimated using

the least squares methodology. In general, β can attain any value

but cases when β ≤ 0 are rare (assets moving against the market,

or short positions). Apart from this unlikely case, there are three

interesting cases: 

• 0 < β < 1: defensive assets, which move in the same direction

as the market but have lower volatility 
• β = 1 : assets following the market, e.g. market-index-based as-

sets, or strong contributors to a market index 
• β > 1: aggressive assets, which move in the same direction as

the market but with higher volatility 

The definition of β and the CAPM construction imply that the

market return R m 

and error term u in Eq. (3) are uncorrelated.

This allows to split the asset variance (risk) σ 2 
i 

into two orthog-

onal components as 

σ 2 
i = β2 

i σ
2 
m 

+ σ 2 
u i 

(4)

where σ 2 
m 

is the market variance and σ 2 
u i 

is the error term variance

[10] . The component β2 
i 
σ 2 

m 

is called the systematic risk associated

with the market and it cannot be eliminated (i.e. by diversifica-

tion). The error term variance is usually referred to as the idiosyn-

cratic risk (or specific risk or unsystematic risk) and this one can

be eliminated (or at least mitigated). High β assets can thus re-

turn high profits in the growing market but they do not contribute

to risk optimization. Therefore, a high β portfolio is possibly very

profitable but also very risky. Low β assets thus help diversifying

the risk. 

The capital asset pricing model is connected to an understand-

ing of a market as an efficient one with respect to the efficient

market hypothesis (EMH) [5,6,11–14] , specifically to one of its as-

sumptions that the investors are homogeneous in their expecta-

tions and have a common investment horizon [15] . However, ob-

serving reality suggests that investors are far from homogeneous
1 The α parameter can be used for investment decisions as α > 0 suggests over- 

pricing of the asset and α < 0 suggest underpricing of the asset. However, we focus 

primarily on the β parameter here and leave possible α discussions for future re- 

search. 

e  

n

c

nd they differ in their investment horizons, ranging from algo-

ithmic and noise trading (with very short horizons in a span of

econd fractions) to pension funds (with long investment horizons

f several years or even decades). Specifically, we want to exam-

ne whether an asset can be seen in a different perspective (in the

APM sense) by a short-term investor and a long-term investor,

.e. whether the asset βs can be different for different invest-

ent horizons. For this purpose, we utilize the regression frame-

orks build with scaling and fractality in mind – fractal regres-

ions based on the detrended cross-correlation analysis and the

etrending moving-average cross-correlation analysis. 

.2. Fractal regressions 

The capital asset pricing model is based on a bivariate relation-

hip between an asset’s return (corrected by the risk-free rate) an

 market return (also corrected by the risk-free rate). The model

an be thus ideally studied by quite recently proposed regression

rameworks based on the detrended fluctuation analysis (DFA) and

etrending moving average (DMA) procedures [16,17] . Here, the

ethods are not only useful due to their robustness to persistence,

hort-range correlations and heavy tails [18–20] , but specifically for

heir ability to study the relationship between series at different

cales so that we can distinguish between short-term and long-

erm investment horizons. This leads to possible findings such that

 specific stock is considered to be an aggressive investment for

hort-term investors but a defensive (safe) investment for long-

erm investors. Such results would support claims of the fractal

arkets hypothesis (FMH) [7,8,21–23] as opposed to the efficient

arket hypothesis (EMH) [5,6,11–14] , which assumes that all in-

estors agree on the riskiness of a specific asset. 

The two fractal regression frameworks are based on the meth-

ds usually used for detecting fractal structure and long-range

ependence properties of analyzed series – specifically the de-

rended fluctuation analysis (DFA) [24] and the detrending mov-

ng average (DMA) [25,26] . Both methods have been generalized

or analysis of bivariate properties of the series which has given

ise to the detrended cross-correlation analysis (DCCA) [27–29] and

he detrending moving-average cross-correlation analysis (DMCA)

30,31] . Combination of DFA and DCCA allowed for an introduction

f the DCCA-based correlation coefficient which describes corre-

ations between series at different scales [32] . In the same logic,

MA and DMCA have been combined to form the DMCA-based

orrelation coefficient [33] , which surpasses the original DCCA-

ased method under various specifications of long-range depen-

ence [34] . These scale-specific correlation coefficients have been

xtensively used in empirical studies across disciplines [28,35–46] .

he regression frameworks are only a step away from the correla-

ion analysis. 

The DCCA and DMCA-based correlation coefficients are based

n a simple idea of substituting the covariance and variances (stan-

ard deviations) in the definition of correlation coefficient with

he scale-specific covariances and variances obtained during the

FA/DCCA and DMA/DMCA procedures. Without a need to even-

ually arrive at the Hurst exponent given by DFA and DMA, we

an use the fluctuation functions obtained during the procedures.

pecifically for the DFA procedure, we select the scale s and split

he profile series (integrated demeaned original series) into boxes

f given length. 2 In each box, a polynomial trend (usually linear

s in our application) is fitted, residuals are obtained and mean

quared error is calculated. The mean squared errors are then av-

raged over all boxes of size s and to get F 2 
X,DF A 

(s ) . For the bivariate
2 If the series is not divisible by s , we divide the series into boxes from the begin- 

ing and from the end, i.e. obtained twice as many boxes compared to the divisible 

ase. 
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3 By the end of June 2017, the index comprised of 3M (MMM), American Express 

(AXP), Apple (AAPL), Boeing (BA), Caterpillar (VAR), Chevron (CVX), Cisco (CSCO), 

Coca-Cola (KO), Disney (DIS), E I du Pont de Nemours and Co (DD), Exxon Mobil 

(XOM), General Electric (GE), Goldman Sachs (GS), Home Depot (HD), IBM (IBM), 

Intel (INTC), Johnson & Johnson (JNJ), JPMorgan Chase (JPM), McDonald’s (MCD), 

Merck (MRK), Microsoft (MSFT), Nike (NKE), Pfizer (PFE), Procter & Gamble (PG), 

Travelers Companies Inc (TRV), United Technologies (UTX), UnitedHealth (UNH), 

Verizon (VZ), Visa (V) and Wal-Mart (WMT). 
4 All time series were downloaded from the finance.yahoo.com site. 
ase and DCCA, the residuals in each box are obtained in the same

anner only for each series and an average of their product is re-

rieved for each box. This is again averaged over all boxes of size

 so that we get F 2 
XY,DCCA 

(s ) . The DMA/DMCA procedures are more

traightforward as we only construct a moving average of size λ for

he analyzed series and calculate the mean squared error from this

oving average to get F 2 
X,DMA 

. For the bivariate case, we calculate

he average product of the deviations from the moving averages

f the two series (with the same window size λ) to get F 2 
XY,DMCA 

. It

as been shown that the centered moving average delivers the best

esults [47] . The correlation coefficients are then simply [32,34] 

ˆ DF A 
XY (s ) = 

F 2 XY,DCCA (s ) 
√ 

F 2 
X,DF A 

(s ) F 2 
Y,DF A 

(s ) 
, 

ˆ DMA 
XY (λ) = 

F 2 XY,DMCA (λ) 
√ 

F 2 
X,DMA 

(λ) F 2 
Y,DMA 

(λ) 
. (5) 

Even though the correlation coefficient is useful in uncovering

hether the two series are related or not, it does not quantify

he actual effect. This holds for the scale-specific correlation co-

fficients ˆ ρDF A 
XY 

(s ) and ˆ ρDMA 
XY 

(λ) as well. The regression framework

akes one variable, say Y , as a response (dependent) variable, and

ne variable, say X , as an impulse (independent) variable. Their re-

ationship is described by a model 

 = α + βX + u (6)

here u is the error term, α is the model intercept (the expected

alue of Y when X = 0 ) and β is the expected change in Y when

 changes by one (given the set of classical assumptions). In this

imple regression case, the β parameter is estimated using the (or-

inary) least squares procedure as 

ˆ LS = 

∑ T 
i =1 (x i − x̄ )(y i − ȳ ) 
∑ T 

i =1 (x i − x̄ ) 2 
∼ cov (X, Y ) 

var (X ) 
(7) 

or time series of length T with x̄ , ȳ being averages and ∼ sym-

olizing asymptotic equality. The least squares estimator of the β
oefficient is thus simply the ratio between covariance of X and Y ,

nd variance of X , and it can be thus seen as a rescaled correlation

oefficient. This simple representation of the estimator has been

tilized to introduce the estimators of scale-specific effects of X on

 based on DFA/DCCA and DMA/DMCA in a similar logic as ˆ ρDF A 
XY (s )

nd ˆ ρDMA 
XY 

(λ) . Specifically, the estimators for given scales s or λ are

iven as [16,17] 

ˆ DF A (s ) = 

F 2 XY,DCCA (s ) 

F 2 
X,DF A 

(s ) 
, 

ˆ DMA (λ) = 

F 2 XY,DMCA (λ) 

F 2 
X,DMA 

(λ) 
. (8) 

ompared to the fractal correlation coefficients ˆ ρDF A (s ) and

ˆ DMA (λ) , which tell the correlation at a specific scale (i.e. between

1 and 1), the fractal regression estimates give the actual effects

etween X and Y . Even though it might seem as a negligible dif-

erence or even not a very useful upgrade of the correlation coef-

cients, in specific case, we are interested in the actual effect be-

ween X and Y . This is the case of the capital asset pricing model

nvestigated here as it is important to know whether β = 1 , or

> 1, or 0 < β < 1 as each of these cases has its own interpretation,

hich could not be uncovered using the correlation coefficients. 

.3. Statistical inference and parameters selection 

The above described methods provide a range of β estimates

or a selection of scales. However, it is not straightforward to iden-

ify whether the variability of such estimates is high enough so
hat we could claim that one global parameter is not enough to

escribe the relationship between the variables of interest, in our

ase the asset return and the market return. To be able to do so,

e apply the following procedure: 

1. Estimate Eq. (3) using the (ordinary) least squares estimator

and obtain estimates ˆ αi , 
ˆ βi , and residuals ˆ u i . 

2. Create a surrogate series of ˆ u i using Theiler’s phase randomiza-

tion [48] , specifically by randomizing the phases of the Fourier

coefficients while keeping the amplitude of the series. This

gives us a surrogate series ˆ u sur 
i 

with the same spectrum and

the same distribution as the original series. 

3. Reconstruct the returns series as ̂ (R i − R f ) = ˆ αi + 

ˆ βi (R m 

− R f ) +
ˆ u sur 

i 
. 

4. Estimate ˆ βDF A (s ) and 

ˆ βDMA (λ) on the surrogate return series
̂ (R i − R f ) from the previous step for a given range of s and λ. 

5. Repeat steps 2, 3, and 4 many times and keep the results. 

6. Based on the previous step, construct confidence intervals for

the null hypothesis of a single global β with no scale differ-

ences. 

7. Compare the original ˆ βDF A (s ) and 

ˆ βDMA (λ) estimates with the

constructed confidence intervals. 

Such procedure gives the approach statistical validity. If the es-

imated 

ˆ βDF A (s ) and 

ˆ βDMA (λ) fall outside of the confidence inter-

als, we detect heterogeneity in investors’ perception of risk with

espect to investment horizons. 

There are several parameters in the estimation procedures that

eed to be specified. For the DCCA-based regression, we estimate

s from s min = 10 to s max = 500 with a step of 10. For the DMCA-

ased regression, we use similar setting with λmin = 11 and λmax =
01 with a step of 10 due to the central moving averages. For the

onstruction of confidence intervals, we repeat the procedure 333

imes for each setting and construct 95% confidence intervals, i.e.

he 2.5% and 97.5% percentiles. 

. Data 

We study scaling of the capital asset pricing model β parameter

n a sample of the Dow Jones Industrial Average (DJIA) index com-

onents. The index comprises 30 important stocks 3 traded on the

ew York Stock Exchange (NYSE) and the NASDAQ. The stocks are

nalyzed between 2 January 2009 and 30 June 2017 (2139 daily ob-

ervations). 4 The specific period has been selected for two reasons.

irst, all the index components as of 30 June 2017 have existed

nd have been traded from 2 January 2009 onwards. And second,

he beginning of 2009 marks the stock market turning point after

he Global Financial Crisis (we wanted to avoid the results being

nfluenced by such a structural break). 

The capital asset pricing model for each stock uses three dif-

erent variables. Apart from the stock returns, we need the mar-

et return and the risk-free rate. For the market return, we use

he DJIA (ticker DJI) returns, and for the risk-free rate, we use

he CBOE (Chicago Board Options Exchange) Interest Rate 10 Year

reasury Note Index (ticker TNX), which is based on the yield-to-

aturity on the most recently auctioned 10-year Treasury note.

his interest rate is quoted in annual interest rate percentage
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Fig. 1. Scale-specific estimates of the CAPM β parameter I. Results for the DCCA-based regression (left) and DMCA-based regression (right) are shown. For the DCCA 

method, the estimates are presented for scales between 10 and 500 with a step of 10. For the DMCA method, the estimates are shown for scales between 11 and 501 (due 

to central moving averages). The estimates are represented by the red line. 95% confidence intervals are marked by the shaded area and these are based on 333 surrogate 

series. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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points and as we use daily stock and index data, the interest rates

need to be transformed to daily yields. Counting with the 250-

day trading year, the (compounded) daily yields are obtained as

R f = (1 + AY/ 100) 1 / 250 − 1 , where AY is the annual yield in per-

centage points. All necessary variables for Eq. (3) are thus well de-

fined. 

4. Results and discussion 

The capital asset pricing model is estimated for all 30 compo-

nents of the Dow Jones Industrial Average index between 2 January

2009 and 30 June 2017. For each stock, we estimate the model us-

ing the DCCA and DMCA-based regression for a range of scales be-

tween 10 and 500 trading days (11 and 501 for the DMCA method).

To test whether the potential variability of the CAPM β across

scales is statistically valid, we construct confidence intervals with

the null hypothesis of a single global parameter β . The procedure

specifics are described in the Methods section. 

The results are summarized in Figs. 1–3 . Recall that β > 1 sig-

nifies an aggressive stock, more volatile with hard to diversify risk,

whereas 0 < β < 1 is a defensive, less volatile stock that can con-

tribute to portfolio diversification. In the figures, we present the

results based on DCCA on the left and the ones based on DMCA

on the right for all 30 stocks. The estimated scale-specific βs are

marked by a red line and the confidence intervals are represented
y the shaded area. If the red line crosses outside of the shaded

rea, ˆ βDF A (s ) or ˆ βDMA (λ) differs for scales s or λ, respectively. If

he red line remains inside of the shaded area for all the analyzed

cales, it suggests that a simple least squares regression is enough

or the analysis. From the interpretational side, if the red curve re-

ains inside the shaded are, the risk is perceived the same way for

nvestors of various investment horizons, which is in hand with the

fficient market hypothesis. If the red curve goes outside, investors

ith different investment horizons weigh the stock risk differently,

hich is more in hand with the fractal market hypothesis. 

From the technical perspective, both methods provide very

imilar results. However, the DMCA-based regression yields much

moother estimates and confidence intervals across scales com-

ared to the DCCA-based method. This is well in hand with some

revious results in the literature using and comparing the meth-

ds [33,34,49] . Further, we observe that the confidence intervals

iden with an increasing scale. This is not surprising given the fact

hat the estimates are based on less observations for higher scales.

evertheless, it explains why some results suggest rather erratic

ehavior at high scales which can easily be due to statistical fluc-

uations rather than an actual scale dependence of the parameters

f interest. 

We can see examples of aggressive stocks and defensive stocks

s well as market stocks. The market stocks are represented by
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Fig. 2. Scale-specific estimates of the CAPM β parameter II. Results for the DCCA-based regression (left) and DMCA-based regression (right) are shown. For the DCCA 

method, the estimates are presented for scales between 10 and 500 with a step of 10. For the DMCA method, the estimates are shown for scales between 11 and 501 (due 

to central moving averages). The estimates are represented by the red line. 95% confidence intervals are marked by the shaded area and these are based on 333 surrogate 

series. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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arge companies such as AAPL, CSCO, CVX, HD, IBM, INTC, MMM,

SFT, TRV, UNH, UTX, and XOM. All these share a common β
round one and this is majorly the case for all studied scales. From

he aggressive titles, we have AXP, BA, CAT, DD, DIS, GE, GS, and

PM, i.e. mainly financial institutions but not universally. And as

xamples of the defensive stocks, we have JNJ, KO, MCD, MRK,

FE, PG, VZ and WMT, i.e. healthcare, consumer goods and services

ompanies. The market following, riskiness and diversification op-

ortunities thus seem quite sector-specific. 

Looking at the variability of β across scales, we find some vari-

bility for practically all the studied titles. However, when these

re compared with the confidence intervals, we find statistically

ignificant scale-dependence of β only sparsely. For a majority of

tocks, the red curve representing the scale-specific β estimates

emains within the shaded area of the simulated confidence inter-

als. Therefore, for most stocks, it is enough to describe its riski-

ess in the sense of the CAPM using only a single global β param-

ter. Nevertheless, there are exceptions. The MacDonald’s Corpora-

ion (MCD) is a strongly defensive stock with β ≈ 0.5 for low scales.

owever, for the longer investment horizons, the parameter ap-

roaches 0. This deviation is statistically significant for high scales

or both utilized methods. In the long-term, MCD does not react to

he market trends practically at all and it is thus a strong candidate

or the long-term risk diversification in a portfolio. Similar pattern
s observed for NIKE, Inc. (NKE), which is a market following as-

et ( β ≈ 1) for short scales but becomes quite defensive ( β < 0.5)

or higher scales. In the short term, NKE does not provide much

iversification potential but in the long term, it does quite signifi-

antly. Then we have E. I. du Pont de Nemours and Company (DD)

nd General Electric Company (GE), two aggressive stocks with a

ong-term β around 1.25 which, however, statistically significantly

eviates upwards for the lower scales, specifically between 1.4 and

.75. These companies thus seem as a good short-term risky in-

estment. From the perspective of portfolio diversification, either

hort-term or long-term, these stocks are not good candidates. For

everal other companies, there are episodes of red curves slightly

scaping the shaded area but no strong patterns emerge. ( Fig. 2 ) 

In summary, we have examined the Dow Jones Industrial Av-

rage index components with respect to the capital asset pricing

odel, specifically its scaling properties in the sense of different

nvestment horizons. To do so, we have used the novel methods of

ractal regressions based on the detrended fluctuation analysis and

he detrending moving average. We report three standard groups

f stocks – aggressive, defensive and market-following – which are

ather uniformly represented (as expected due to the model and

ainly market return specification). For most of the stocks, the β
arameter of the CAPM does not vary significantly across scales.

here are two groups of exceptions. One of aggressive stocks which
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Fig. 3. Scale-specific estimates of the CAPM β parameter III. Results for the DCCA-based regression (left) and DMCA-based regression (right) are shown. For the DCCA 

method, the estimates are presented for scales between 10 and 500 with a step of 10. For the DMCA method, the estimates are shown for scales between 11 and 501 (due 

to central moving averages). The estimates are represented by the red line. 95% confidence intervals are marked by the shaded area and these are based on 333 surrogate 

series. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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are even more aggressive for short investment horizons. These do

not provide portfolio diversification potential but allow for high

profits above the market returns and even more so for short in-

vestment horizons. And the other group of more defensive stocks

which become very defensive in the long term. These stocks do

not deliver short term profits but can serve as strong risk diversi-

fiers. Apart from these direct results, our analysis opens several in-

teresting topics and future research directions, both technical and

experimental. First, the DMCA-based regression provides more sta-

ble and smoother results than the DCCA-based one. Even though

this is not a completely new result (see Refs. [33,34,49] ), it high-

lights the need of further comparison of statistical properties of

the methods. Second, the constructed confidence intervals are very

wide for some stocks. This stresses the need for proper statistical

analysis of experimental studies utilizing fractal regressions and/or

DCCA-based (and other) correlation coefficients. Even though the

estimates by themselves might seem to vary strongly across scales,

it does not say much without properly specified critical values of

the opposite case. And third, the fact that most of the stocks report

very stable βs across scales is likely connected to the analyzed pe-

riod of 2009–2017, which corresponds to a strongly bullish mar-

ket, i.e. strongly growing. Such stability is well in hand with both

the efficient market hypothesis but also with the fractal market

hypothesis, which suggests that the growing market is character-

 

stic by no dominant investment horizon and rather uniformly dis-

ributed traded activity across the horizons. It will be interesting

o study whether the stability is present also during different mar-

et states, specifically before and during various recent crises. Our

tudy thus serves as a starting point towards studying the capital

sset pricing model from a new perspective. 
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