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Abstract Using the Heterogeneous Agent Model framework, we incorporate an
extension based on Prospect Theory into a popular agent-based asset pricing model.
This extension covers the phenomenon of loss aversionmanifested in risk aversion and
asymmetric treatment of gains and losses. UsingMonte Carlo methods, we investigate
behavior and statistical properties of the extended model and assess how our exten-
sion is manifested in different strategies. We show that, on the one hand, the Prospect
Theory extension keeps the essential underlying mechanics of the model intact, but
on the other hand it considerably changes the model dynamics. Stability of the model
is increased and fundamentalists may be able to survive in the market more easily.
When only the fundamentalists are loss-averse, other strategies profit more.
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1 Introduction

This paper introduces features of loss aversion and gain–loss asymmetry into the pop-
ular Brock and Hommes (1998) asset pricing model. Our work is based on findings of
the iconic Prospect Theory (PT) of Kahneman and Tversky (1979), which describes
the way people choose between probabilistic alternatives involving risk and is inher-
ently a critique of other, more normative decision-making economic theories. Back in
1979, Kahneman and Tversky found that the actual behavior of human beings might
be very different to what major economic theories had assumed, namely in relation
to risk and attitude towards losses. According to PT, instead of behaving fully ratio-
nally and using perfect cognitive calculations, people make decisions with respect to
gains and losses rather than the final outcome. Losses also have a greater emotional
impact than an equivalent amount of gains; they hurt more than equal gains please. The
extension that we develop in this work is aimed at accounting for these empirically
observed irrationalities. Over the years, PT has become one of the most influential
theories, merging psychology with economics. As Belsky and Gilovich (2010, p. 52)
aptly remark, “If Richard Thaler’s concept of mental accounting is one of two pillars
upon which the whole of behavioral economics rests, then Prospect Theory is the
other”. Kahneman and Tversky (1979) paper is the most cited work to ever appear in
Econometrica (Chang et al. 2011, p. 30).

In contemporary economic theory, there is little doubt that economic agents
are heterogeneous to some extent. In the late 1980s and early 1990s, empirical
micro studies reported heterogeneity as an empirically significant phenomenon.
Frankel and Froot (1990) attribute the reason for the divergence of the US
dollar interest rate from macroeconomic fundamentals at the beginning of the
1980s to the existence of speculative traders; Hansen and Heckman (1996, p.
101) indicate a “considerable interest in Heterogeneous Agent Models in the real
business cycle literature research”; and Brock and Hommes (1997, 1998) the-
oretically prove that it may be individually ‘rational’ for agents not to follow
rational expectations and to behave, instead, according to simple predictors. Evans
and Honkapohja (2001) explain that agents lack the required sophistication to
rationally form expectations; Mankiw et al. (2004) draw attention to statistically
significant disagreement in survey data on inflation expectations even among pro-
fessional economists; Branch (2004) summarizes studies documenting “failure of the
rational expectations hypothesis to account for survey data on inflationary expecta-
tions”; and Vissing-Jorgensen (2004) conducts an analysis of qualitative telephone
survey data on US stock markets from 1998 to 2002, in which the author con-
cludes that there is significant disagreement among the investors regarding expected
profits. As an important experimental contribution to the hypothesis of hetero-
geneity of market participants, Hommes (2011) provides ‘evidence from the lab’
of the presence of heterogeneous expectations in an experimental financial mar-
ket.

The primary objective of this paper is thus to extend the original Brock andHommes
(1998)model with features of PT and, at the same time, keep the intrinsicmechanics of
the model intact in order to preserve its simple, stylized nature. The original Brock and
Hommes (1998) Adaptive Belief System (ABS) is a financial market application of the
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evolutionary selection systemproposed byBrock andHommes (1997), inwhich agents
switch among different forecasting strategies according to past relative profitability
of these strategies. The ABS is a discounted value asset pricing model extended to
heterogeneous beliefs, in which the agents have the possibility to invest in either a risk-
free or a risky asset. Our analysis consists of usingMonte Carlo methods to investigate
the behavior and statistical properties of the extended versions of the model and assess
the economic relevance of results.

Oneof themost important stimuli to induce the development ofAgent-basedModels
(ABMs) in economics was certainly an erosion of trust in the EfficientMarket Hypoth-
esis (EMH)—the EMH asserts, in Eugene Fama’s words, that “…security prices at
any time ‘fully reflect’ all available information…” (Fama 1970, p. 383)—and in the
Rational Expectations Theory in the late 1970s and early 1980s. This was largely
due to increased focus on the study of several stylized empirical facts—according to
Cont (2001, p. 224), “The seemingly random variations of asset prices do share some
quite non-trivial statistical properties. Such properties, common across a wide range
of instruments, markets and time periods are called stylized empirical facts”. Themost
essential difference between natural sciences and economics is arguably the fact that
decisions of economic agents are determined by their expectations of the future and
contingent on them; hence, the study of how these beliefs are formed plays a vital part
of any economic theory.

Several scholars have published papers which confront the EMH with empirical
datamainly from the perspective of non-normal returns,1 systematic deviations of asset
prices from their fundamental value, and excessive stock price volatility; it has proved
impossible to attribute these phenomena to the EMH or to explain them within the
rational expectations framework. Offering an insightful survey on the volatility issue at
that time,West (1988) summarizes and interprets the literature related to this field. The
author finds that neither rational bubbles nor any standard models for expected returns
adequately explain stock price volatility and emphasizes the necessity to introduce
alternative models to offer a better explanation of the apparent contradiction between
the EMH, the Rational Expectations Theory, and empirical findings.

This paper is structured as follows: immediately after the present Introduction,
Sect. 2 summarizes the main features of Prospect Theory and Sect. 3 describes the
mathematical structure and underlying mechanics of the original Brock and Hommes
(1998) model; Sect. 4 develops the behavioral extension based on Prospect Theory,
while Sect. 5 describes the numerical simulations using Monte Carlo methods; Sect. 6
highlights the main results of the simulations and Sect. 7 concludes the paper.

2 Prospect Theory

Proposed in the seminal paper of Kahneman and Tversky (1979), PT is a critique
of then-mainstream expected utility theory. Using convincing evidence obtained from

1 According toEhrentreich (2007, p. 56), at the timewhen the foundations of theEMHwere laid, logarithmic
asset returns were assumed to be distributed normally and the prices therefore followed the log-normal
distribution.
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questionnaires, the authors illustrate several issues with the concept of expected utility
and its applicability to real-life human decision-making. The most critical objection
is the incapacity of the expected utility theory to explain certain ‘irrational’2 choices
made by people. As a result, Kahneman and Tversky (1979)—and later Tversky and
Kahneman (1992)—propose a brand new descriptive3 theory which takes all such
‘irrational’ choices into account and explains them rigorously, using the so-called
weighting and value functions. Three major features of PT are the following:

1. Existence of a reference point PT suggests that people make decisions in relation
to gains and losses with respect to a certain reference point, rather than in terms
of final wealth.

2. Differences in treatment of gains and losses While most people are risk-seeking
towards losses, the same people are risk-averse towards gains. Moreover, most are
generally loss-averse which explains why the value function is steeper for losses
than for gains.

3. Distorted understanding of probabilityAccording to PT, the average person under-
estimates large probabilities and overestimates small probabilities. Given the
proposed specification and shape of the weighting function, weighting is not linear
in probability.

2.1 Value and weighting functions

According to PT, any selection process consists of two parts, editing and evaluation.
In the former, an individual conducts a preliminary analysis of the available prospects
in order to facilitate the selection, and in the latter, the individual evaluates the edited
prospects, assigns a value to each of them, andmakes the final decision. The reader can
find details about the editing phase in Kahneman and Tversky (1979, pp. 274–275);
we present here the most essential properties of the evaluation phase.

The overall value V of an edited prospect is formulated in terms of the weighting
function π and the value function v. π expresses probabilities of the prospect’s respec-
tive outcomes, while v assigns a specific value to each of these outcomes. Denoting
by (x, p; y, q) a prospect which pays x , y, or 0 with probability p, q, and 1− p − q,
respectively, the basic equation which assigns value to a regular prospect4 is given as
follows:

V (x, p; y, q) = π (p) · v (x) + π (q) · v (y) , (1)

where it is assumed that v (0) = 0, π (0) = 0, and π (1) = 1. It is important to
note that the weighting function is not a probability measure and typical properties of
probability need not be valid for it, and that the value function is defined with respect
to a reference point, which is usually given as x = 0—that is, the point at which a

2 The ‘irrationality’ is meant within the expected utility theory.
3 PT is descriptive in the sense that it tries to capture the real-world decision-making whereas the expected
utility theory is de facto normative—it models how people are supposed to decide.
4 Regular prospect is a prospect such that either p + q < 1, x � 0 � y, or x � 0 � y. Evaluation of
prospects which are not regular follows a different rule—details are provided in Kahneman and Tversky
(1979, p. 276).
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Fig. 1 Estimates of the value
function v (x) using results of
Harrison and Rutström (2009) in
dotted gray, Tversky and
Kahneman (1992) in solid black,
and Tu (2005) in dashed gray

gain changes to a loss and vice versa. In our extension of the model, we do not directly
consider the effect of the weighting function and, hence, do not describe its properties
in detail here.

The value function v satisfies the following properties: it is increasing ∀x , i.e.,
v′ (x) > 0 always holds, convex below the reference point, i.e., v′′ (x) > 0 for x < 0,
and concave above it, i.e., v′′ (x) < 0 for x > 0. Additionally, it is usually thought to
be steeper for losses than for gains. A number of scholars have estimated the shape of
the value function, most often using a piecewise power function proposed by Tversky
and Kahneman (1992). This function is of the following form:

v (x) =
{
xα, x � 0;
−λ · (−x)β, x < 0; (2)

where the parameters α and β determine the curvature of the function for gains and
losses, respectively, relative to the reference point of x = 0, and λ is a parameter that
measures the degree of loss aversion.

Estimating Eq. 2, Tversky and Kahneman (1992) report α̂ = 0.88, β̂ = 0.88, and
λ̂ = 2.25, Harrison and Rutström (2009) α̂ = 0.71, β̂ = 0.72, and λ̂ = 1.38, and,
e.g., Tu (2005) α̂ = 0.68, β̂ = 0.74, and λ̂ = 3.2. All these versions are plotted in
Fig. 1.

2.2 Relevance for financial markets

Since the time of the formulation of PT, several studies have confirmed its relevance
for financial markets. One of the most cited applications of PT is an aid in explanation
of the so-called disposition effect. The term was first coined by Shefrin and Statman
(1985) and refers to a tendency to “…sell winners too early and ride losers too long”
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(Shefrin and Statman 1985, p. 778), which essentially means that traders tend to hold
value-losing assets too long and not hold value-gaining assets long enough. Using
the PT value function, the authors explain the disposition effect for an investor who
owns a losing stock as a gamble between selling the stock now and thereby realizing a
loss, or holding the stock for an additional period given, say, a 50–50 chance between
loosing further value or breaking even. As the investor finds himself in the ‘negative
domain’ with respect to the reference point given here as the break-even point (that is,
x � 0), the choice between the two options is associated with the convex part of the
value function. This implies that the investor selects the second option and thus ‘rides
the loser too long’.

Li and Yang (2013) also attempt to explain the disposition effect using findings of
PT. The authors build a general equilibrium model and, besides the disposition effect,
also focus on trading volume and asset prices. The results suggest that loss aversion
implied by PT tends to predict a reversed disposition effect and price reversal for stocks
with non-skewed dividends. Yao and Li (2013), on the other hand, investigate trading
patterns in the market with Prospect-Theoretical investors, who base their choices on
the value and weighting functions and related features of PT. The authors find that
the three main features of PT can be regarded as behavioral causes for the negative-
feedback trading. The authors subsequently construct a market with traders with PT
preferences on the one hand, and traders who maximize the Constant Relative Risk
Aversion (CRRA) utility function on the other hand, and discover that the individual
PT preferences might cause contrarian noise trading.

Some other research efforts related to the study of PT traits in financial markets are
made by Grüne and Semmler (2008) who try to attribute some of the most frequently
observed asset price characteristics—yet not explained by ‘standard’ preferences—
to the loss aversion feature of traders. Giorgi and Legg (2012) use the weighting
function and show that dynamic models of portfolio choice might be consistently and
meaningfully extended by probability weighting. Zhang and Semmler (2009) further
investigate properties of the model proposed by Barberis et al. (2001) using time
series data; they conclude that models with PT features are able to better explain some
financial ‘puzzles’, such as the equity premium puzzle.5 Finally, for instance, Giorgi
et al. (2010) explore aspects of Cumulative Prospect Theory—a modification of the
original PT developed by Tversky and Kahneman (1992)—and find that financial
markets’ equilibria need not exist under the assumptions of PT.

3 Heterogeneous Agent Modeling framework

Our modeling framework follows the Brock and Hommes (1998) Heterogeneous
Agent Model (HAM) approach, slightly reformulated in Hommes (2006). We con-
sider a risk-free asset that pays a fixed rate of return r and is perfectly elastically
supplied and a risky asset that pays an uncertain dividend. Denoting by pt and yt

5 The equity premium puzzle is a phenomenon that the average return on equity is far greater than return
on a risk-free asset. Such a characteristic has been observed in many markets. The term was first coined by
Mehra and Prescott (1985).

123



Prospect Theory in the Heterogeneous Agent Model

the ex-dividend price of the risky asset and its random dividend process, respectively,
and zt the amount of the risky asset an agent purchases at time t , each agent’s wealth
dynamics takes the following form:

Wt+1 = R · Wt + zt · (pt+1 + yt+1 − R · pt ) , (3)

where R is the gross risk-free return rate equal to 1 + r . There are H forecasting
strategies or, equivalently, H distinct classes of agents. Let Eh,t and Vh,t , respectively,
denote the belief of an agent who uses forecasting strategy h about conditional mean
and conditional variance of wealth, 1 � h � H . It is assumed that all agents maximize
the same Constant Absolute Risk Aversion (CARA) utility function of wealth in the
form F (W ) = − exp (−a · W ), where a is a risk aversion parameter. Given themean–
variance maximization, the optimal demand z∗h,t for the risky asset of agents of type
h then solves the following maximization problem:

max
zh,t

{
Eh,t (Wt+1) − a

2
· Vh,t (Wt+1)

}
. (4)

The demand z∗h,t is then

z∗h,t = Eh,t (pt+1 + yt+1 − R · pt )
a · Vh,t (pt+1 + yt+1 − R · pt ) , (5)

which, assuming that Vh,t ≡ σ 2 ∀h, t , simplifies to

z∗h,t = Eh,t (pt+1 + yt+1 − R · pt )
a · σ 2 . (6)

Denoting by zs the supply of outside risky shares per trader and nh,t the proportion
of agents using forecasting strategy h, the demand–supply equilibrium is

H∑
h=1

nh,t · Eh,t (pt+1 + yt+1 − R · pt )
a · σ 2 = zs, (7)

where, again, H is the total number of forecasting strategies. In the case of zero supply
of outside shares, i.e., zs = 0, Eq. 7 becomes

R · pt =
H∑

h=1

nh,t · Eh,t (pt+1 + yt+1). (8)

Now, if all traders were identical and their expectations homogeneous, we would
obtain a simplified version of Eq. 8 called the arbitrage market equilibrium of the form

R · pt = Eh,t (pt+1 + yt+1) . (9)
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Equation 9 asserts that the price of the risky asset in this period is equal to the expected
sum of next period’s price and dividend, discounted by the gross risk-free interest rate.
In this case of homogeneous expectations, provided that the transversality condition

lim
t→∞

Et (pt+k)

(1 + r)k
= 0 (10)

holds,6 the fundamental price of the risky asset is given as

p∗
t =

∞∑
k=1

Et (yt+k)

(1 + r)k
. (11)

The price p∗
t is the equilibrium price of the risky asset in a perfectly efficient market

with fully rational traders and, as can be seen directly from Eq. 11, it depends on
the expectation of the stochastic dividend process yt , Et (yt ). Assuming the dividend
process yt is independent, identically distributed with mean ȳ, the fundamental price
p∗
t becomes constant ∀t and is given by

p∗ =
∞∑
k=1

ȳ

(1 + r)k
= ȳ

r
. (12)

The deviation from the fundamental price is defined as follows:

xt = pt − p∗
t . (13)

There are two additional assumptions made by Brock and Hommes (1998):

1. Expectations about future dividends yt+1 are the same for all agents, regardless
of the specific forecasting strategy they use, and are equal to the true conditional
expectation. In other words, Eh,t (yt+1) = Et (yt+1) ∀h, t .

2. Agents believe that the stock price might deviate from the fundamental price p∗
t by

a certain function fh , which depends on previous deviations from the fundamental
price xt−1, . . . , xt−K . This assumption can be stated as

Eh,t
(
pt+1

) = Et
(
p∗
t+1

) + fh
(
xt−1, . . . , xt−K

) ∀h, t. (14)

It is now important to note two crucial facts: first, Assumption 1 above implies that
all agents have homogeneous expectations about future dividends, that is, the hetero-
geneity of the model lies in Assumption 2. Secondly, the asset price in period t + 1,
pt+1, is predicted using the price realized in period t − 1—not in period t—as the
agents are yet unaware of the price pt when they make their predictions. This fact
directly follows from Eq. 7.

6 Hommes (2013, p. 162) remarks that Eq. 9 is also satisfied by the so-called rational bubble solution of
the form pt = p∗

t + (
1 + r

)t · (
p0 − p∗

0
)
. However, this solution does not satisfy the transversality (or

‘no-bubbles’) condition.
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Next, Brock and Hommes (1998) define realized excess return as Rt+1 = pt+1 +
yt+1 − R · pt . The realized excess return over period t to period t +1 can be expressed
in deviations from the fundamental value as follows:

Rt+1 = pt+1 + yt+1 − R · pt = xt+1 + p∗
t+1 + yt+1 − R · xt − R · p∗

t

= xt+1 − R · xt + p∗
t+1 + yt+1 − Et

(
p∗
t+1 + yt+1

)
︸ ︷︷ ︸

δt+1

+ Et
(
p∗
t+1 + yt+1

) − R · p∗
t︸ ︷︷ ︸

=0

= xt+1 − R · xt + δt+1, (15)

where the latter underbrace holds because Eq. 12 is satisfied. The term δt+1 is a
Martingale Difference Sequence with respect to an information set Ft , that is, we
have E

(
δt+1|Ft

) = 0 ∀t.

3.1 Fitness measure

The fitness measure of strategy h,Uh,t , depends on the stochastic dividend process of
the risky asset and is defined as

Uh,t = Rt+1 · z∗h,t = (xt+1 − R · xt + δt+1) · z∗h,t . (16)

Two cases will now be distinguished:

1. The case of δt+1 = 0 corresponds to deterministic nonlinear pricing dynamicswith
constant dividend ȳ. According to Hommes (2006, p. 1168) who uses a slightly
modified understanding of the time notation,7 Eq. 16,written in deviations, reduces
to

Uh,t = (xt − R · xt−1) · fh,t−1 − R · xt−1

a · σ 2 , (17)

where fh,t−1 is the forecasting function of type h.
2. The case in which the dividend is given by a stochastic process yt = ȳ + εt ,

where εt is an independent, identically distributed random variable with uniform
distribution. Under these circumstances, δt+1 = εt+1.

7 The notation difference consists of ‘shifting’ time subscripts of realized excess return by one period—for
this reason, Eq. 16 is reduced to Eq. 17 only after this shift.
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3.2 Market proportions

Equation 8 can be reformulated in terms of deviations from the fundamental price by
a substitution using Eq. 14 as

R · xt =
H∑

h=1

nh,t · Eh,t (xt+1) ≡
H∑

h=1

nh,t · fh (xt−1, . . . , xt−K ), (18)

where nh,t denotes the proportion of agents using the forecasting function h for their
predictions. These proportions are modeled using the multinomial logit model as

nh,t = exp
(
β ·Uh,t−1

)
Zt−1

, (19)

where Zt−1 ≡ ∑H
h=1 exp

(
β ·Uh,t−1

)
is a normalization factor such that the propor-

tions nh,t add up to 1, and β, β � 0, is a parameter called the intensity of choice,
which measures the agents’ sensitivity to selection of the best-performing forecasting
strategy. Two extreme cases will be distinguished—if β = ∞, all agents unerringly
choose the best strategy, while if β = 0, the proportions nh,t remain constant in time
and fixed to 1/H . The former case corresponds to the situation in which there is no
noise and thus all agents select the optimal strategy, while the latter implies the exis-
tence of noise with infinite variance and thus the inability of agents to switch between
strategies at all.

The functions fh,t are crucial for the formation of agents’ expectations. Brock and
Hommes (1998) propose simple forecasting rules of the form

fh,t = gh · xt−1 + bh . (20)

The term gh is a trend parameter which determines the trend following (or possibly
reverting) strength of a particular strategy, and the term bh is a bias parameter. For
gh = bh = 0, the function fh,t is reduced to fh,t ≡ 0 and corresponds to the
fundamentalist belief of no price deviations from the fundamental value. Additionally,
if gh �= 0, then such a trader type is called a chartist. This class of traders can be further
divided into four categories: a chartist is called a pure trend chaser if 0 < gh � R, a
strong trend chaser if gh > R, a contrarian if −R � gh < 0, and a strong contrarian
if gh < −R. Finally, the term bh determines the nature (if any) of each agent class’
bias—if bh < 0 the bias is downward, while if bh > 0 the bias is upward.

4 Prospect Theory extension

Despite the indisputable relevance of findings by PT for the study of human decision-
making, no PT extensions of the Brock and Hommes (1998) HAM framework
apparently exist. The possible reason for the absence of such ABM designs is rel-
atively self-evident: the HAM developed by Brock and Hommes (1998) is populated
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with agents with CARA utility function and demand for the risky asset is derived by
maximization of expected utility.

As the origins of PT are based on the critique of the expected utility theory, and
subsequent development of a diametrically different approach to decisions under risk,
the very basic component of the ABS—the CARA utility function—seems to be
incompatible with PT. Yet, although the authors do not use the original Brock and
Hommes (1998) model, Shimokawa et al. (2007) propose a relatively straightforward
method to implement a number of PT features into ABMs in which the agents have
CARA preferences.

There is literature that deals with the notion of PT within the field of ABMs,
allowing the agents’ strategies to determine the parameters of their utility functions.
Cao et al. (2010) develop a framework that combines heterogeneous expectations and
attitudes toward risk to test the impact of endogenous changes of agents’ behavior
preferences on market efficiency. They find that markets that show risk preference are
more volatile, exhibit stronger volatility clustering, and are distant from efficiency.
Chiarella et al. (2009) construct a model in which agents use a combination of the
fundamental value of the asset and a set of chartist rules to form expectations about
stock returns. The agents in this model differ in the degree of risk aversion. Tedeschi
et al. (2012) introduce an order-driven market model based on the model developed
by Chiarella et al. (2009). The agents in this extended model imitate each other and
the authors study how a ‘guru’ can rise, influence the market, and subsequently fall.
Castro and Parsons (2014) create an agent model based on an extension of PT called
the Smooth Prospect Theory, which deals with several possible outcomes per prospect
and allows for continuous probability distributions. The authors compare the price
defined by a set of heterogeneous trading agents to a price obtained from a real stock
exchange.

4.1 Loss aversion inclusion

The core of the model remains identical; however, extending the original Brock and
Hommes (1998) model, we introduce the features of PT into the model as follows: PT
traders maximize utility function of the form

Fl (W ) = − exp
(−a · Bh,t · W )

, (21)

where we denote the loss aversion parameter by Bh,t . Generally, this loss aversion
parameter may differ for each agent’s class and time period, hence the two subscripts.
Furthermore, the subscript l distinguishes the utility functions of these PT traders
from those of ‘standard’ traders specified in the original model; we refer to the PT
traders as loss-averse traders since this trait is the main feature of PT that is possible to
incorporate into the model using the utility function defined in Eq. 21. Other symbols
in Eq. 21 have their usual meanings as given in Sect. 3. We assume that agents’ wealth
follows the form given in Eq. 3.

The crucial aspect of the utility function given in Eq. 21 is the loss aversion param-
eter Bh,t and its specification. Partially following the proposition of Shimokawa et
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al. (2007, p. 211), we define the loss aversion parameter at time t and strategy h as
follows:

Bh,t =
{
cg, Uh,t > 0;
cl , Uh,t � 0; (22)

where cg and cl are gain and loss parameters, respectively, and 0 < cg < cl . That
is, the loss aversion parameter of strategy h is set to cg if the fitness measure of that
strategy is positive in the next period and to cl if it is negative or equal to zero. This
specification means that, if traders expect to incur a gain, they become loss-averse
and their loss aversion parameter is set to cg; while if they expect a loss, their loss
aversion parameter is set to cl . This allows us to mimic the value function component
of Eq. 1; in this model we do not focus on the weighting function component. Note
that the agents do not explicitly evaluate multiple prospects: they only set their risk
aversion parameter to either cg or cl if they expect a gain or loss, respectively. It is
important to emphasize that each agent maximizes either the original utility function
F (W ) = − exp (−a · W ) or the ‘augmented’ utility function Fl with the loss aversion
parameter given in Eq. 21. However, any agent’s forecast of the price of the risky asset
in the next period is governed by Eq. 14, whether the agent is loss-averse or not.

Optimal demand z∗l,t of the loss-averse traders for the risky asset then solves the
well-known maximization problem

max
zl,t

{
Eh,t (Wt+1) − a · Bh,t

2
· Vh,t (Wt+1)

}
, (23)

where Vh,t (Wt+1) is the (loss-averse) traders’ belief about next period conditional
variance of wealth, and is thus given by

z∗l,t = Eh,t (pt+1 + yt+1 − R · pt )
a · Bh,t · σ 2 . (24)

The fundamentals of the model remain the same: there are H distinct trading
strategies or classes of agents, and each agent class maximizes a CARA utility func-
tion. L classes of agents, 0 � L � H , are endowed with the above-specified PT
feature—optimal demand of agents of these L classes for the risky asset is given by
Eq. 24—while the agents of the H − L remaining classes are ‘standard’ in that they
do not exhibit the PT behavior. The general specification of the optimal demand for
the risky asset, z∗h,t , 1 � h � H , is thus the same and given by Eq. 6 where, if hth
class of agents has the PT feature (i.e., for h � L , 1 � h � H ), we use z∗l,t given by
Eq. 24 instead of z∗h,t .

The definition of the parameter Bh,t given in Eq. 22 enables us to mimic the first
two of the three major features of PT listed in the beginning of Sect. 2, that is, the loss
aversion and biased treatment of gains and losses, and the relationship of decisions
under risk to a reference point, by using an ‘imitation’ of the value function. In this
application, however, we omit the third major feature of PT, the probability weighting
and the weighting function, to keep themodel within the bounds of the stylized, simple
framework proposed by Brock and Hommes (1998). Furthermore, the curvature of the
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value function is neither studied within nor incorporated into the model as it is well
approximated by a linear function (see Fig. 1).

4.2 Reference point

The reference point is given by the value of the fitness measure in the next period.
The choice of specific numerical values for the gain and loss parameters cg and cl is
relatively free. The inequality 0 < cg < cl is the only condition that must always hold
in order to properly capture the loss aversion feature.

Note that Eq. 24 introduces a form of circularity into the framework: to be able to
calculate the value of z∗l,t , the optimal demand of the loss-averse agents for the risky
asset, the agents must know the value of the loss aversion parameter Bh,t . According to
Eq. 22, however, this parameter depends on the expected value of the fitness measure
in the next period, which in turn depends on the value of z∗l,t . To circumvent this issue,
agents with the PT feature using strategy h first compute the fitness measure Uh,t

according to Eq. 17 as if they did not have the PT feature, then, based on Eq. 22, they
set their loss aversion parameter to cg if they expect the fitness measure to be positive
or to cl if they expect it to be negative or equal to zero, and finally they calculate
the value of z∗l,t . This value then expresses the final fitness measure Ũh,t of the hth

strategy at time t . In other words, the calculation of the fitness measure Ũh,t values for
the strategies that have the PT feature is a two-step process, during which the agents
first assess the overall profitability of their strategy by computing the fitness measure
of the analogous strategy without the PT feature, and then they scale this value by the
Bh,t parameter’s value.

To summarize, the ABS extended with the PT loss aversion becomes

R · xt =
H∑

h=1

nh,t · fh,t + εt ,

nh,t = exp
(
β ·Uh,t−1

)
∑H

h=1 exp
(
β ·Uh,t−1

) ,

Uh,t−1 =
{

(xt−1 − R · xt−2) · fh,t−2−R·xt−2

a·σ 2 , h > L;
Ũh,t−1, h � L;

(25)

where the first L of the H agent classes are endowed with the PT feature. As explained
above, the term Ũh,t−1 is defined as

Ũh,t−1 = 1

Bh,t−1
(xt−1 − R · xt−2)

fh,t−2 − R · xt−2

a · σ 2 (26)

and represents the fitnessmeasure of the strategieswith the PT feature calculated in two
steps. fh,t is the forecasting function of strategy h at time t and εt is a noise termwhich
represents natural uncertainty about the performance of economic fundamentals. It
replaces the term δt = εt defined in Sect. 3. The system of Eq. 25 is, in essence, a
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generalization of the original ABS: for L = 0, one obtains the ‘benchmark’ case used
for the PT extension impact evaluation in Sect. 5.

5 Monte Carlo analysis

5.1 Model setup

The inevitable downside of the ABS is the leeway in choice of the parameters of the
model, especially of β, the forecasting functions fh,t , and the distribution of the noise
term εt . We follow a number of previous studies, e.g., Barunik et al. (2009), Vacha
et al. (2012), Kukacka and Barunik (2013, 2017), and adopt the following settings:

1. We use two different sets of forecasting functions fh,t :
(a) First, we follow the approach suggested by Brock and Hommes (1998) and

apply the simple forecasting functions of the form fh,t = gh · xt−1 + bh . In
this case, the random trend and bias parameters gh and bh are drawn from
the normal distributions with means of zero and variances of 0.16 and 0.09,
respectively, unless we state otherwise. If we ex ante indicate presence of
fundamentalists in the model, the fundamentalist strategy is the first of the H
strategies; the algorithm sets both of the parameters g1 and b1 to 0, and the
term n1,t corresponds to the proportion of fundamentalists in the market.

(b) Second, we use a set of fixed forecasting rules inspired by the strategies pro-
posed by Anufriev and Hommes (2012). Using the fixed forecasting rules
eliminates a source of noise in the model caused by the random trend and bias
parameters gh and bh when the rules are not fixed.

2. The noise terms for each time period, εt , are drawn from the uniform distribu-
tion U (− 0.05, 0.05). Kukacka and Barunik (2013) investigate behavior of the
model with the noise term drawn from several different uniform distributions and
conclude that such behavior is largely similar for all of them.

3. Other parameters are set as follows: the gross risk-free rate of return R, R = 1+r ,
to 1.0001 and the term 1

a·σ 2 to 1. Note that a and σ 2 are mere scaling factors of
the fitness measure U that do not influence the dynamics of the model.

Each simulation consists of 11 runs, each of which is characterized by a different
intensity of choice parameter β that takes on values from 5 to 505 in increments of 50.
There are 1000 repeat cycles in each run. If we use the simple, non-fixed forecasting
rules, then the parameters gh and bh are randomly drawn from the aforementioned
distributions in each cycle to guarantee robust simulation results. Finally, there are
500 ticks in each cycle representing trading days.

5.2 Criteria for evaluation

Cont (2001) lists the following phenomena as the most frequent financial time series
stylized facts: absence of autocorrelations, heavy or fat tails, volatility clustering,
intermittency, gain–loss asymmetry, and several others. We focus on the first three
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stylized facts as the original Brock and Hommes (1998) model has been found capable
of explaining them soundly (Chen et al. 2012).

1. Absence of autocorrelations. Autocorrelations of asset returns are insignificant at
most times and for most time scales, except for very small time scales of approxi-
mately 20min, inwhichmicro structuresmay have an effect on the autocorrelations
(Cont 2001).

2. Fat tails Probability distributions of many asset returns have large skewness or
kurtosis values relative to the normal distribution. Additionally, the distributions
exhibit power law or Pareto-like tails, with a tail index of 2 � α � 5 (Cont 2001),
i.e., the (upper) tail P (X > x) = F̄ (x) = x−α · G (x), where G (x) is a slowly
varying function (Haas and Pigorsch 2009).

3. Volatility clustering.Absolute or squared returns of an asset are characterized by a
significant, slowly decaying autocorrelation function, that is, corr (|rt | , |rt+τ |) > 0
or corr

(
r2t , r2t+τ

)
> 0, where the time span τ ranges from minutes to weeks or

months (Cont 2007).

5.3 Simple forecasting rules with random trend and bias

In this subsectionwe summarize the results of the analysis when the simple forecasting
functions of the form fh,t = gh · xt−1 + bh are used.

5.3.1 Benchmark simulation

We run a benchmark simulation of the original model specified by the system of Eq. 25
without the PT feature, that is, we set L = 0. Number of total strategies in the model
is four (H = 4) and fundamentalists are present in the model as the first strategy. In
each repeat cycle, the first 5% of realizations of xt are discarded to allow the model
to stabilize.

Table 1 shows selected descriptive statistics of the xt time series obtained from
the benchmark simulation. Clearly, the distributions of the deviations from the fun-
damental price are statistically different from the normal distribution, as indicated by
small p values of the Jarque–Berra (J–B) test for all values of β. As β increases, the
distributions exhibit decreasing kurtosis; for β = 255, the kurtosis is closest to that of
the normal distribution. With the exception of β = 5, the sample variance of xt tends
to decrease as β increases. This is also true for maxima and minima, in absolute value.

Figure 2 compares, on a log–log scale, the complementary Cumulative Distribution
Functions (CDFs) F̄|xt | (y), F̄|xt | (y) = P (|xt | > y) for the 150 largest absolute devi-
ations |xt | for one repeat cycle corresponding to four randomly selected illustrative
sample time series generated with different β values, along with the OLS fits, for the
benchmark case and the case with the PT feature employed (see Sect. 5.3.2). One
might notice the similarity of the tails for β = 5 and β = 505, as well as various
patterns of the tail departures for the two other values of β.

Although not rigorous, the slopes of the regression lines are, in absolute values,
estimates of the respective tail indices. For the benchmark case (black circles), these
are equal to 7.43 for β = 5 (R2 = 0.83), 8.3 for β = 105 (R2 = 0.94), 5.44 for
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Table 1 Benchmark simulation summary statistics and p values of J–B test for normality of distribution
of xt in 11 runs with different β values

β Mean Var. Skew. Kurt. Min Max Med. J–B

5 −0.001 0.021 − 0.714 10.241 −2.135 0.782 0.002 0.000

55 0.004 0.118 0.130 5.696 −1.732 1.984 0.000 0.000

105 0.002 0.116 0.011 4.153 −1.349 1.377 0.002 0.000

155 0.002 0.104 0.004 3.458 −1.169 1.136 0.002 0.000

205 0.001 0.096 0.008 3.158 −1.014 1.050 0.000 0.000

255 − 0.002 0.086 0.017 3.042 −0.918 0.920 − 0.002 0.000

305 0.003 0.079 0.079 2.952 −0.837 0.879 − 0.001 0.000

355 − 0.001 0.069 0.055 2.831 −0.817 0.856 − 0.002 0.000

405 − 0.003 0.065 0.023 2.807 −0.817 0.760 − 0.003 0.000

455 − 0.002 0.060 0.031 2.780 −0.794 0.775 − 0.002 0.000

505 − 0.007 0.057 − 0.002 2.757 −0.793 0.775 − 0.004 0.000

Simple random forecasting rules are used. There are fundamentalist and three other strategies present in
the model

(d)

(a) (b)

(c)

Fig. 2 Plots of the tails of sample xt time series’ empirical distributions and OLS fits. Black circles depict
the benchmark case without the PT feature, gray squares depict the case with the PT feature employed. a
β = 5. b β = 105. c β = 305. d β = 505

β = 305 (R2 = 0.96), and 10.26 for β = 505 (R2 = 0.97). Having only an informa-
tive character, the plots in Fig. 2 nonetheless show possible existence of a power law
in tails of the sample distribution of |xt |. It is important to emphasize, however, that
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the power law apparently does not hold universally for the whole tail. Most extreme
observations—for which the imaginary curvature is relatively significant and the real-
izations clearly do not follow the linear pattern estimated for the complete collection
of the 150 observations—might exhibit a tail index different from the remaining obser-
vations; the ‘break point’ seems to lie in the interval F̄|xt | (y) ∈ [

0.1, 0.05
]
.

5.3.2 Employment of Prospect Theory

The simulation with the PT traders is run with the same random seed as the benchmark
simulation in Sect. 5.3.1, meaning that, for each repeat cycle, the same randomly
generated parameters are used. Any differences between the benchmark and the PT
simulations can therefore be solely attributed to the PT feature.

The gain and loss parameters cg and cl are set to 4/7 and 10/7, respectively, to
properly account for the gain–loss asymmetry. The setting of cg and cl is crucial
because the parameter a (see Eq. 26) determines both the slope of the utility function
as well as the degree of risk aversion. Thus, PT traders might also potentially differ in
their risk aversion, which might be on average cg+cl

2 times higher than those of non-PT
traders for an arbitrary choice of cg and cl . The particular numerical values for cg and
cl are therefore chosen to primarily satisfy the three following principles. First, the
findings that “…losses hurt more than equal gains please; typically two to two-and-
a-half times more” (van Kersbergen and Vis 2014, p. 163) or that “…the disutility
of giving something up is twice as great as the utility of acquiring it,” (Benartzi and
Thaler 1993). Second, this setting is well justified by Fig. 1, which shows estimates
of the PT value function. Finally, the fact that the risk aversion of the PT traders under
cg = 4/7 and cl = 10/7 is on average the same as that of the non-PT traders—equal
to 1. This allows us to compare these results to those produced by the original model
in the benchmark simulations and to interpret the observed effects as arising purely
from the differential treatment of gains and losses. Initially, all strategies exhibit the
PT feature, i.e., L = 4, and we compare these results to the benchmark simulation
with only non-PT traders.

Table 2 summarizes descriptive statistics along with p values of the J–B and
Kruskal–Wallis (K–W) tests of the xt time series. Using the K–W method, we test
whether the xt time series obtained from the PT simulation and those from the bench-
mark simulation originate from the same distribution (see Table 1). Addition of the
PT feature clearly causes—potentially except for the cases of β = 5 and β = 355—
significant differences of these distributions with respect to those of the benchmark
simulation. Also notice the smaller variance of the time series with respect to the
benchmark case, as well as smaller extreme values for most values of β. The sample
means and variance are statistically different from those obtained from the benchmark
run for all values of β.

For the PT case, Fig. 2 shows (gray squares), on a log–log scale, the complemen-
tary Cumulative Distribution Functions (CDFs) F̄|xt | (y) for the 150 largest absolute
deviations |xt | corresponding to four randomly selected illustrative sample time series
generated with different β values, along with the OLS fits. Estimates of the respective
tail indices (i.e., the opposites of the estimated slope coefficients) are equal to 7.76 for
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Table 2 PT simulation summary statistics of xt and p values of J–B andK–W tests in 11 runs with different
β values

β Mean Var. Skew. Kurt. Min Max J–B K–W

5 − 0.002 0.029 − 0.371 10.046 −1.633 1.544 0.000 0.156

55 0.002 0.109 − 0.120 4.276 −1.724 1.455 0.000 0.000

105 − 0.001 0.104 − 0.004 3.492 −1.272 1.367 0.000 0.001

155 − 0.002 0.091 0.047 3.247 −1.123 1.133 0.000 0.000

205 0.005 0.084 0.008 3.154 −1.004 1.013 0.000 0.000

255 − 0.001 0.071 − 0.061 3.176 −0.961 0.927 0.000 0.000

305 − 0.009 0.065 − 0.073 3.036 −0.830 0.816 0.000 0.000

355 − 0.002 0.056 − 0.019 3.079 −0.775 0.902 0.000 0.065

405 − 0.001 0.055 − 0.016 2.962 −0.734 0.768 0.000 0.000

455 − 0.001 0.049 − 0.110 2.954 −0.682 0.684 0.000 0.000

505 − 0.006 0.046 − 0.014 2.996 −0.663 0.670 0.000 0.004

There are fundamentalist and three other strategies in the model, i.e., H = 4, and all strategies have the PT
feature

β = 5 (R2 = 0.79), 9.97 for β = 105 (R2 = 0.91), 6.7 for β = 305 (R2 = 0.85), and
10.13 for β = 505 (R2 = 0.96). The OLS fits provide roughly the same R2 compared
to the benchmark case, although the most extreme observations do, again, exhibit con-
siderable curvature and departure from any power law, mainly in the regions where
F̄|xt | (y) < 0.05.

5.3.2.1 PT vs. non-PT traders We will now relax the assumption that all trading
strategies are endowed with the PT feature and examine the behavior of the model
by running additional simulations in which some of the trading strategies exhibit loss
aversion and gain–loss asymmetry and some do not. Table 3 summarizes simulations
with L = 1, L = 2, L = 3. The fundamentalist strategy is present in the model as
the first one, i.e., L = 1 corresponds to a situation in the market in which there are
PT fundamentalists and three other random strategies. The K–W test compares, in
this case, the distributions obtained from the simulations based on the PT feature with
those obtained from a simulation without it.8 To maintain mutual comparability, the
same parameters gh , bh , and εt are used for each value of L �= 0 and for L = 0.

Figure 3 examines, for β = 255, the cases in which L = 1 and L = 4, i.e., the
situation in which only the fundamentalist strategy has the PT feature (L = 1) versus
the one in which all strategies have the PT feature (L = 4). These situations are
compared to the benchmark case of L = 0, where no strategies have that feature.
Estimated densities of the xt time series are plotted on the left-hand side of the figure
while the right-hand side of the figure shows estimated densities of the n1,t time series,
i.e., of the proportion of traders using the fundamentalist strategy. The densities of xt

8 We run another ‘benchmark’ simulation of the model without the proposed extensions, that is, for the
K–W test, we use a different benchmark than that examined in Sect. 5.3.1.
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Table 3 p values of the K–W
test for different L and β

β L = 1 L = 2 L = 3

5 0.952 0.000 0.000

55 0.950 0.000 0.012

105 0.762 0.230 0.174

155 0.367 0.000 0.000

205 0.391 0.000 0.000

255 0.232 0.000 0.000

305 0.673 0.000 0.000

355 0.579 0.000 0.000

405 0.433 0.802 0.000

455 0.584 0.000 0.000

505 0.983 0.000 0.000

(d)

(a) (b)

(c)
t

t

t t

t

t

t t

Fig. 3 Behavior of the model for different L (solid black line) versus the benchmark case of L = 0 (dashed
gray line); β = 255. a PDFs of xt , L ∈ {0, 1}. b PDFs of n1,t , L ∈ {0, 1}. c PDFs of xt , L ∈ {0, 4}. d
PDFs of n1,t , L ∈ {0, 4}

are to a large extent similar; however, the K–W test rejects the null hypothesis that
both the sample from the benchmark simulation and the one from the PT simulation
come from the same distribution for the case of L = 4 (p value < 0.000). We fail to
reject the null hypothesis for the case of L = 1, as per Table 3. Yet, PT fundamentalists
are driven out of the market less strongly for L = 1 than they are for L = 4. The
expected value of n1,t is equal to 0.23 for L = 1 and 0.14 for L = 4. This finding
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Fig. 4 Occurrence of loss-averse fundamentalists (solid black line) is less likely with increasing L . The
distributions are compared to those in the benchmark case (dashed gray line) where no strategies have the
PT feature (L = 0); β = 455. a PDFs of n1,t , L ∈ {0, 1}. b PDFs of n1,t , L ∈ {0, 2}. c PDFs of n1,t ,
L ∈ {0, 3}. d PDFs of n1,t , L ∈ {0, 4}

can be confirmed visually by comparing the peakedness of respective distributions
in Fig. 3 around the point 0. This is an interesting result—the PT feature seems to be
a heavier burden for fundamentalists if they have to face other loss-averse strategies
than if they have a single strategy that is loss-averse.

This result holds for all values of β and is most pronounced for L = H . However,
the pattern is clear for L < H , too: generally, the occurrence of loss-averse funda-
mentalists is less likely as L increases, as evident from Fig. 4. The expected value of
n1,t decreases but it is still greater than in the benchmark case even for L = 4. That is,
the PT feature makes the fundamentalists better off relative to the benchmark case in
a situation when other strategies do not have this feature—the expected value of n1,t
is equal to 0.13 in the benchmark case.

Generally, the distributions of xt tend to differ more as L increases—the PT feature
stabilizes the market and rules out the proportions of extreme price deviations which
are present in the benchmark case. Figure 5 shows estimated densities of n1,t and
n4,t for L = 3, i.e., proportions of PT fundamentalists and non-PT chartists in a
model in which one chartist trading strategy does not have the PT feature, for different
values of β. Notice that, for the smaller value β, the non-PT chartist strategy is more
popular—the expected value of n4,t is 0.18 for β = 55 and 0.13 for β = 455. Again,
fundamentalists are more likely to survive in the market than they are when they face
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Fig. 5 Estimated densities of n1,t (solid black line) and n4,t (dashed gray line) for L = 3. a β = 55. b
β = 455

only PT traders—for β = 455 this effect is revealed in the expected value of n1,t of
0.14 for L = 4 [solid black line in panel (d) of Fig. 4] and of 0.17 for L = 3 [solid
black line in panel (b) of Fig. 5]. The more frequent occurrence of fundamentalists
can thus be attributed to the presence of non-PT chartists.

5.4 Fixed forecasting rules

In this subsection we summarize the results of the analysis when the forecasting
functions fh,t are fixed. Specifically, we employ the following five strategies:

1. Fundamentalists (FND) ft,FND = 0,
2. Weak trend-following rule (WTR) ft,WT R = xt−1 + 0.4 · (xt−1 − xt−2),
3. Strong trend-following rule (STR) ft,ST R = xt−1 + 1.3 · (xt−1 − xt−2),
4. Adaptive heuristic (ADA) ft,ADA = 0.65 · xt−1 + 0.35 · ft−1,ADA, and
5. Anchoring and adjustment rule with learning factor (LAA) ft,L AA = 0.5 ·(∑t−1

i=1 xi
t−1 − xt−1

)
+ xt−1 − xt−2.

As before, we first run a benchmark simulation without the PT feature, that is, we
set L = 0. Then, for each value of β, we run five additional simulations where we
increment L by 1.

Table 4 shows the key descriptive statistics of the xt time series. Notice that the
values of the sample mean and sample variance, as well as the p values of the J–B test,
are the same across different values ofβ with the precision of three decimal places. The
elimination of the random bias parameter significantly stabilizes the behavior of the
model. With increasing values of β, sample skewness decreases while sample kurtosis
increases, as does the difference between the minimum and maximum values of xt .
The latter two results are in contrast with the findings from the benchmark simulation
with random strategies (see Table 1). There, the sample kurtosis and the difference
between the minimum and maximum values of the deviations decreases.

Table 5 shows, for L = 1, . . . , 5 and selected values of β, the summary statistics
of the xt time series and p values of the K–W test where the respective distributions
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Table 4 Benchmark simulation summary statistics and p values of the J–B test for normality of distribution
of xt in 11 runs with different β values when the five fixed forecasting rules are used

β Mean Var. Skew. Kurt. Min Max Med. JB

5 −0.001 0.002 0.008 2.545 −0.134 0.136 − 0.001 0.000

55 −0.001 0.002 0.006 2.531 −0.133 0.138 − 0.001 0.000

105 −0.001 0.002 0.004 2.539 −0.133 0.140 − 0.001 0.000

155 −0.001 0.002 0.002 2.561 −0.140 0.142 − 0.001 0.000

205 −0.001 0.002 0.001 2.592 −0.149 0.143 − 0.001 0.000

255 −0.001 0.002 − 0.003 2.631 −0.158 0.144 − 0.001 0.000

305 −0.001 0.002 − 0.006 2.673 −0.164 0.148 − 0.001 0.000

355 −0.001 0.002 − 0.008 2.716 −0.168 0.153 − 0.001 0.000

405 −0.001 0.002 − 0.011 2.761 −0.172 0.157 − 0.001 0.000

455 −0.001 0.002 − 0.012 2.805 −0.176 0.161 − 0.001 0.000

505 −0.001 0.002 − 0.014 2.845 −0.181 0.164 0.000 0.000

Table 5 PT simulation summary statistics of xt and p values of K–W tests for selected values of β and
L = 1, . . . , 5

β L Mean Var. Skew. Kurt. Min Max K–W

305 1 − 0.001 0.002 −0.015 2.723 −0.168 0.149 0.980

305 2 − 0.001 0.002 −0.010 2.737 −0.170 0.153 0.835

305 3 − 0.001 0.002 −0.013 2.979 −0.196 0.238 0.745

305 4 − 0.001 0.002 −0.014 2.975 −0.196 0.241 0.636

305 5 0.000 0.002 −0.019 2.808 −0.185 0.168 0.397

405 1 − 0.001 0.002 −0.023 2.840 −0.178 0.167 0.622

405 2 − 0.001 0.002 −0.016 2.836 −0.180 0.163 0.734

405 3 0.000 0.002 −0.010 3.158 −0.198 0.244 0.816

405 4 − 0.001 0.002 −0.015 3.135 −0.197 0.245 0.627

405 5 0.000 0.002 −0.023 2.930 −0.192 0.173 0.342

505 1 − 0.001 0.002 −0.029 2.957 −0.184 0.180 0.314

505 2 − 0.001 0.002 −0.019 2.922 −0.186 0.167 0.620

505 3 0.000 0.002 −0.005 3.296 −0.206 0.245 0.958

505 4 − 0.001 0.002 −0.013 3.253 −0.198 0.245 0.618

505 5 0.000 0.002 −0.024 3.029 −0.196 0.183 0.380

are compared to those in the benchmark simulation where L = 0. Notice that the
distributions are not statistically different, regardless of the value of L = 0. This
fact, too, is in contrast with the results of the simulations with random strategies. The
sample kurtosis tends to increase as β and L increase, although this relationship is not
monotonic. The differences between the maximum andminimum values are markedly
higher than in the benchmark case; note that this result is most pronounced for L = 3
and L = 4, that is, when the fundamentalists, weak trend followers, and strong trend

123



Prospect Theory in the Heterogeneous Agent Model

(d)
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(c)

Fig. 6 Occurrences of both types of trend followers increase when the PT feature is introduced for funda-
mentalists. L = 1 (solid black line) and L = 0 (dashed gray line). a PDFs of nWT R,t for β = 305. b PDFs
of nWT R,t for β = 505. c PDFs of nST R,t for β = 305. d PDFs of nST R,t for β = 505

followers all have the PT feature (L = 3) and when also the adaptive heuristic strategy
has that feature (L = 4). When all strategies have the feature (L = 5), this difference
is diminished. These findings also hold for the values of β that are not reported in
the Table. The sample means are statistically different from those obtained in the
benchmark run for all values of β; the same holds for the sample variances, except for
the case of β = 405, L = 5.

5.4.1 PT versus non-PT traders

In this subsection we present a comparison between the occurrence of strategies with
the PT feature and without it. Figure 6 shows the estimated densities of the nWT R,t

and nST R,t time series, i.e., the proportions of weak and strong trend-followers in the
market for different values of β. We compare the occurrence of these two types of
trend followers in the market where no strategy has the PT feature (the benchmark
case of L = 0) to their occurrence in the market where the fundamentalist strategy
has the feature (L = 1). Notice the fact that the introduction of the PT feature into the
fundamentalist strategy dramatically increases the trend followers’ chances of survival
in the market. The increase in the expected value of the distributions for β = 305 is
equal to 0.126 for the weak trend-followers and to 0.112 for the strong trend-followers;
for β = 505 these increments are, respectively, equal to 0.171 and 0.139.
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(d)

(a) (b)

(c)

Fig. 7 Occurrences of the ADA and LAA strategies increase when the PT feature is introduced for funda-
mentalists. L = 1 (solid black line) and L = 0 (dashed gray line). a PDFs of nADA,t for β = 305. b PDFs
of nADA,t for β = 505. c PDFs of nLAA,t for β = 305. d PDFs of nLAA,t for β = 505

Figure 7 shows the estimated densities of the nADA,t and nLAA,t time series for
different values of the parameter β. As before, we compare the presence of the two
strategies in the market where no strategy has the PT feature to that in the market
in which the fundamentalist strategy has the PT feature. The results are similar to
those for the trend-following strategies. The introduction of the PT feature for the
fundamentalist strategy increases the occurrence of the ADA and LAA strategies in
the market. However, this improvement is not as significant for the LAA strategy as it
is for the trend-following strategies or the ADA strategy. The increase in the expected
value of the distribution for β = 305 is equal to 0.104 for ADA but only to 0.054 for
LAA; for β = 505 these increments are, respectively, equal to 0.141 and 0.073. All
these results are statistically significant.

Figure 8 shows estimated densities of the fundamentalist proportions, nFND,T , for
varying L . The differences between the expected values of the densities with the PT
feature and without it are equal to 0.099 for L = 1, 0.082 for L = 3, 0.054 for L = 4,
and −0.008 for L = 5. Notice that, as L increases, the advantage of having the PT
feature is reduced, and it becomes a disadvantage for L = 5.

6 Results

Introduction of the PT feature into the model considerably changes its behavior.
Nonetheless, some of the key characteristics remain the same as the underlying math-
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(d)

(a) (b)

(c)

Fig. 8 PDFs of nFND,t for β = 455 and varying L . The benchmark case of L = 0 is depicted in dashed
gray line. a L = 1. b L = 3. c L = 4. d L = 5

ematical structure of model is intact—the generated time series of the deviations from
the fundamental price of the asset, xt , exhibit decreased variance as the intensity of
choice parameter β increases, extreme price deviations are less ‘extreme’ for larger β,
and the deviations are still far from being normally distributed. However, the differ-
ences are considerable and non-negligible as indicated by the very low p values of the
K–W tests. The main conclusions arising from the PT extension can be summarized
as follows:

1. Stability When random strategies are used, the model is more stable when the
strategies have the PT feature. Summarized in Table 2, the sample variance of the
xt time series is generally lower than in the benchmark case. Recall that the same
random seed is used for both versions of the model. The difference in stability can
therefore be attributed to the PT extension completely. When the fixed strategies
are used, the addition of the PT feature does not change the variance of the xt time
series. Yet, the differences between the maximum and minimum values of xt are
markedly higher with the PT feature.

2. Loss aversion matters The number of strategies endowed with the PT feature,
L , significantly affects the behavior of the model. Table 3 shows, for the case
of random strategies, that if only the fundamentalist strategy is loss-averse (i.e.,
L = 1), the empirical distributions of xt are statistically different at a reasonable
significance level from those obtained from the model with L = 0 only for higher
values of β. On the other hand, for L > 1 these distributions are statistically
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(and also usually visually) different from those of the benchmark, L = 0 case.
This finding does not hold for the case of fixed strategies, as seen in Table 5,
where the p values of the K–W test are high. However, the PT feature significantly
affects the probability of occurrence of the strategies. When we introduce it for the
fundamentalist strategy, the chances of the four remaining strategies to survive in
the market considerably increase. The LAA strategy (Anchoring and adjustment
rule with learning factor) seems to be the least sensitive in this respect.

3. Fundamentalists may survive more easily In the original model, fundamentalists
are, with increasing β, less likely to survive in the market than they are for lower
values of β. In the case of random strategies, we find that the PT feature increases
the chances of fundamentalists to survive in the market relative to the benchmark
case. This effect is, interestingly,most pronounced for L = 1, rather than for higher
values of L . The loss aversion feature increases the probabilities of occurrence of
the fundamentalist strategy and the strength of this effect increases as L decreases
(but remains greater than 0). This result partly holds when the strategies are fixed.
This result does not hold only for L = 5, in which case the fundamentalists are
worse-off.

7 Conclusions

Using a general idea proposed by Shimokawa et al. (2007), we extend the popular
Brock and Hommes (1998) agent-based asset pricing model and include the most
important features of the PT into the framework, namely the loss aversion with
reference point dependence and distorted treatment of gains and losses. The main
contribution of our work is the finding that the original model can be consistently
and meaningfully extended with the most relevant features of PT, while its intrinsic
‘stylized’ structure may remain intact. Using Monte Carlo simulations and random
strategies, we find that the distributions of the main variable are statistically differ-
ent from those obtained from the original version of the model and that the stability
of the model is increased as the proportion of extreme price deviations is ruled out.
Furthermore, the occurrence of fundamentalists is more extreme and the PT feature
increases the chances of fundamental traders to survive in the market compared to
the benchmark simulation. We also investigate the behavior of the model with fixed
strategies. In this case the distributions of the main variable are not statistically differ-
ent from those occurring in the benchmark case; however, the PT feature does affect
the likelihood of occurrence of the strategies.

As the Brock and Hommes (1998) model is inherently characterized by ‘many
degrees of freedom’ and the extensions bring even more options in this regard, future
research might focus on exploration of other possible combinations of the parameters.
Additionally, the extended model could be estimated using real-world empirical data
to reveal the natural values of some parameters, e.g., those expressing the degree of
loss aversion present in the markets. Another field that could be explored with respect
to the extended version of the model is a more thorough analysis of the volatility
structure of the xt time series.
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