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a b s t r a c t 

This paper introduces the family of C F -integrals, which are pre-aggregations functions that 

generalizes the Choquet integral considering a bivariate function F that is left 0-absorbent. 

We show that C F -integrals are � 1 -pre-aggregation functions, studying in which conditions 

they are idempotent and/or averaging functions. This characterization is an important issue 

of our approach, since we apply these functions in the Fuzzy Reasoning Method (FRM) of 

a fuzzy rule-based classification system and, in the literature, it is possible to observe that 

non-averaging aggregation functions usually provide better results. We carry out a study 

with several subfamilies of C F -integrals having averaging or non-averaging characteristics. 

As expected, the proposed non-averaging C F -integrals obtain more accurate results than 

the averaging ones, thus, offering new possibilities for aggregating accurately the informa- 

tion in the FRM. Furthermore, it allows us to enhance the results of classical FRMs like the 

winning rule and the additive combination. 

© 2018 Elsevier Inc. All rights reserved. 

 

 

 

 

 

1. Introduction 

An effective approach to handle classification problems [25] is through the application of the Fuzzy Rule-Based Classifica-

tion Systems (FRBCSs) [35] , since they provide the user with interpretable models by using linguist labels in their rules and,

moreover, achieving accurate results. FRBCSs have been applied in several problems, including real-time vehicle classification

[57] , health [52] or economy [49] , among many others. 

A key component in any FRBCS is the Fuzzy Reasoning Method (FRM) [14] , which determines how the information

learned in form of fuzzy rules will be used to classify new examples. A crucial point in any FRM is the way to obtain the
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information associated with each class of the problem. This is done by applying an aggregation [8,30,44] or, more recently,

a pre-aggregation [11,12,22,40,42] function over the local information given by each fired rule of the FRBCS. 

In the literature, it is possible to find classical FRMs that consider, as the aggregation operator, the maximum (Winning

Rule – WR) or the normalized sum (Additive Combination – AC). The first method takes into consideration only one rule (the

one having the maximum compatibility with the example to be classified) and, obviously, has an averaging and idempotent

behavior. On the other hand, the second method aggregates the information of all triggered rules and it has neither an

averaging nor an idempotent behavior. Usually, the FRM of AC provides better performance than that the FRM of the WR,

as it can be observed widely in the literature, since the most accurate FRBCSs currently (FURIA [33] , IVTURS [51] and FARC-

HD [2] ) make use of the AC. 

Recently, several works were proposed to apply aggregation and pre-aggregation functions (with averaging and idem-

potent characteristics) to aggregate the local information associated with each rule. The initial idea was proposed by Bar-

renechea et al. [4] , where the Choquet integral [13] was used to perform this aggregation in a way that also took into ac-

count the correlation between the rules. After that, this method was improved by Lucca et al. [40] , introducing the concept

of pre-aggregation function, which is a generalization of the Choquet integral where the product operator of this function

is replaced by a t-norm [36] . In [41] , the Choquet integral in its expanded form was generalized using copula functions [3] ,

instead of the product operator,obtaining aggregation functions called CC-integrals. 

In this paper, the product operator of the Choquet integral is replaced by a more general function F : [0, 1] 2 → [0, 1].

We study which are the minimal requirements that this function F must satisfy so that the obtained generalization of

the Choquet integral is a pre-aggregation function. Specifically, we have found that the key property to achieve this is the

presence of 0 as a left annihilator element, in which case the function F is called left 0-absorbent. 

The general aim is to apply such pre-aggregation functions in the FRM of a FRBCS, searching for more flexible ways of

aggregating information. In this manner, it is possible to make an in-depth analysis of the their performances according to

their averaging or non-averaging behavior. Observe that the non-averaging behavior is a novel approach, since we have not

considered it in our previous works. 

Then, the first objective of this paper is the definition of the concept of C F -integral, which is a generalization of the

Choquet integral based on a left 0-absorbent function F satisfying a minimal set of properties that guarantees that any C F -

integral is a pre-aggregation function. Secondly, we analyze under which conditions such C F -integrals are idempotent and/or

averaging pre-aggregation functions. In the sequence, we study subfamilies of C F -integrals, considering left 0-absorbent func-

tions F that are (I) t-norms [36] , (II) overlap functions [5,10,19,20,23,24] , (III) copulas [3] that are neither t-norms nor overlap

functions, (IV) other kinds of aggregation functions and (V) pre-aggregation functions. 

As done in [4,40,41] , we apply this generalization in the FRM of FRBCSs and we conduct an experimental study com-

posed of two steps. The first one is based on C F -integrals having averaging characteristics, where we compare them among

themselves in order to choose the representative for this family. After that, we compare this representative against the clas-

sical FRM of WR, the standard Choquet integral, the best pre-aggregation achieved in [40] and the best CC-integral obtained

in [41] . 

The second part of this analysis is concerned with C F -integrals having non-averaging characteristics. As done in the first

part of the experimental study, firstly we determine the best function of this family and compare it against the classical

non-averaging FRMs of AC and probabilistic sum. 

The experimental study was performed considering 33 datasets that are available in the KEEL database repository [1] . The

standard accuracy rate is used to measure the performance of the classifiers and the results are supported by appropriate

statistical tests [15,28,53] . 

The paper is organized in the following way. Section 2 is aimed at introducing the basic concepts that are necessary to

understand the paper. The concept of C F -integral is introduced in Section 3 , where we analyze several properties, such as

idempotency and averaging behaviors. The Section 4 presents the methodology to build a generalized FRM of FRBCSs using

different C F integrals, configurations of the classifier used in this paper and the experimental framework. In Section 5 we

show the experimental study, showing the results achieved in test considering this new approach, and the appropriate

analysis. The conclusions are drawn in Section 6 . 

2. Basic concepts 

This section presents the preliminary concepts that are used in the development of this work. In our approach, the basic

property that is considered for any bivariate function defined on [0, 1], is the following. 

Definition 1. A bivariate function F : [0, 1] 2 → [0, 1] with 0 as left annihilator element, that is, satisfying: 

( LAE ) ∀ y ∈ [0 , 1] : F (0 , y ) = 0 , 

is said to be left 0-absorbent. 

Moreover, the following two basic properties are also important: 

( RNE ) Right Neutral Element: ∀ x ∈ [0 , 1] : F (x, 1) = x ; 

( LC ) Left Conjunctive Property: ∀ x, y ∈ [0, 1]: F ( x, y ) ≤ x ; 
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Any bivariate function F : [0, 1] 2 → [0, 1] satisfying both (LAE) and (RNE) is called left 0-absorbent (RNE) -function. 

Now, we recall the concepts of aggregation and pre-aggregation functions, and specific types of aggregation functions,

such as t-norms, overlap and copulas. 

Definition 2 [8,30,44] . A function A : [0, 1] n → [0, 1] is an aggregation function if the following conditions hold: 

( A1 ) A is increasing 1 in each argument: for each i ∈ { 1 , . . . , n } , if x i ≤ y , then A (x 1 , . . . , x n ) ≤ A (x 1 , . . . , x i −1 , y, x i +1 , . . . , x n ) ;

( A2 ) A satisfies the boundary conditions: (i) A (0 , . . . , 0) = 0 and (ii) A (1 , . . . , 1) = 1 . 

Definition 3 [36] . An aggregation function T : [0, 1] 2 → [0, 1] is said to be a t-norm if, for all x, y, z ∈ [0, 1], the following

conditions hold: 

( T1 ) Commutativity: T (x, y ) = T (y, x ) ; 

( T2 ) Associativity: T (x, T (y, z)) = T (T (x, y ) , z) ; 

( T3 ) Boundary condition: T (1 , x ) = T (x, 1) = x . 

Definition 4 [10,19,21] . A function O : [0, 1] 2 → [0, 1] is an overlap function if, for all x, y, z ∈ [0, 1], the following conditions

hold: 

( O1 ) O is commutative; 

( O2 ) O (x, y ) = 0 if and only if x = 0 or y = 0 ; 

( O3 ) O (x, y ) = 1 if and only if x = y = 1 ; 

( O4 ) O is increasing; 

( O5 ) O is continuous. 

Definition 5 [3] . A bivariate function C : [0, 1] 2 → [0, 1] is said to be a copula if, for all x, x ′ , y, y ′ ∈ [0, 1] with x ≤ x ′ and

y ≤ y ′ , the following conditions hold: 

( C1 ) C(x, y ) + C(x ′ , y ′ ) ≥ C(x, y ′ ) + C(x ′ , y ) ; 
( C2 ) C(x, 0) = C(0 , x ) = 0 ; 

( C3 ) C(x, 1) = C(1 , x ) = x . 

Observe that overlap functions, t-norms and copulas can be extended to n-ary functions (see, e.g., [26,27,29,36] ). 

Definition 6 [9] . Let � r = (r 1 , . . . , r n ) be a real n -dimensional vector, � r 	 = 

�
 0 . A function F : [0, 1] n → [0, 1] is � r -increasing if, for

all vectors (x 1 , . . . , x n ) ∈ [0 , 1] n and for all c > 0 such that (x 1 + cr 1 , . . . , x n + cr n ) ∈ [0 , 1] n , it holds 

F (x 1 + cr 1 , . . . , x n + cr n ) ≥ F (x 1 , . . . , x n ) . (1)

Similarly, ones defines an 

�
 r -decreasing function. 

Definition 7 [22,40] . Let � r = (r 1 , . . . , r n ) be a real n -dimensional vector, � r 	 = 

�
 0 . A function PA : [0, 1] n → [0, 1] is said to be an

n-ary pre-aggregation function if it satisfies (A2) and it is � r -increasing. We say that PA is an 

�
 r -pre-aggregation function. 

Example 1. In this example, we analyze the basic properties (LAE), (RNE) and (LC) for some pre-aggregation functions. 

1. The function F NA : [0, 1] 2 → [0, 1], defined by: 

F NA (x, y ) = 

{
x if x ≤ y 
min { x 

2 
, y } otherwise 

is a left 0-absorbent pre-aggregation function. In fact, it is immediate that F NA satisfies (A2) . Moreover, consider x, y ∈ [0,

1] and c > 0 such that y + c ∈ [0 , 1] . To show that F NA is (0, 1)-increasing, consider the following cases: 

x ≤ y : In this case, it holds that x ≤ y + c. It follows that: 

F NA (x, y + c) = x = F NA (x, y ) . 

x > y : If x > y + c, then one has that: 

F NA (x, y + c) = min 

{ 

x 

2 

, y + c 

} 

≥ min 

{ 

x 

2 

, y 

} 

= F NA (x, y ) . 

Now suppose that x ≤ y + c. Then, it follows that: 

F NA (x, y + c) = x > min 

{ 

x 
, y 

} 

= F NA (x, y ) . 

2 

1 For an increasing (decreasing) function we do not mean a strictly increasing (decreasing) function. 
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Thus, F NA is a (0, 1)-pre-aggregation function. In fact, F NA is � r -increasing whenever the non-zero vector � r = (r 1 , r 2 ) satis-

fies r 2 ≥ r 1 ≥ 0. Hence, F NA is also (1, 1)-increasing. Finally, observe that F NA is left 0-absorbing (LAE) , since F NA (0 , y ) = 0 ,

for all y ∈ [0, 1]. Additionally, F NA satisfies (RNE) and (LC) . 

2. Consider now the function F NA 1 : [0, 1] 2 → [0, 1], defined by 

F NA 1 (x, y ) = 

{
x + y 

2 
if x ≤ y 

min { x 
2 
, y } otherwise . 

Similarly, one can show that F NA 1 is a (0, 1)-pre-aggregation function. However, it is not left 0-absorbent, since, for

example F NA 1 (0 , 0 . 2) = 0 . 1 	 = 0 . 2 . Moreover, F NA 1 satisfies neither RNE nor LC . 

3. Consider a slight modification in the definition of the function F NA 1 , obtaining the function F NA 2 : [0, 1] 2 → [0, 1], defined

by 

F NA 2 (x, y ) = 

{ 

0 if x = 0 

x + y 
2 

if 0 < x ≤ y 
min { x 

2 
, y } otherwise . 

Again, analogously, it is possible to show that F NA 2 is a (0, 1)-pre-aggregation function and it is immediate that F NA 2 is

left 0-absorbent (LAE) . However, F NA 2 does not satisfy neither RNE nor LC . 

4. Similarly, one can modify F NA 2 into F NA 3 : [0, 1] 2 → [0, 1], defined by 

F NA 3 (x, y ) = 

{
x if y = 1 

F NA 2 (x, y ) otherwise , 

and then F NA 3 satisfies all three properties (LAE), (RNE) and (LC) . However, although F NA 3 satisfies (A2) , it is not (0, 1)

increasing, since, for example, for x = 0 . 4 , y = 0 . 8 and c = 0 . 2 , one has that F NA 3 (0 . 4 , 0 . 8 + 0 . 2) = 0 . 4 < = 0 . 6 = 

0 . 4+0 . 8 
2 =

F NA 3 (0 . 4 , 0 . 8) . 

Finally, it is worth mentioning that F NA , F NA 1 and F NA 2 are all (1, 0)-increasing, but F NA 3 is not. 

Definition 8 [40, Thorem 4.1] . Let � r = (r 1 , . . . , r n ) be a real n -dimensional vector, � r 	 = 

�
 0 . An 

�
 r -pre-aggregation function PA :

[0, 1] n → [0, 1] is averaging if 

min ≤ PA ≤ max . 

Observe that there exist pre-aggregation functions that are averaging but are not aggregation functions, for example, the

mode. 

Remark 1. Observe that all � r -pre-aggregation functions PA that are averaging are also idempotent. However the converse

does not hold. For example, consider the (0, 1)-pre-aggregation function F NA of Example 1 , which is obviously idempotent.

F NA is not averaging, since, for example: 

F NA (0 . 5 , 0 . 4) = min { 0 . 25 , 0 . 4 } = 0 . 25 < min { 0 . 5 , 0 . 4 } . 
Fuzzy integrals are well known aggregation operators. However, their use is not easy as their interpretation is not

straightforward. In [54] , Torra and Narukawa study the interpretation of fuzzy integrals, focusing on Sugeno ones, show-

ing their application in fuzzy inference systems when the rules are not independent, for control problems. 

The Choquet integral is a type of aggregation function which considers the relationship among the elements that are

being aggregated, providing the relevance of a coalition by fuzzy measures. 

In what follows, denote N = { 1 , . . . , n } , for n > 0. 

Definition 9 [13,47] . A function m : 2 N → [0 , 1] is said to be a fuzzy measure if, for all X, Y ⊆N , the following conditions

hold: 

( m 1) Increasingness: if X ⊆Y , then m (X ) ≤ m (Y ) ; 

( m 2) Boundary conditions: m (∅ ) = 0 and m (N) = 1 . 

In this paper, we have selected the power measure according to the results in [4,11,39,40,43] . The power measure is

defined as m PM 

: 2 N → [0 , 1] , which is given, for all X ⊆N , by 

m PM 

(X ) = 

( | X | 
n 

)q 

, with q > 0 . (2)

Definition 10 [8, Definition 1.74] . Let m : 2 N → [0 , 1] be a fuzzy measure. The discrete Choquet integral is the function C m 

:

[0 , 1] n → [0 , 1] , defined, for all of � x = (x 1 , . . . , x n ) ∈ [0 , 1] n , by: 

C m 

( � x ) = 

n ∑ 

i =1 

(
x (i ) − x (i −1) 

)
· m 

(
A (i ) 

)
, (3)

where 
(
x (1) , . . . , x (n ) 

)
is an increasing permutation on the input � x , that is, 0 ≤ x (1) ≤ . . . ≤ x (n ) , where x (0) = 0 and A (i ) =

�
{ (i ) , . . . , (n ) } is the subset of indices corresponding to the n − i + 1 largest components of  x . 
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3. Construction of pre-agregation functions using Choquet integrals and left 0-absorbent functions 

In [40] , we introduced the concept of a pre-aggregation function, presenting a construction method of idempotent

and averaging pre-aggregation functions by means of the Choquet integral. To do it, we replace the product operation in

Eq. (3) by functions F that are (1, 0)-pre-aggregation functions satisfying (LAE), (RNE) and (LC) (see [40, Theorem 4.1] ).

The application shown in that paper considered just the case when F is a t-norm, which obviously satisfies those three

properties. 

In this paper, we intend to propose a more general way for this construction, since we do not require F to be an (1,

0)-pre-aggregation function. That is, just the conditions (LAE) and (RNE) are necessary to have idempotent pre-aggregation

functions. In case we want to obtain also averaging pre-aggregation functions the functions F also have to fulfill the (LC)

property. 

In the following, we present the method for constructing a family of pre-aggregation functions defined by generalizing

the discrete Choquet Integral using left 0-absorbent functions F : [0, 1] 2 → [0, 1], obtaining the so-called C F -integrals. 

Definition 11. Let F : [0, 1] 2 → [0, 1] be a bivariate function and m : 2 N → [0 , 1] be a fuzzy measure. The Choquet-like integral

based on F with respect to m , called C F -integral, is the function C F m 

: [0 , 1] n → [0 , 1] , defined, for all x ∈ [0, 1] n , by 

C F m 

( � x ) = min 

{ 

1 , 

n ∑ 

i =1 

F 
(
x (i ) − x (i −1) , m 

(
A (i ) 

))} 

, (4) 

where (x (1) , . . . , x (n ) ) is an increasing permutation on the input � x , that is, 0 ≤ x (1) ≤ . . . ≤ x (n ) , with the convention that

x (0) = 0 , and A (i ) = { (i ) , . . . , (n ) } is the subset of indices of n − i + 1 largest components of � x . 

Proposition 1. C F m 

is well defined, for any function F : [0, 1] 2 → [0, 1] and fuzzy measure m : 2 N → [0 , 1] . 

Proof. It is immediate. �

Remark 2. There are some other approaches presenting Choquet-like integrals or generalizations of the Choquet integrals,

mostly not restricted to discrete domains. In [45] , Mesiar introduced some Choquet-like integrals defined in terms of pseudo-

addition and pseudo-multiplication, presenting similar properties than those of the standard Choquet Integral. Murofushi 

and Sugeno [46] defined the fuzzy t-conorm integral, which is a generalization of Sugeno integral and Choquet integral

based on a t-system composed by continuous t-conorms and a continuous t-norm which all are either idempotent (then

the Sugeno integral is obtained), or all are Archimedean (then a transform of the Choquet integral is obtained). Differently,

our Choquet-like integrals, introduced in Definition 11 , are obtained in the context of the discrete Choquet integral. They are

based on the standard summation + (i.e., in this item less general than the two above mentioned types of integrals) and on

a rather general function F (much more general than the pseudo-multiplications considered in the two above integrals). 

Remark 3. In the literature, there exist also other kinds of integrals not defined in terms of the Choquet/Sugeno integral

but related to them. For example, Wang et al. [56] introduced a nonlinear integral with respect to set functions vanishing

at the empty set which need not be monotone. Observe that if a fuzzy measure m is considered, then this integral coincides

with the concave integral introduced by Lehrer [37] (see also [38] ). This integral is just the Choquet integral whenever

the considered fuzzy measure m is superadditive, i.e., if m (E 1 ∪ E 2 ) + m (E 1 ∩ E 2 ) ≥ m (E 1 ) + m (E 2 ) , for any sets E 1 , E 2 ⊆N . In

particular, these equalities hold when m is a belief measure [55] . We point out that Wang et al.’s integral coincides with our

C F -integral only if F is the standard product and m is a supermodular fuzzy measure (and then they are just the standard

Choquet integral, as the authors showed in [56, Corollary 2] ). 

Proposition 2. For any fuzzy measure m : 2 N → [0 , 1] and left 0-absorbent (RNE) -function F : [0, 1] 2 → [0, 1], C F m 

is idempotent.

Proof. Considering � x = (x, . . . , x ) ∈ [0 , 1] n , one has that: 

C (F ) 
m 

( � x ) = min 

{ 

1 , F (x − 0 , 1) + 

n ∑ 

i =2 

F 
(
x − x, m (A (i ) ) 

)} 

by Eq. (4) 

= min { 1 , x } by (RNE ) and (LAE ) 

= x. 

�

Proposition 3. For any fuzzy measure m : 2 N → [0 , 1] and F : [0, 1] 2 → [0, 1] satisfying (RNE) , it holds that C F m 

≥ min . 
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Proof. Let (x (1) , . . . , x (i −1) , x (i ) , . . . , x (n ) ) be an increasing permutation of � x ∈ [0 , 1] n . It follows that: 

C F m 

( � x ) = min 

{ 

1 , F (x (1) − 0 , 1) + 

n ∑ 

i =2 

F (x (i ) − x (i −1) , m (A (i ) )) 

} 

by Eq. (4) 

= min 

{ 

1 , x (1) + 

n ∑ 

i =2 

F (x (i ) − x (i −1) , m (A (i ) )) 

} 

by (RNE ) 

≥ x (1) 

= min 

�
 x . 

�

Proposition 4. For any fuzzy measure m : 2 N → [0 , 1] and F : [0, 1] 2 → [0, 1] satisfying (LC) , it holds that C F m 

≤ max . 

Proof. Let (x (1) , . . . , x (i −1) , x (i ) , . . . , x (n ) ) be an increasing permutation of � x ∈ [0 , 1] n . It follows that: 

C F m 

( � x ) = min 

{ 

1 , 

n ∑ 

i =1 

F (x (i ) − x (i −1) , m (A (i ) )) 

} 

by Eq. (4) 

≤ min 

{ 

1 , 

n ∑ 

i =1 

(
x (i ) − x (i −1) 

)} 

by (LC ) 

= min { 1 , x (n ) } 
= x (n ) 

= max � x . 

�

Proposition 5. For any fuzzy measure m : 2 N → [0 , 1] and left 0-absorbent function F : [0, 1] 2 → [0, 1], if F satisfies (A2, ii) , then

C F m 

satisfies the boundary conditions (A2) . 

Proof. Consider � 0 = (0 , . . . , 0) ∈ [0 , 1] n and 

�
 1 = (1 , . . . , 1) ∈ [0 , 1] n . It follows that: 

C F m 

( � 0 ) = min 

{ 

1 , 

n ∑ 

i =1 

F (0 − 0 , m (A (i ) )) 

} 

by Eq. (4) 

= 0 by (LAE ) 

and 

C F m 

( � 1 ) = min { 1 , F (1 − 0 , m (A (1) )) + 

n ∑ 

i =2 

F (1 − 1 , m (A (i ) )) } by Eq. (4) 

= min { 1 , F (1 , 1) + 

n ∑ 

i =2 

F (0 , m (A (i ) )) } 

= 1 . by (A2 )(ii ) and LAE 

�

Proposition 6. For any fuzzy measure m : 2 N → [0 , 1] , if the function F : [0, 1] 2 → [0, 1] satisfies one of the following conditions:

(i) F is (1, 0) -increasing 

(ii) F satisfies (RNE) 

then C F m 

is � 1 -increasing. 
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Proof. Let (x (1) , . . . , x (i −1) , x (i ) , . . . , x (n ) ) be an increasing permutation of � x ∈ [0 , 1] n . Suppose that (i) holds and consider c > 0

such that � x + c ∈ [0 , 1] n . Then, it follows that: 

C F m 

(x 1 + c, . . . , x n + c) = min 

{ 

1 , F (x (1) + c − 0 , m (A (1) )) + 

n ∑ 

i =2 

F (x (i ) + c − (x (i −1) + c) , m (A (i ) )) 

} 

by Eq. (4) 

≥ min 

{ 

1 , F (x (1) , m (A (1) )) + 

n ∑ 

i =2 

F (x (i ) − x (i −1) , m (A (i ) )) 

} 

by (i ) 

= C F m 

(x 1 , . . . , x n ) . by Eq. (4) 

Now consider that (ii) holds. It follows that: 

C F m 

(x 1 + c, . . . , x n + c) = min 

{ 

1 , F (x (1) + c − 0 , 1) + 

n ∑ 

i =2 

F (x (i ) + c − (x (i −1) + c) , m (A (i ) )) 

} 

by Eq. (4) 

= min 

{ 

1 , x (1) + c + 

n ∑ 

i =2 

F (x (i ) − x (i −1) , m (A (i ) )) 

} 

by (ii ) 

≥ min 

{ 

1 , x (1) + 

n ∑ 

i =2 

F (x (i ) − x (i −1) , m (A (i ) )) 

} 

= C F m 

(x 1 , . . . , x n ) . by Eq. (4) 

�

Theorem 1. For any fuzzy measure m : 2 N → [0 , 1] and left 0-absorbent (RNE) -function F : [0, 1] 2 → [0, 1], C F m 

is a � 1 -pre-

aggregation function. 

Proof. It follows from Propositions 5 and 6 , observing that the property (RNE) implies (A2) (ii). �

Corollary 1. For any fuzzy measure m : 2 N → [0 , 1] and left 0-absorbent (RNE) -function F : [0, 1] 2 → [0, 1] satisfying (LC) , C F m 

is

an idempotent averaging � 1 -pre-aggregation function. 

Proof. It follows from Propositions 3 and 4 , and Theorem 1 . �

Remark 4. Observe that, even when a left 0-absorbent function F : [0, 1] 2 → [0, 1] is not an averaging function, we may

obtain an averaging C F -integral. For example, consider the left 0-absorbent function F NA : [0, 1] 2 → [0, 1] of Example 1 . By

Remark 1 , we know that that F NA is idempotent but not averaging. However, it is immediate that F NA satisfies (RNE) and

(LC), and, therefore, by Corollary 1 , the C F -integral C 
F NA 
m 

, for a fuzzy measure m , is an averaging idempotent � 1 -pre-aggregation

function. 

Theorem 2. For any fuzzy measure m : 2 N → [0 , 1] and left 0-absorbent (1, 0) -pre-aggregation function F : [0, 1] 2 → [0, 1], C F m 

is

a � 1 -pre-aggregation function. 

Proof. It follows from Propositions 5 and 6 , observing that any left 0-absorbent pre-aggregation function satisfies (LAE) . �

In Table 1 we show a set of bivariate functions F : [0, 1] 2 → [0, 1] that belong to different families like (I) t-norms, (II)

overlap functions, (III) copulas that are neither t-norms nor overlap functions, (IV) aggregation functions not included in (I)-

(III) and (V) left-0 absorbent (0, 1)-pre-aggregation functions. For each function F , we show its definition and reference (if

they are new this field is left empty), as well as whether or not they satisfy (LAE), (RNE), (LC), (A2) and (1, 0)-increasingness.

Then, in the last but two column, according to properties analyzed in the previous columns, we indicate whether or not the

obtained C F -integral (constructed using Eq. (4) ) is a � 1 -pre-aggregation function (PA). Observe that the set of conditions that

F should fulfill for the C F -integral to be a pre-aggregation function is one of the following ones: 

• Theorem 1 ( (LAE) and (RNE) ). 

• Theorem 2 ( (LAE), (A2) , (1, 0)-increasingness). 

Finally, the last but one column shows if the obtained C F -integral is averaging (AV) (that is, if it satisfies

Propositions 3 and 4 ), and the last column if it is idempotent (ID) (that is, if it satisfies Proposition 2 ). 
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Table 1 

Analysis of the conditions of Theorems 1 and 2, Propositions 2 –4 , for families of left 0-absorbent functions F . 

(I) T-norms [36] 

Definition Name/Reference (LAE) (RNE) LC (A2) (1, 0)-inc. PA AV ID 

T M (x, y ) = min { x, y } Minimum � � � � � � � � 

T P (x, y ) = xy Algebraic Product � � � � � � � � 

T L (x, y ) = max { 0 , x + y − 1 } Łukasiewicz � � � � � � � � 

T HP (x, y ) = 
{

0 if x = y = 0 
xy 

x + y −xy 
otherwise 

Hamacher Product � � � � � � � � 

(II) Overlap functions [5,10,19,21] 

Definition Name/Reference (LAE) (RNE) LC (A2) (1, 0)-inc. PA AV ID 

O B (x, y ) = min { x √ 

y , y 
√ 

x } [10, Theorem 8] � � � � � 

Cuadras-Augé copula [48] 

O mM (x, y ) = min { x, y } max { x 2 , y 2 } [19, Example 3.1.(i)] , � � � � � � � � 

[18, Example 4] 

[21, Example 3.1] 

O α (x, y ) = xy (1 + α(1 − x )(1 − y )) , [3, Apendix A (A.2.1)] , [39] � � � � � � � � 

α ∈ [ −1 , 0[ ∪ ]0 , 1] Farlie-Gumbel-Morgenstern 

copula family ∗

O Di v (x, y ) = xy + min { x,y } 
2 

[3, Apendix A (A.8.7)] , � � � � � � � � 

[41, Table 1] 

GM(x, y ) = √ 

xy Geometric Mean [27, Example 1] � � � � 

HM(x, y ) = 
{

0 if x = 0 or y = 0 
2 

1 
x + 1 y 

otherwise Harmonic Mean [27, Example 1] � � � � 

S (x, y ) = sin 
(

π
2 
(xy ) 

1 
4 

)
Sine [27, Example 1] � � � � 

O RS (x, y ) = min 

{ 
(x +1) 

√ 
y 

2 
, y 

√ 

x 

} 
� � � � 

(III) Copulas that are neither t-norms nor overlap functions [3] 

Definition Name/Reference (LAE) (RNE) LC (A2) (1, 0)-inc. PA AV ID 

C F (x, y ) = xy + x 2 y (1 − x )(1 − y ) [36, Example 9.5 (v)] , � � � � � � � � 

[41, Table 1] 

C L (x, y ) = max { min { x, 
y 
2 
} , x + y − 1 } [3, Apendix A (A.5.3a)] , � � � � � � � � 

[41, Table 1] 

(IV) Aggregation functions other than (I)–(III) 

Definition Name/Reference (LAE) (RNE) LC (A2) (1, 0)-inc. PA AV ID 

F GL (x, y ) = 
√ 

x (y +1) 
2 

� � � � 

F BPC (x, y ) = xy 2 [8, Example 1.80] � � � � � � � � 

(V) Left 0-absorbent (0, 1)-pre-aggregation functions 

Definition Name/Reference (LAE) (RNE) LC (A2) (1, 0)-inc. PA AV ID 

F BD 1 (x, y ) = min { x, 1 − x + min { x, y q }} , 0 < q ≤ 1 � � � � � � � � 

F NA (x, y ) = 
{

x if x ≤ y 

min { x 
2 
, y } otherwise 

� � � � � � � � 

F NA 2 (x, y ) = 

⎧ ⎨ 

⎩ 

0 if x = 0 
x + y 

2 
if 0 < x ≤ y 

min { x 
2 
, y } otherwise 

� � � � � 

∗ When α = 0 , we have that O α = T P , the product t-norm, which was considered in the first part of table. 
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4. Applying C F -integrals in fuzzy rule-based classification systems 

In this section, we firstly present the application of C F -integrals in classification problems [25] , adopting it to ag-

gregate the information given by the fuzzy rules. To do so, consider that a classification problem consists of m train-

ing examples, x p = (x p1 , . . . , x pn , y p ) , with p = 1 , . . . , m, where x pi , with i = 1 , . . . , n, is the value of the i th attribute and

y p ∈ C = { C 1 , . . . , C M 

} is the label of the class of the p th training example, where M is the number of classes. 

In this work, we use FRBCSs to tackle this kind of problems. Specifically, we have selected FARC-HD [2] to accomplish

the learning of the fuzzy rules, since it is one of the most precise fuzzy classifiers nowadays. The form of the fuzzy rules

used by this algorithm is: 

Rule R j : If x p1 is A j1 and . . . and x pn is A jn then x p is C j with RW j , 

where x p = (x p1 , . . . , x pn ) is the n-dimensional vector of attribute values corresponding to an example x p , R j is the label

of the j th rule, A ji is an antecedent fuzzy set modeling a linguistic term, C j is the label of the class of the rule R j , with

C j ∈ { 1 , . . . , M} and RW j ∈ [0, 1] is the rule weight [34] , which, in this case, is computed using the certainty factor. 

We have used the set up suggested by the authors of FARC-HD, which is as follows: the product t-norm as the conjunc-

tion operator, five linguistic labels per variable, modeled by triangular shaped membership functions, the minimum support

is set to 0.05, the threshold for the confidence is 0.8 and the maximum depth of the search tree is limited to 3. 

In this paper, we propose a new FRM, where C F -integrals are used to obtain the information associated with each class

of the problem, that is, to aggregate the local information given by the fired rules of the system when classifying a new

example, x p . Specifically, the predicted class for a new example x p is computed by: 

class = arg max 
k = { 1 , ... ,M} 

(C F m k 
(μA j (x p ) * RW j | Class (R j ) = k )) with, j = 1 , . . . , L . (5)

where C F m k 
is the C F -integral (associated with the fuzzy measure m k ) considered to aggregate information given by the fired

rules for the class k , μA j 
is the matching degree of the example x p with the antecedent of the j th fuzzy rule, RW j is its rule

weight and L is the number of fuzzy rules in the system. 

From Eq. (5) it can be observed that we consider a different C F -integral for each class of the problem. This is due to the

fact that we construct a different fuzzy measure for each class of the problem. Specifically, we use the power measure (see

Eq. (2)) in which a different q exponent is learnt for each class of the problem using a genetic algorithm, as we have done

in our previous papers in the topic (see [4,40,41] for details of the evolutionary algorithm). Regarding the parameters of this

genetic algorithm, we consider a population composed of 50 individuals, 20.0 0 0 evaluations and 30 bits for each gene in

the gray codification. 

In the remainder of this section we present the experimental framework used to test the quality of our new FRM. In

first place we present the considered datasets ( Ssection 4.1 ) followed by the statistical tests that are used in this paper for

performing comparisons ( Section 4.2 ). 

4.1. Datasets 

In this paper, to analyze the performance of our proposal, we consider 33 different datasets selected from the KEEL 2 

dataset repository [1] . The properties of the selected datasets are summarized in Table 2 , showing for each dataset the

identification of this dataset (ID), followed by the name of the dataset (Dataset), the number of examples ( # Ex.), the number

of attributes ( # Atts.) and the number of classes ( # Class). 

Some datasets, namely: magic, page-blocks, penbased, ring, satimage and twonorm , were stratified sampled at 10% in order

to reduce their size for training. Some examples containing missing information were removed, e.g., in the wisconsin dataset.

We have applied a 5-fold cross-validation technique, that is, split the dataset into five partitions randomly. Each partition

has 20% of the examples. We use four partitions for training, and the other is used for testing. This process is repeated five

times, using a different partition for testing each time. In each iteration we measure the quality of the classifier using the

accuracy rate, which is defined as the number of correctly classified examples divided by the total number of examples for

each partition. We then compute the average result of the five testing partitions, which is the output of the algorithm. 

4.2. Statistical tests for performance comparisons 

For the statistical analysis of the results, we use hypothesis validation techniques [28,53] , namely, non-parametric tests,

since the initial conditions that guarantee the reliability of the parametric tests cannot be guaranteed [15] . 

We apply the aligned Friedman rank test [31] to detect statistical differences among a group of results and to verify the

quality of a method in comparison to its partners. The algorithm achieving the lowest average ranking is the best one. 

Additionally, to analyze if the best ranking method rejects the equality hypothesis with respect to its partners we use

the post-hoc Holm’s test [32] . This method allows us to see whenever a hypothesis of comparison could be rejected at

a specified level of significance α. We compute the adjusted p -value (APV) to take into account that multiple tests are
2 http://www.keel.es . 

http://www.keel.es
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Table 2 

Summary of the properties of the datasets considered in this study. 

Id. Dataset # Ex. # Atts. # Class 

App Appendiciticis 106 7 2 

Bal Balance 625 4 3 

Ban Banana 5300 2 2 

Bnd Bands 365 19 2 

Bup Bupa 345 6 2 

Cle Cleveland 297 13 5 

Con Contraceptive 1473 9 3 

Eco Ecoli 336 7 8 

Gla Glass 214 9 6 

Hab Haberman 306 3 2 

Hay Hayes-Roth 160 4 3 

Ion Ionosphere 351 33 2 

Iri Iris 150 4 3 

Led led7digit 500 7 10 

Mag Magic 1902 10 2 

New Newthyroid 215 5 3 

Pag Pageblocks 5472 10 5 

Pen Penbased 10,992 16 10 

Pho Phoneme 5404 5 2 

Pim Pima 768 8 2 

Rin Ring 740 20 2 

Sah Saheart 462 9 2 

Sat Satimage 6435 36 7 

Seg Segment 2310 19 7 

Shu Shuttle 58,0 0 0 9 7 

Son Sonar 208 60 2 

Spe Spectfheart 267 44 2 

Tit Titanic 2201 3 2 

Two Twonorm 740 20 2 

Veh Vehicle 846 18 4 

Win Wine 178 13 3 

Wis Wisconsin 683 11 2 

Yea Yeast 1484 8 10 

 

 

 

 

 

 

 

 

 

 

 

 

performed. Then, we can directly compare the APV with the level of significance α, and, thus, we are able to reject the null

hypothesis. 

5. Experimental study and results 

In this section, we present the results achieved in testing when using the FRM generalized by C F -integrals. To do so, the

results of our proposal are analyzed considering three main steps: 

1. Firstly, we present the results and analyze the performance of each averaging C F -integral. After that, we compare them

among themselves in order to discover which generalization is the one that best represent the family of averaging C F -

integrals. 

2. The second part of the study is related to C F -integrals that are not averaging. In order to find the best representative

method of this family, we firstly analyze the achieved results and after that, compare them among themselves. 

3. Once we have found the two best C F -integrals obtained in the previous steps, in order to test the quality of our approach,

we perform the following comparisons: 

(a) The best averaging C F -integral versus classical averaging functions (FRM of the WR) and our previous averaging pre-

aggregation functions. 

(b) The best non-averaging C F -integral versus the classical non averaging functions, like the FRM of AC or the usage of

the probabilistic sum. 

(c) Finally, we test whether the application of the best non averaging function enhances the results of the averaging

operators or not. 

5.1. Analysis of the performance of averaging C F -integrals 

This subsection is aimed at analyzing the performance of the averaging C F -integrals considered in this study (see Table 1 )

in the FRM. The results achieved in test by the 9 averaging functions are available in Table 3 , by columns. In each row we

introduce the results of each dataset, highlighting the best global result in boldface . We also include in this table the

number of datasets where each function achieves the best ( # Wins) and the worst ( # Loses) result, respectively. 
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Table 3 

Accuracy achieved in test by different averaging C F -integrals. 

Dataset O α O B O mM O Div CF CL F BPC F BD 1 F NA 

App 83.03 83.03 84.94 83.94 82.99 85.84 83.07 83.94 82.99 

Bal 80.32 82.08 82.56 81.60 82.24 84.00 80.32 84.80 82.56 

Ban 86.09 86.81 86.85 85.79 85.70 85.04 87.02 83.09 86.09 

Bnd 68.26 71.83 67.70 69.68 69.13 69.66 66.62 71.09 69.40 

Bup 63.77 65.51 66.09 65.51 65.22 62.32 66.67 64.06 67.83 

Cle 55.23 56.24 54.55 55.90 52.18 55.54 54.88 57.92 57.92 

Con 52.00 52.89 52.75 53.83 52.54 50.78 52.95 52.41 52.27 

Eco 76.49 76.20 77.08 75.61 77.09 78.87 77.69 79.17 78.88 

Gla 62.14 66.82 60.75 63.10 63.58 63.09 63.54 65.44 64.51 

Hab 72.85 72.86 72.21 72.52 69.92 72.86 73.17 72.21 73.51 

Hay 78.75 78.72 78.01 80.26 78.75 79.46 78.01 77.95 78.72 

Ion 90.04 88.32 87.47 89.47 89.46 89.75 89.47 89.46 90.60 

Iri 92.00 94.00 94.00 93.33 94.67 93.33 92.00 93.33 93.33 

Led 68.00 68.40 67.60 68.80 69.00 68.00 68.80 68.00 68.60 

Mag 80.18 79.86 79.97 79.91 78.81 79.76 78.86 79.55 80.02 

New 95.35 94.88 94.42 95.35 94.88 94.42 94.88 93.49 93.49 

Pag 93.43 94.52 93.98 93.97 94.89 93.61 94.34 94.34 93.97 

Pen 90.09 91.09 89.45 90.82 90.55 90.27 90.09 92.55 91.45 

Pho 83.05 82.92 83.29 82.81 83.23 83.88 82.70 81.96 82.86 

Pim 75.13 75.38 76.17 74.48 75.78 75.52 73.82 73.56 75.13 

Rin 89.19 89.32 90.00 89.86 89.73 89.46 88.38 88.78 90.27 

Sah 71.85 69.48 70.78 68.18 69.48 68.39 71.21 69.70 68.61 

Sat 79.16 78.54 79.00 78.23 80.72 79.16 78.38 78.70 78.54 

Seg 92.73 92.51 93.33 92.77 92.94 93.20 92.42 93.16 92.55 

Shu 97.01 97.29 97.01 97.84 97.10 97.01 97.10 97.15 96.78 

Son 80.78 75.49 77.93 77.42 77.89 79.83 74.05 80.29 78.85 

Spe 77.48 77.88 76.75 76.39 77.51 76.77 79.76 74.92 78.26 

Tit 78.87 78.87 78.87 78.87 78.87 78.87 78.87 79.06 78.87 

Two 84.73 83.78 84.46 85.14 85.68 85.41 84.19 85.14 83.92 

Veh 68.21 67.73 66.55 67.02 70.33 67.38 68.20 69.26 67.97 

Win 95.48 94.97 97.21 93.24 94.38 92.13 96.62 96.62 96.03 

Wis 96.49 96.63 96.34 96.34 96.05 96.19 96.34 96.64 96.34 

Yea 56.33 57.35 57.08 57.48 57.34 56.87 57.48 55.12 56.40 

Mean 79.23 79.46 79.25 79.26 79.35 79.29 79.15 79.48 79.62 

# Wins 4 2 3 5 6 2 3 5 5 

# Loses 4 2 6 4 5 4 7 6 4 

Table 4 

Statistical analysis of the methods based on averaging C F -integrals. 

Algorithm Ranking APV 

F NA 129.31 –

O B 138.93 1.0 

F BD 1 143.21 1.0 

CF 145.60 1.0 

CL 149.71 1.0 

O Div 152.74 1.0 

O mM 154.01 1.0 

F BPC 162.77 0.79 

O α 164.68 0.75 

 

 

 

 

 

 

 

 

 

From the results shown in Table 3 , it is possible to notice that all the averaging C F -integrals, except F NA , present a mean

performance between 79.15 and 79.48. We have to highlight the function F NA since it achieves the best global mean and also

the best accuracy rate in 5 out of the 33 datasets considered in this study. Moreover, observe that the functions O α , O Div ,

CF, F BD 1 and F NA achieves similar results in terms of number of datasets with the best and worst performance respectively,

while the remainder functions achieves worse results. 

In order to select objectively the best function among this group, we have carried out a statistical study according to the

recommendations made in the specialized literature [16,28,53] . 

Specifically, we have performed the aligned Friedman rank test to compare the 9 approaches, whose obtained rankings

are presented in the second column of Table 4 . In this table we sort the values from the lowest to highest obtained ranking,

where the best one is highlighted in boldface . Then, we apply the Holm’s post-hoc test, to check whether the control

approach (the one associated with the best ranking) is statistically better than the remainder approaches, showing the

obtained APV in the last column of this table. 
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Table 5 

Accuracy achieved in test by different non-averaging C F -integrals. 

Dataset GM HM Sin O RS F GL F NA 2 

App 82.08 83.98 85.80 83.98 82.08 85.84 

Bal 88.48 86.40 89.44 88.00 89.12 88.64 

Ban 85.28 86.19 82.79 85.58 83.42 84.60 

Bnd 71.30 70.51 72.69 69.19 71.01 70.48 

Bup 61.16 66.96 63.48 66.09 62.03 64.64 

Cle 57.23 57.24 57.55 55.88 57.25 56.55 

Con 53.77 52.21 54.31 53.84 54.24 53.16 

Eco 81.26 79.47 82.45 80.07 81.55 80.08 

Gla 65.44 69.17 66.83 65.89 66.33 66.83 

Hab 71.54 71.88 71.87 72.87 70.24 71.87 

Hay 79.49 79.43 77.98 81.77 78.69 79.43 

Ion 90.89 88.91 87.46 88.32 90.04 89.75 

Iri 94.67 94.00 94.00 94.00 94.00 94.00 

Led 68.00 68.40 69.60 69.20 68.80 69.80 

Mag 80.02 80.23 79.34 80.23 79.70 79.70 

New 97.67 95.81 95.35 95.81 97.67 96.28 

Pag 94.34 93.97 94.34 94.52 94.34 94.15 

Pen 92.18 92.09 91.45 92.00 92.73 92.91 

Pho 82.07 83.73 80.96 82.72 81.27 81.44 

Pim 74.87 74.87 75.13 75.00 76.82 74.61 

Rin 90.95 90.00 88.51 90.27 91.35 89.86 

Sah 69.04 68.84 71.20 71.86 70.33 70.12 

Sat 79.01 78.69 77.45 80.72 78.53 80.41 

Seg 93.46 92.73 92.47 92.77 93.07 92.42 

Shu 97.06 96.92 96.69 96.37 96.69 97.15 

Son 82.73 81.28 81.74 83.19 83.69 83.21 

Spe 77.51 79.76 78.65 78.27 79.76 79.77 

Tit 78.87 78.87 78.87 78.87 78.87 78.87 

Two 89.19 86.89 91.49 89.05 90.00 92.57 

Veh 67.97 68.79 64.77 67.38 69.03 68.08 

Win 96.08 96.05 97.17 97.16 95.49 96.08 

Wis 96.93 97.07 96.34 97.06 95.76 96.78 

Yea 56.94 58.15 56.47 57.28 57.68 57.08 

Mean 80.23 80.29 80.14 80.46 80.35 80.52 

# Wins 5 8 7 7 7 7 

# Loses 4 7 11 3 5 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From these results, it is noticeable that there are no statistical differences among the averaging functions. However, for

the sake of selecting a representative for this family, we choose the function F NA as it obtains the best global mean and it is

selected as the control method in the Holm’s test. 

5.2. Studying the quality of non-averaging C F -integrals 

In this subsection, we present the achieved results in testing when one considers C F -integrals that do not have averaging

characteristics. We present the results of the 6 functions of this type in Table 5 , by columns. In each row we introduce the

results of each dataset where the best result is highlighted in boldface . Like in Table 3 , # Wins and # Loses represent the

number of datasets where the function obtains the best and worst result, respectively. 

From the results presented in Table 5 , we can directly conclude that the non-averaging functions have a superior mean

in relation to the averaging functions ( Table 3 ), since the smallest obtained mean (80.14 by Sin) is superior than the best

averaging C F -integral (79.62 by F NA ). Additionally, we have to highlight the leap in performance provided by the usage of

F NA 2 and O RS . The first function has the best accuracy in 7 datasets and the worst accuracy in only 2 dataset. The function

O RS also achieves a good mean, with best accuracy in 7 datasets and the worst one in 3 datasets. Furthermore, we should

stress that although the number of dataset in which the remainder functions provide the best results is similar the number

of datasets where they provide the worst result is larger, which implies a decrease on the overall performance as shown in

Table 5 . 

According to the obtained results, it is necessary to conduct a statistical analysis to select the best function among

this group. In order to do it, we have performed the same statistical study as in the previous section. The results of the

aligned Friedman and Holm’s tests are presented in Table 6 . As expected, according to Table 5 , all methods present a similar

behavior, therefore, we select F NA 2 as representative of this family since it is considered as control variable and it also

achieves the best global mean. 
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Table 6 

Average rankings of the non-averaging C F -integrals (aligned Friedman). 

Algorithm Ranking APV 

F NA 2 91.78 - 

F GL 95.12 1.0 

O RS 95.39 1.0 

GM 99.22 1.0 

HM 105.13 1.0 

Sin 110.33 0.94 

Table 7 

Results achieved in test by the averaging FRMs. 

Dataset F NA Choquet Ham PA CP Min WR 

App 82.99 80.13 82.99 85.84 83.03 

Bal 82.56 82.40 82.72 81.60 81.92 

Ban 86.09 86.32 85.96 84.30 83.94 

Bnd 69.40 68.56 72.13 71.06 69.40 

Bup 67.83 66.96 65.80 61.45 62.03 

Cle 57.92 55.58 55.58 54.88 56.91 

Con 52.27 51.26 53.09 52.61 52.07 

Eco 78.88 76.51 80.07 77.09 75.62 

Gla 64.51 64.02 63.10 69.17 64.99 

Hab 73.51 72.52 72.21 74.17 70.89 

Hay 78.72 79.49 79.49 81.74 78.69 

Ion 90.60 90.04 89.18 88.89 90.03 

Iri 93.33 91.33 93.33 92.67 94.00 

Led 68.60 68.20 68.60 68.40 69.40 

Mag 80.02 78.86 79.76 79.81 78.60 

New 93.49 94.88 95.35 93.95 94.88 

Pag 93.97 94.16 94.34 93.97 94.16 

Pen 91.45 90.55 90.82 91.27 91.45 

Pho 82.86 82.98 83.83 82.94 82.29 

Pim 75.13 74.60 73.44 75.78 74.60 

Rin 90.27 90.95 88.78 87.97 90.00 

Sah 68.61 69.69 70.77 70.78 68.61 

Sat 78.54 79.47 80.40 79.01 79.63 

Seg 92.55 93.46 93.33 92.25 93.03 

Shu 96.78 97.61 97.20 98.16 96.00 

Son 78.85 77.43 79.34 76.95 77.42 

Spe 78.26 77.88 76.02 78.99 77.90 

Tit 78.87 78.87 78.87 78.87 78.87 

Two 83.92 84.46 85.27 85.14 86.49 

Veh 67.97 68.44 68.20 69.86 66.67 

Win 96.03 93.79 96.63 93.83 96.60 

Wis 96.34 97.22 96.78 95.90 96.34 

Yea 56.40 55.73 56.53 57.01 55.32 

Mean 79.62 79.22 79.69 79.58 79.15 

# Wins 6 5 11 11 5 

# Loses 4 7 3 8 10 

 

 

 

 

 

 

 

5.3. Comparisons of the best C F -integrals against classical FRMs 

Once we have selected the functions that represent the family of C F -integrals with averaging or non-averaging character-

istics ( F NA and F NA 2 ), we compare them against classical averaging ( Section 5.3.1 ) and non-averaging functions ( Section 5.3.2 ),

respectively. 

5.3.1. Analyzing the behavior of the representative averaging C F -integral 

In first place, we compare the best averaging function against FRMs where averaging aggregations are applied. Namely,

the FRM of the Winning Rule (WR) [8] , the standard Choquet integral (Choquet) [4] , the best pre-aggregation function

presented in [40] (which is named Ham PA since it is based on the Hamacher t-norm) and the best Choquet-Like Copula-

based [41] (which is named CP Min as it is based on the Minimum t-norm). We have to point out that the pre-aggregation

function based on the Hamacher t-norm (Ham PA ) is also a C F -integral (where F is the Hamacher t-norm). 

The results achieved in test by this averaging FRMs are available in Table 7 , using the same structure as the tables

presented before. 
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Table 8 

Statistical analysis of the FRMs based on averaging operators. 

Algorithm Ranking APV 

Ham PA 68.96 

F NA 76.25 0.62 

CP Min 80.87 0.62 

Choquet 92.98 0.12 

WR 95.90 0.08 

Table 9 

Results achieved in test by classical non-averaging operators. 

Dataset F NA 2 AC ProbSum 

App 85.84 83.03 85.84 

Bal 88.64 85.92 87.20 

Ban 84.60 85.30 84.85 

Bnd 70.48 68.28 68.82 

Bup 64.64 67.25 61.74 

Cle 56.55 56.21 59.25 

Con 53.16 53.16 52.21 

Eco 80.08 82.15 80.95 

Gla 66.83 65.44 64.04 

Hab 71.87 73.18 69.26 

Hay 79.43 77.95 77.95 

Ion 89.75 88.90 88.32 

Iri 94.00 94.00 95.33 

Led 69.80 69.60 69.20 

Mag 79.70 80.76 80.39 

New 96.28 94.88 94.42 

Pag 94.15 95.07 94.52 

Pen 92.91 92.55 93.27 

Pho 81.44 81.70 82.51 

Pim 74.61 74.74 75.91 

Rin 89.86 90.95 90.00 

Sah 70.12 68.39 69.69 

Sat 80.41 79.47 80.40 

Seg 92.42 93.12 92.94 

Shu 97.15 95.59 94.85 

Son 83.21 78.36 82.24 

Spe 79.77 77.88 77.90 

Tit 78.87 78.87 78.87 

Two 92.57 90.95 90.00 

Veh 68.08 68.56 68.09 

Win 96.08 96.03 94.92 

Wis 96.78 96.63 97.22 

Yea 57.08 58.96 59.03 

Mean 80.52 80.12 80.07 

# Wins 17 10 8 

# Loses 11 12 11 

 

 

 

 

 

 

 

 

 

 

 

From these results, it is possible to observe that WR and Choquet have a low mean while Ham PA is the one obtaining

the best global mean, followed by our new averaging C F -integral, F NA and CP Min . Moreover, observe that Ham PA is also the

function that has the biggest number of good results (along with CP Min ) and the lowest number of cases having bad results.

We have conducted the same statistical study than in the previous sections, where the achieved results are presented in

Table 8 . These results are sorted according to the ranking and highlighting in boldface the control ranking. Whenever there

is an statistical difference in favor to the control method the APV is underlined. 

Observing these results, we can see that the pre-aggregation function based on the Hamacher t-norm is considered as

control variable, and it also presents differences against the FRM of the WR and a positive trend versus the standard Choquet

integral. On the other hand, it is not possible to affirm that there are differences against the remainder functions. Therefore,

we consider Ham PA as the best averaging C F -integral since it achieves the best mean and the largest number of datasets

having the best accuracy. 

5.3.2. Analyzing the behavior of the best non-averaging C F -integral 

Next, we study the behavior of the non-averaging operators. Specifically, we compare our representative for the family of

non-averaging C F -integral, F NA 2 , against the classical FRMs of the additive combination (AC) and the probabilistic sum (PS).

The results are available in Table 9 , having the same structure of our results presented before. 
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Table 10 

Statistical analysis of the methods based on non-averaging operators. 

Algorithm Ranking APV 

F NA 2 41.80 

AC 53.65 0.14 

PS 54.54 0.14 

Table 11 

Statistical analysis of the best non-averaging C F -integral against the averaging oper- 

ators. 

Algorithm Ranking APV 

F NA 2 64.93 

Ham PA 90.77 0.06 

F NA 99.40 0.02 

CP Min 102.95 0.02 

Cho 117.43 7.91E-4 

WR 121.48 3.05E-4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We can see in the obtained results that the C F -integral based on the function F NA 2 presents the highest global mean. If

we look closer, this function achieves the best accuracy in almost half of the datasets considered in this study. On the other

hand, the classical aggregation functions applied in the FRM provide the best result in a lower number of datasets (10 and

8, respectively). 

Again, to statistically compare these methods among themselves, we perform the Friedman rank test and the Holm’s post

hoc test. The obtained results are available in Table 10 . These results show that our new function F NA 2 has the best rank and,

consequently, it is considered as control variable as it was expected according to the previous results. When we observe the

obtained APVs we can see that their APVs are low, which shows a trend pointing out that our new non-averaging function

is very competitive versus these two classical aggregation functions. Therefore, the quality of our proposal is proved since it

is enhancing the results of the classical FRM of the AC and PS. 

To finish our study, for the sake of certifying the quality of our new function ( F NA 2 ), we also compare it versus the

five averaging FRMs studied in the previous Section 5.3.1 . To accomplish this comparison, we have performed again the

Friedman rank test and Holm’s post hoc test among these approaches. The results of the statistical test and the obtained

APVs are shown in Table 11 , where the ranking related to the function considered as control method is highlighted in

boldface . Furthermore, the APV is underlined when there are statistical differences favorably to the control approach versus

the opponent method. 

The obtained statistical results clearly show the superiority of the C F -integral based on the function F NA 2 , since it achieves

statistical differences versus all the remainder methods. All in all, the non-averaging C F -integral constructed using the func-

tion F NA 2 , has proven to be the best choice among all developed functions, since it offers the best performance, it statistically

outperforms classical averaging functions applied in the FRM and it is competitive with respect classical non averaging FRMs.

6. Conclusion 

In this paper we have proposed a generalization of the Choquet integral by replacing its product operator by a function

F with some weak properties. As a result, we have defined the C F -integrals, a new family of pre-aggregation functions with

some particular characteristics, which allows us to enlarge the scope of the methodology that we proposed in [40] . The

main advantages of this approach in relation to our previous work concerning generalizations of the Choquet integral are: 

• The function F used for the generalization may satisfy a less number of properties, and we still have a pre-aggregation

function. 

• The resulting pre-aggregation function does not need to be neither an averaging nor idempotent function. 

We have applied these averaging and non-averaging C F -integrals in FRBCSs to tackle classification problems. Precisely, in

this work we performed a study considering 33 different public datasets, and the conclusions we draw are the following

ones: 

1. The considered averaging C F -integrals present a similar performance than that of our previous generalizations. 

2. The best averaging C F -integral is Ham PA , which was previously introduced in another paper. However, it is also a C F -

integral (based on the Hamacher t-norm). 

3. The non-averaging C F -integrals, as expected, offer a performance superior than the averaging ones. 

4. The best C F -integral, F NA 2 , provides results that are statistically superior than all classical FRMs, and also, very competitive

with the classical non-averaging FRMs like AC or PS. 

Consequently, we have created a new family of pre-aggregation functions, which provides accurate results when they

have non-averaging features. 
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Future work is concerned with two lines of research. In one hand, we will search for a generalization of our CC-integrals

[41] , by means of two arbitrary functions F 1 and F 2 , to put in the place of each copula, satisfying a minimal set of properties

that guarantee that the generalized CC-integral is, at least, a pre-aggregation function. On the other hand, we will study our

generalizations in an interval-valued context, following the approach in [6,7,17] , as in [49–51] . 

Acknowledgments 

This work is supported by Brazilian National Counsel of Technological and Scientific Development CNPq (Proc.

233950/2014-1, 306970/2013-9, 307781/2016-0), by grant APVV-14-0013 , by the Spanish Ministry of Science and Technol-

ogy (under project TIN2016-77356-P (AEI/FEDER, UE)), and by Caixa and Fundación Caja Navarra of Spain. 

References 

[1] J. Alcalá-Fdez , L. Sánchez , S. García , M. Jesus , S. Ventura , J. Garrell , J. Otero , C. Romero , J. Bacardit , V. Rivas , J. Fernández , F. Herrera , Keel: a software
tool to assess evolutionary algorithms for data mining problems, Soft Comput. 13 (3) (2009) 307–318 . 

[2] J. Alcalá-Fdez , R. Alcalá, F. Herrera , A fuzzy association rule-based classification model for high-dimensional problems with genetic rule selection and
lateral tuning, IEEE Trans. Fuzzy Syst. 19 (5) (2011) 857–872 . 

[3] C. Alsina , M.J. Frank , B. Schweizer , Associative Functions: Triangular Norms and Copulas, World Scientific Publishing Company, Singapore, 2006 . 
[4] E. Barrenechea , H. Bustince , J. Fernandez , D. Paternain , J.A. Sanz , Using the Choquet integral in the fuzzy reasoning method of fuzzy rule-based

classification systems, Axioms 2 (2) (2013) 208–223 . 

[5] B.C. Bedregal , G.P. Dimuro , H. Bustince , E. Barrenechea , New results on overlap and grouping functions, Inf. Sci. 249 (2013) 148–170 . 
[6] B.C. Bedregal , G.P. Dimuro , R.H.S. Reiser , An approach to interval-valued R-implications and automorphisms, in: J.P. Carvalho, D. Dubois, U. Kaymak,

J.M.d. C. Sousa (Eds.), Proceedings of the Joint 2009 International Fuzzy Systems Association World Congress and 2009 European Society of Fuzzy
Logic and Technology Conference, IFSA/EUSFLAT, 2009 . 

[7] B.C. Bedregal , G.P. Dimuro , R.H.N. Santiago , R.H.S. Reiser , On interval fuzzy S-implications, Inf. Sci. 180 (8) (2010) 1373–1389 . 
[8] G. Beliakov , A. Pradera , T. Calvo , Aggregation Functions: A Guide for Practitioners, Springer, Berlin, 2007 . 

[9] H. Bustince , J. Fernandez , A. Kolesárová, R. Mesiar , Directional monotonicity of fusion functions, Eur. J. Oper. Res. 244 (1) (2015) 300–308 . 

[10] H. Bustince , J. Fernandez , R. Mesiar , J. Montero , R. Orduna , Overlap functions, nonlinear analysis: theory, Methods Appl. 72 (3–4) (2010) 1488–1499 . 
[11] H. Bustince , J.A. Sanz , G. Lucca , G.P. Dimuro , B. Bedregal , R. Mesiar , A. Kolesárová, G. Ochoa , Pre-aggregation functions: definition, properties and

construction methods, in: Fuzzy Systems (FUZZ-IEEE), 2016 IEEE International Conference on, IEEE, 2016 . 
[12] H. Bustince , J.A. Sanz , G. Lucca , G.P. Dimuro , B. Bedregal , R. Mesiar , A. Kolesárová, G. Ochoa , Pre-aggregation functions: definition, properties and

construction methods, in: 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), IEEE, Los Alamitos, 2016 . 
[13] G. Choquet , Theory of capacities, Annales de l’Institut Fourier 5 (1953-1954) 131–295 . 

[14] O. Cordón , M.J. del Jesus , F. Herrera , A proposal on reasoning methods in fuzzy rule-based classification systems, Int. J. Approx. Reason. 20 (1) (1999)

21–45 . 
[15] J. Demšar , Statistical comparisons of classifiers over multiple data sets, J. Mach. Learn. Res. 7 (2006) 1–30 . 

[16] J. Derrac , S. García , D. Molina , F. Herrera , A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary
and swarm intelligence algorithms, Swarm Evol. Comput. 1 (1) (2011) 3–18 . 

[17] G.P. Dimuro , On interval fuzzy numbers, 2011 Workshop-School on Theoretical Computer Science, WEIT 2011, IEEE, Los Alamitos, 2011 . 
[18] G.P. Dimuro , B. Bedregal , J. Fernandez , Additive generators of overlap functions, in: H. Bustince, R. Mesiar, T. Calvo (Eds.), Aggregation Functions in

Theory and in Practice, vol. 228 of Advances in Intelligent Systems and Computing, Springer, Berlin, 2013, pp. 167–178 . 
[19] G.P. Dimuro , B. Bedregal , Archimedean overlap functions: the ordinal sum and the cancellation, idempotency and limiting properties, Fuzzy Sets Syst.

252 (2014) 39–54 . 

[20] G.P. Dimuro , B. Bedregal , On residual implications derived from overlap functions, Inf. Sci. 312 (2015) 78–88 . 
[21] G.P. Dimuro , B. Bedregal , H. Bustince , M.J. Asiáin , R. Mesiar , On additive generators of overlap functions, Fuzzy Sets Syst. 287 (2016) 76–96 . Theme:

Aggregation Operations 
[22] G.P. Dimuro , B. Bedregal , H. Bustince , J. Fernandez , G. Lucca , R. Mesiar , New results on pre-aggregation functions, in: Uncertainty Modelling in Knowl-

edge Engineering and Decision Making, Proceedings of the 12th International FLINS Conference (FLINS 2016), vol. 10 of World Scientific Proceedings
Series on Computer Engineering and Information Science, World Scientific, Singapura, 2016, pp. 213–219 . 

[23] G.P. Dimuro, B. Bedregal, H. Bustince, A. Jurio, M. Baczy ́nski, K. Mi ́s, QL -operations and QL -implication functions constructed from tuples ( O, G, N ) and

the generation of fuzzy subsethood and entropy measures, Int. J. Approx. Reason. 82 (2017) 170–192, doi: 10.1016/j.ijar.2016.12.013 . ISSN 0888-613X. 
[24] G.P. Dimuro , B. Bedregal , R.H.N. Santiago , On ( G, N )-implications derived from grouping functions, Inf. Sci. 279 (2014) 1–17 . 

[25] R.O. Duda , P.E. Hart , D.G. Stork , Pattern Classification, 2nd, Wiley-Interscience, 20 0 0 . 
[26] M. Elkano , M. Galar , J. Sanz , H. Bustince , Fuzzy rule-based classification systems for multi-class problems using binary decomposition strategies: on

the influence of n-dimensional overlap functions in the fuzzy reasoning method, Inf. Sci. 332 (2016) 94–114 . 
[27] M. Elkano , M. Galar , J. Sanz , A. Fernández , E. Barrenechea , F. Herrera , H. Bustince , Enhancing multi-class classification in FARC-HD fuzzy classifier: on

the synergy between n-dimensional overlap functions and decomposition strategies, IEEE Trans. Fuzzy Syst. 23 (5) (2015) 1562–1580 . 

[28] S. García , A. Fernández , J. Luengo , F. Herrera , A study of statistical techniques and performance measures for genetics–based machine learning: accu-
racy and interpretability, Soft Comput. 13 (10) (2009) 959–977 . 

[29] D. Gómez , J.T. Rodríguez , J. Montero , H. Bustince , E. Barrenechea , N-dimensional overlap functions, Fuzzy Sets Syst. 287 (2016) 57–75 . Theme: Aggre-
gation Operations 

[30] M. Grabisch , J. Marichal , R. Mesiar , E. Pap , Aggregation Functions, Cambridge University Press, Cambridge, 2009 . 
[31] J.L. Hodges , E.L. Lehmann , Ranks methods for combination of independent experiments in analysis of variance, Ann. Math. Stat. 33 (1962) 4 82–4 97 . 

[32] S. Holm , A simple sequentially rejective multiple test procedure, Scand. J. Stat. 6 (1979) 65–70 . 

[33] J. Hühn , E. Hüllermeier , FURIA: an algorithm for unordered fuzzy rule induction, Data Min. Knowl. Discov. 19 (3) (2009) 293–319 . 
[34] H. Ishibuchi , T. Nakashima , Effect of rule weights in fuzzy rule-based classification systems, Fuzzy Syst. IEEE Trans. 9 (4) (2001) 506–515 . 

[35] H. Ishibuchi , T. Nakashima , M. Nii , Classification and Modeling with Linguistic Information Granules, Advanced Approaches to Linguistic Data Mining,
Advanced Information Processing, Springer, Berlin, 2005 . 

[36] E.P. Klement , R. Mesiar , E. Pap , Triangular Norms, Kluwer Academic Publisher, Dordrecht, 20 0 0 . 
[37] E. Lehrer , A new integral for capacities, Econ. Theory 39 (1) (2009) 157–176 . 

[38] E. Lehrer , R. Teper , The concave integral over large spaces, Fuzzy Sets Syst. 159 (16) (2008) 2130–2144 . 

[39] G. Lucca , G.P. Dimuro , V. Mattos , B. Bedregal , H. Bustince , J.A. Sanz , A family of Choquet-based non-associative aggregation functions for application in
fuzzy rule-based classification systems, in: 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), IEEE, Los Alamitos, 2015 . 

[40] G. Lucca , J. Sanz , G.P. Dimuro , B. Bedregal , R. Mesiar , A. Kolesárová, H.B. Sola , Pre-aggregation functions: construction and an application, IEEE Trans.
Fuzzy Syst. 24 (2) (2016) 260–272 . 

[41] G. Lucca , J.A. Sanz , G.P. Dimuro , B. Bedregal , M.J. Asiain , M. Elkano , H. Bustince , CC-integrals: Choquet-like copula-based aggregation functions and its
application in fuzzy rule-based classification systems, Knowl. Based Syst. 119 (2017) 32–43 . 

https://doi.org/10.13039/501100003593
https://doi.org/10.13039/501100006280
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0001
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0001
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0001
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0001
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0001
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0001
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0001
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0001
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0001
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0001
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0001
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0001
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0001
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0002
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0002
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0002
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0002
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0003
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0003
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0003
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0003
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0004
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0004
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0004
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0004
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0004
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0004
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0005
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0005
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0005
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0005
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0005
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0006
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0006
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0006
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0006
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0007
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0007
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0007
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0007
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0007
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0008
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0008
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0008
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0008
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0009
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0009
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0009
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0009
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0009
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0010
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0010
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0010
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0010
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0010
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0010
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0011
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0011
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0011
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0011
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0011
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0011
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0011
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0011
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0011
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0012
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0012
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0012
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0012
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0012
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0012
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0012
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0012
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0012
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0013
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0013
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0014
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0014
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0014
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0014
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0015
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0015
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0016
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0016
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0016
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0016
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0016
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0017
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0017
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0018
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0018
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0018
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0018
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0019
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0019
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0019
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0020
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0020
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0020
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0021
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0021
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0021
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0021
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0021
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0021
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0021
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0022
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0022
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0022
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0022
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0022
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0022
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0022
https://doi.org/10.1016/j.ijar.2016.12.013
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0024
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0024
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0024
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0024
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0025
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0025
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0025
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0025
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0026
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0026
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0026
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0026
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0026
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0027
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0027
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0027
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0027
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0027
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0027
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0027
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0027
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0028
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0028
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0028
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0028
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0028
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0029
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0029
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0029
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0029
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0029
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0029
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0029
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0030
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0030
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0030
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0030
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0030
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0031
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0031
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0031
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0032
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0032
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0033
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0033
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0033
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0034
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0034
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0034
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0035
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0035
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0035
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0035
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0036
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0036
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0036
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0036
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0037
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0037
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0038
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0038
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0038
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0039
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0039
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0039
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0039
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0039
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0039
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0039
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0040
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0040
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0040
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0040
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0040
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0040
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0040
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0040
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0041
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0041
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0041
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0041
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0041
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0041
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0041
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0041


110 G. Lucca et al. / Information Sciences 435 (2018) 94–110 

 

 

 

 

 

 

 

 

 

 

 

[42] G. Lucca , J.A. Sanz , G.P. Dimuro , B. Bedregal , R. Mesiar , A. Kolesárová, H. Bustince , The notion of pre-aggregation function, in: V. Torra, T. Narukawa
(Eds.), Modeling Decisions for Artificial Intelligence: 12th International Conference, MDAI 2015, Skövde, Sweden, September 21–23, 2015, Proceedings,

Springer International Publishing, Cham, 2015, pp. 33–41 . 
[43] G. Lucca , R. Vargas , G.P. Dimuro , J. Sanz , H. Bustince , B. Bedregal , Analysing some t-norm-based generalizations of the Choquet integral for different

fuzzy measures with an application to fuzzy rule-based classification systems, in: P. Santos, R. Prudencio (Eds.), ENIAC 2014 - Encontro Nacional de
Inteligência Artificial e Computacional, SBC, São Carlos, 2014 . 

[44] G. Mayor , E. Trillas , On the representation of some aggregation functions, in: Proceedings of IEEE International Symposium on Multiple-Valued Logic,

IEEE, Los Alamitos, 1986 . 
[45] R. Mesiar , Choquet-like integrals, J. Math. Anal. Appl. 194 (2) (1995) 477–488 . 

[46] T. Murofushi , M. Sugeno , Fuzzy t-conorm integral with respect to fuzzy measures: generalization of Sugeno integral and Choquet integral, Fuzzy Sets
Syst. 42 (1) (1991) 57–71 . 

[47] T. Murofushi , M. Sugeno , M. Machida , Non-monotonic fuzzy measures and the Choquet integral, Fuzzy Sets Syst. 64 (1) (1994) 73–86 . 
[48] R.B. Nelsen , An introduction to copulas, vol. 139 of Lecture Notes in Statistics, Springer, New York, 1999 . 

[49] J. Sanz , D. Bernardo , F. Herrera , H. Bustince , H. Hagras , A compact evolutionary interval-valued fuzzy rule-based classification system for the modeling
and prediction of real-world financial applications with imbalanced data, IEEE Trans. Fuzzy Syst. 23 (4) (2015) 973–990 . 

[50] J. Sanz , H. Bustince , A. Fernández , F. Herrera , IIVFDT: ignorance functions based interval-valued fuzzy decision tree with genetic tuning, Int. J. Uncertain.

Fuzziness Knowl. Based Syst. 20 (supp02) (2012) 1–30 . 
[51] J. Sanz , A. Fernández , H. Bustince , F. Herrera , IVTURS: a linguistic fuzzy rule-based classification system based on a new interval-valued fuzzy reasoning

method with tuning and rule selection, IEEE Trans. Fuzzy Syst. 21 (3) (2013) 399–411 . 
[52] J.A. Sanz , M. Galar , A. Jurio , A. Brugos , M. Pagola , H. Bustince , Medical diagnosis of cardiovascular diseases using an interval-valued fuzzy rule-based

classification system, Appl. Soft Comput. 20 (2014) 103–111 . 
[53] D. Sheskin , Handbook of Parametric and Nonparametric Statistical Procedures, 2nd, Chapman & Hall/CRC, 2006 . 

[54] V. Torra , Y. Narukawa , The interpretation of fuzzy integrals and their application to fuzzy systems, Int. J. Approx. Reason. 41 (2006) 43–58 . 

[55] Z. Wang , G.J. Klir , Generalized Measure Theory, Springer, Boston, 2009 . 
[56] Z. Wang , K.-S. Leung , M.-L. Wong , J. Fang , A new type of nonlinear integrals and the computational algorithm, Fuzzy Sets Syst. 112 (2) (20 0 0) 223–231 .

[57] X. Wen , L. Shao , Y. Xue , W. Fang , A rapid learning algorithm for vehicle classification, Inf. Sci. 295 (2015) 395–406 . 

http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0042
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0042
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0042
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0042
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0042
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0042
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0042
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0042
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0043
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0043
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0043
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0043
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0043
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0043
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0043
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0044
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0044
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0044
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0045
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0045
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0046
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0046
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0046
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0047
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0047
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0047
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0047
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0048
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0048
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0049
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0049
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0049
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0049
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0049
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0049
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0050
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0050
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0050
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0050
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0050
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0051
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0051
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0051
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0051
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0051
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0052
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0052
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0052
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0052
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0052
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0052
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0052
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0053
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0053
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0054
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0054
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0054
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0055
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0055
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0055
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0056
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0056
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0056
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0056
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0056
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0057
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0057
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0057
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0057
http://refhub.elsevier.com/S0020-0255(17)31150-7/sbref0057

	CF-integrals: A new family of pre-aggregation functions with application to fuzzy rule-based classification systems
	1 Introduction
	2 Basic concepts
	3 Construction of pre-agregation functions using Choquet integrals and left 0-absorbent functions
	4 Applying CF-integrals in fuzzy rule-based classification systems
	4.1 Datasets
	4.2 Statistical tests for performance comparisons

	5 Experimental study and results
	5.1 Analysis of the performance of averaging CF-integrals
	5.2 Studying the quality of non-averaging CF-integrals
	5.3 Comparisons of the best CF-integrals against classical FRMs
	5.3.1 Analyzing the behavior of the representative averaging CF-integral
	5.3.2 Analyzing the behavior of the best non-averaging CF-integral


	6 Conclusion
	 Acknowledgments
	 References


