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In probability theory, mathematical expectation of a random variable is very important.

Choquet expectation (integral), as a generalization of mathematical expectation, is a
powerful tool in various areas, mainly in generalized probability theory and decision

theory. In vector spaces, combining Choquet expectation and Pettis integral has led to
a challenging and an interesting subject for researchers. In this paper, we indicate and

discuss a failure in the previous definition of Choquet-Pettis integral of Banach space-

valued functions. To obtain a correct definition of Choquet-Pettis integral, an open
problem concerning the linearity of the Choquet integral is stated.

Keywords: Choquet expectation; Pettis integral; vector spaces; Choquet-Pettis integral;

generalized probability theory.

1. Introduction

During the last decades the concept of Choquet expectation1–4 started to be applied

in various areas of science.5–13 Let us recall some basic well-known definitions and

notations in generalized probability theory that we will use in this paper.

Let (Ω,F) be a fixed measurable space.
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Definition 1.4 A set function µ : F → [0,∞] is called a monotone measure when-

ever µ (∅) = 0, µ(Ω) > 0 and µ(A) ≤ µ(B) whenever A ⊆ B.

Definition 2. A monotone measure µ is called finite if ||µ|| = µ (Ω) < ∞. µ is

said an additive measure if µ (A ∪B) = µ (A) + µ (B), whenever A ∩B = ∅.

Definition 3. A monotone measure µ is called a monotone probability (or capac-

ity) if ‖µ‖ = 1.

Definition 4. A capacity with σ-additivity assumption, i.e., µ is additive and

continuous from below, is called a probability measure.

The class of real-valued measurable functions is denoted by M and the class

of nonnegative real-valued measurable functions is denoted by M+. Given a real

monotone measure space (Ω,F , µ), we denote the elements of Ω by ω and we put

{f ≥ t} = {ω : f (ω) ≥ t} for any t ∈ R.

Definition 5.1–3 (I) The Choquet expectation (integral) of f ∈ M+ with respect

to a monotone measure µ on A ∈ F is defined by

(C)

∫
A

fdµ =

∫ +∞

0

µ (A ∩ {f ≥ t}) dt ,

where the right-hand side integral is the Riemann integral. If (C)
∫
A
fdµ <∞, then

we say that f is Choquet integrable on A with respect to µ. Instead of (C)
∫

Ω
fdµ,

we will write (C)
∫
fdµ.

(II) Suppose ||µ|| <∞. The (asymmetric) Choquet integral of f ∈M with respect

to a real monotone measure µ on A ∈ F is defined by

(C)

∫
A

fdµ = (C)

∫
A

f+dµ− (C)

∫
A

f−dµ ,

where µ is a dual (conjugate) to µ given by µ(B) = µ (Ω) − µ (Ω\B), f+ = f ∨ 0

and f− = − (f ∧ 0).When the right-hand side is ∞−∞, the Choquet integral is

not defined. If (C)
∫
A
fdµ is finite, then we say that f is Choquet integrable on A

with respect to µ.

Remark 1. If µ = P is the probability measure, then (C)
∫
fdµ = E[f ], where

E [·] means the mathematical expectation with respect to P.

Definition 6.2 Let f, g ∈ M . We say that f and g are comonotonic if f (ω) <

f (ω′)⇒ g (ω) ≤ g (ω′) for ω, ω′ ∈ Ω.

Let X be a real Banach space and X∗ its dual.

Definition 7.12 Let f : Ω→ X and g : Ω→ X be weakly measurable. f and g are

said to be weakly comonotonic if for each x∗ ∈ X∗, x∗f and x∗g are comonotonic.
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2. On Choquet-Pettis Integral

In 2014, Park12 introduced the following concept of Choquet-Pettis integral of

Banach space-valued functions (in short, Banach-valued functions). He claimed that

the Choquet-Pettis integral is an extension of the Choquet integral for Banach-

valued functions and this integral is also a generalization of the Pettis integral,

since the Choquet integral and the Lebesgue integral coincide when µ is a classical

σ−additive measure.12 The concept of Pettis integral, as a generalization of the

Lebesgue integral, was introduced by Pettis in 1938.14

Definition 8.12 A function f : Ω → X is called Choquet-Pettis integrable if for

each x∗ ∈ X∗ the function x∗f is Choquet integrable and for every A ∈ F there

exists xA ∈ X such that x∗ (xA) = (C)
∫
A
x∗fdµ for all x∗ ∈ X∗. The vector xA is

called the Choquet-Pettis integral of f on A and is denoted by (CP )
∫
A
fdµ.

Park12 also proved two basic properties of Choquet-Pettis integral, we cite them in

Proposition 1.

Proposition 1. Let f : Ω→ X and g: Ω→ X be Choquet-Pettis integrable. Then

(1) af is Choquet-Pettis integrable and

(CP )

∫
A

afdµ = a (CP )

∫
A

fdµ

for all A ∈ F and a > 0 (positive homogeneity);

(2) if f and g are weakly comonotonic, then f + g is Choquet-Pettis integrable and

(CP )

∫
A

(f + g)dµ = (CP )

∫
A

fdµ+ (CP )

∫
A

gdµ

for all A ∈ F (comonotonicity).

In this paper, we discuss Choquet-Pettis integral of Banach-valued functions

introduced by Park.12

3. The Failure of Choquet-Pettis Integral: A Counter Example

Now, we give a short remark about the failure of Choquet-Pettis integral introduced

by Park,12 in general. His Choquet integral is the asymmetric version which is

comonotone, but not homogenoeus, only positively homogeneous, on the other side,

linear operators from X∗ form a homegeneous set, i.e., if x∗ is from X∗, then also

−x∗ is from X∗. But the following example shows that the existence of Choquet-

Pettis integral forces, in some sense, the homogeneity, and we are in troubles.

Example 1. Let X = R2 be Banach space (say, equipped by l2 norm). Then its

dual X∗ = X, and if x∗ = (a, b) and x = (x1, x2), we have x∗x = ax1+bx2. Consider

only Choquet-Pettis integral on a (finite) measure space (Ω, µ) and fix f : Ω −→ X

and f(ω) = (x1(ω), x2(ω)) (to avoid problems with measurability, we can consider
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Ω to be finite, and we can deal with power set). Obviously, integrability means that

for this f , and any subset A of Ω, there is an element xA = (αA, βA) such that for

each x∗ we have

x∗xA = a · αA + b · βB = (C)

∫
A

x∗fdµ = (C)

∫
A

(ax1(ω) + bx2(ω)) dµ(ω) . (1)

If a = 1 and b = 0, we obtain immediately that αA = (C)
∫
A
x1dµ. If a = 0, b = 1,

we have βA = (C)
∫
A
x2dµ. But, coming back to equality (1), this means that

our Choquet integral w.r.t measure µ is linear when considering functions x1 and

x2. Thus, when looking for Choquet-Pettis integrable functions, we should restrict

ourselves (when µ is fixed) to look for functions x1, x2 such that for any real a, b it

holds

(C)

∫
A

(a · x1 + b · x2)dµ = a · (C)

∫
A

x1dµ+ b · (C)

∫
A

x2dµ .

Of course, if µ is additive, then everything holds (as then we are back by the stan-

dard Pettis integral), i.e., any pair of integrable functions x1 and x2 can be chosen

to define Pettis integrable function f defined by f(ω) = (x1(ω), x2(ω)), however, in

general there may be no Choquet-Pettis integrable function up to constant func-

tions. Take e.g. for our finite space Ω containing at least two elements as µ the

strongest capacity, µ(B) = 1 whenever B 6= ∅, the corresponding Choquet integral

is max operator, and thus Choquet-Pettis integrability means the validity, for any

real a, b of the equality

max{a · x1(ω) + b · x2(ω)|ω ∈ Ω} = a ·max{x1(ω)|ω ∈ Ω}

+ b ·max{x2(ω)|ω ∈ Ω} ,

which clearly holds only for constant functions x1 and x2.

4. Concluding Remarks and an Open Problem

In this paper, we have investigated Choquet-Pettis integral of Banach-valued func-

tions introduced by Park.12 We have also shown that existence of Choquet-Pettis

integral forces, in some sense, the homogeneity, which is a contradiction. It would

be possible to deal with the symmetric Choquet integral15 which is homogeneous,

however, then the (comonotone) additivity is lost. Therefore, the definition of the

Choquet-Pettis integral is still an open problem for further investigations.

We also propose to consider the following problem:

Open Problem: For which functions f, g, we can ensure that for any a, b ≥ 0,

(C)

∫
(a · f + b · g) dµ = a · (C)

∫
fdµ+ b · (C)

∫
gdµ? (2)

It is not difficult to check that, due to the positive homogeneity of the (asymmetric)

Choquet integral, the equality (2) is equivalent to the additivity equality

(C)

∫
(f + g)dµ = (C)

∫
fdµ+ (C)

∫
gdµ .
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Moreover, if µ is modular on a set system A which is closed under unions and

intersections, µ(A ∪ B) + µ(A ∩ B) = µ(A) + µ(B) for any A,B from A, then (2)

holds for any a, b ≥ 0 and f, g such that ({f ≥ t})t∈R ⊂ A, ({g ≥ t})t∈R ⊂ A . In

particular, if µ is additive on F then (2) holds for any f, g. Similarly, if f and g

are comonotonic, then A = ({f ≥ t})t∈R ∪ ({g ≥ t})t∈R is a chain and hence any

µ is modular on A, proving that the comonotonicity of f and g is sufficient for the

validity of (2), independently of the considered monotone measure µ.
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