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Abstract There is no doubt that usual optimization criteria examined in the literature on
optimization of Markov reward processes, e.g. total discounted or mean reward, may be quite
insufficient to characterize the problem from the point of the decision maker. To this end it
is necessary to select more sophisticated criteria that reflect also the variability-risk features
of the problem (cf. Cavazos-Cadena and Fernandez-Gaucherand (1999), Cavazos-Cadena and
Hernández-Hernández (2005), Howard and Matheson (1972), Jaquette (1976), Kawai (1987),
Mandl (1971), Sladký (2005),(2008),(2013), van Dijk and Sladký (2006), White (1988)). In the
present paper we consider unichain Markov reward processes with finite state spaces and assume
that the generated reward is evaluated by an exponential utility function. Using the Taylor
expansion we present explicit formulae for calculating variance and higher central moments of
the total reward generated by the Markov reward chain along with its asymptotic behavior and
the growth rates if the considered time horizon tends to infinity.
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1 Formulation and Notation

In this note, we consider at discrete time points Markov reward process X = {Xn, n = 0, 1, . . .}
with finite state space I = {1, 2, . . . , N}, matrix of transition probabilities P = [pij ] and tran-
sition reward matrix R = [rij ], i.e. reward rij is accrued to a transition from state i to state
j. The symbol Ei denotes the expectation if X0 = i; P(Xm = j) is the probability that X is in
state j at time m. Moreover, I denotes an identity matrix and e is reserved for a unit column
vector.

Recall that P ∗ := lim
n→∞

1
n

∑n−1
k=0 P

k (with elements p∗ij) exists, and if P is aperiodic then even

P ∗ = lim
k→∞

P k and the convergence is geometrical. Moreover, if P is unichain, i.e. P contains

a single class of recurrent states, then p∗ij = p∗j , i.e. limiting distribution is independent of the
starting state (see e.g. Puterman (1994), Ross (1983)).

In what follows, the reward generated by the Markov chain X is evaluated by an exponential
utility function, say uγ(·), i.e. utility function with constant risk sensitivity γ ∈ R, where

uγ(ξ) :=

{
sign (γ) exp(γξ) if γ ̸= 0

ξ for γ = 0.
(1)

Obviously, uγ(·) is strictly increasing and convex, if γ > 0, for γ = 0 (the risk neutral case)
uγ(ξ) = ξ is linear, if γ < 0 then uγ(·) is concave (see e.g. Howard and Matheson (1972),
Jaquette (1976), Sladký (2008),(2013)).
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Observe that U (γ)(ξ) := E exp(γξ) is also the moment generating function of ξ provided
the expectation is finite for |γ| < h, and some h > 0. As it is well-known (see e.g. Gut(2004),
Th. 8.3) then

E exp[γξ]k < ∞ for all k = 1, 2, . . . E ξn =
dn

dγn
U (γ)(ξ)|γ=0, (n = 1, 2, . . .) (2)

and the Taylor expansion around γ = 0 reads

U (γ)(ξ) = 1 + E
∞∑
k=1

(γξ)k

k!
= 1 +

∞∑
k=1

γk

k!
· E ξk for |γ| < h. (3)

Considering Markov reward chains, let

ξ(n) =

n−1∑
k=0

rXk,Xk+1
be the (random) total reward received in the n next transitions

of the considered Markov chain X.

Supposing that X0 = i, on taking expectation we have for the first and second moment of ξ(n)

Vi(n) := Ei (ξ
(n)) = Ei

n−1∑
k=0

rXk,Xk+1
, Si(n) := Ei (ξ

(n))2 = Ei (

n−1∑
k=0

rXk,Xk+1
)2 (4)

hence the corresponding variance (i.e. the second central moment)

σi(n) := Ei [ξ
(n) − Vi(n)]

2 = Si(n)− [Vi(n)]
2. (5)

Similarly, if the chain starts in state i for the expected utility we have

Ui(γ, n) := Ei [exp(γξ
(n))] = Ei exp[γ (ri,X1 + ξ

(1,n)
X1

)], (6)

where ξ
(m,n)
Xm

(for m < n) is the reward obtained in the interval [m,n] starting with state Xm.

In what follows let, U(γ, n) be the (column) vector of expected utilities with elements
Ui(γ, n). Conditioning in (6) on X1, from (6) we immediately get the recurrence formula

Ui(γ, n+ 1) =
∑
j∈I

pij · eγrij · Uj(γ, n) =
∑
j∈I

qij · Uj(γ, n) where Uj(γ, 0) = 1 (7)

U(γ, n+ 1) = Q · U(γ, n) with U(γ, 0) = e, where Q = [qij ] = P ⊗R (8)

the symbol ⊗ is used for the Hadamard product of matrices, i.e. qij := pij · eγrij

The paper is organized as follows. Section 2 contains basic formulae for calculating higher
and higher central moments. Explicit formulae for higher central moments can be found in
section 3, growth rates of central moments are discussed in section 4. Conclusions are made in
the last section.

2 Exponential Utility and Higher Moments

Recall that by (7) Ui(γ, n) = Ei [exp(γξ
(n))] is also the moment generating function of ξ(n).

Hence (cf. (2)) for some h > 0 and any |γ| < h
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d
dγEi [exp(γξ

(n))] = Ei ξ
(n)[exp(γξ(n))], hence for k = 0, 1, 2 . . . , n = 0, 1, 2 . . .

M
(k)
i (n) := Ei

(
ξ(n)

)k
=

dk

dγk
Ei [exp(γξ

(n))]|γ=0 is the kth moment of ξ(n) (9)

and (cf. (3)) the Taylor expansion around γ = 0 reads

Ui(γ, n) = 1 +
∞∑
k=1

γk

k!
M

(k)
i (n) for |γ| < h. (10)

This along with the identities (6), (7) will be extremely useful for finding explicit formulas of
moments of ξ(n). In particular, since for |γ| < h

eγrij = 1 +

∞∑
k=1

γk

k!
[rij ]

k

from (7),(10) we immediately get

1 +
∞∑
k=1

γk

k!
M

(k)
i (n+ 1) =

∑
j∈I

pij

(
1 +

∞∑
k=1

γk

k!
[rij ]

k

) (
1 +

∞∑
k=1

γk

k!
M

(k)
j (n)

)
. (11)

Similarly on introducing the moment generating function for the central moments of ξ(n) by

Ũi(γ, n) := Ei [exp(γ(ξ
(n) − Ei ξ

(n))] for all i ∈ I (12)

for the kth central moment of ξ(n) we have

M̃
(k)
i (n) := Ei

[
ξ(n) − Ei ξ

(n)
]k

=
dk

dγk
Ei [exp(γ(ξ

(n) − Ei ξ
(n))]|γ=0 (13)

and the Taylor expansion around γ = 0 for |γ| < h reads

Ũi(γ, n) = 1 +

∞∑
k=1

γk

k!
· M̃ (k)

i (n). (14)

For what follows, let for real g, wi’s (i ∈ I)

φ̃ij(w, g) := rij − g + wj − wi where c = max
i∈I

|wi|.

Then rXk,Xk+1
= φ̃Xk,Xk+1

(w, g) + g + wk+1 − wk and from the first part of (7) we arrive at we
arrive at

Vi(n) = ng + wi + Ei [

n−1∑
k=0

φXk,Xk+1
(w, g)− wγ

Xn
]. (15)

It is well-known that for unichain transition matrix P wi’s and g can be selected such that if∑
i∈I

pijφij(w, g) = 0 for all i ∈ I then Vi(n) = ng + wi + EiwXn = 0

Similarly, from (7) we conclude that

Ui(γ, n) = Ei e
γ

n−1∑
k=0

rXk,Xk+1
= eγ[ng+wγ

i ] × Ei e
γ[

n−1∑
k=0

φ̃Xk,Xk+1
(wγ ,g)−wγ

Xn
]
. (16)
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Observe that the first term on the RHS of (15) is non-random and hence

Ei e
γ[

n−1∑
k=0

φ̃Xk,Xk+1
(wγ ,g)−c]

≤ Ui(γ, n)

eγ[ng+wγ
i ]

≤ Ei e
γ[

n−1∑
k=0

φ̃Xk,Xk+1
(wγ ,g)+c]

(17)

If wγ
i ’s and g are selected such that for any i ∈ I∑

j∈I
pij e

γ[rij−wγ
i +wγ

j −g] = 1 ⇐⇒
∑
j∈I

pij e
γ[rij+wγ

j ] = eγ[g+wi] (18)

then for X0 = ℓ, k = 0, 1, . . . Eℓ {exp[γφ̃Xk,Xk+1
(wγ , g)]|Xk = m} = 1.

Since for vi := eγwi , ρ := eg the RHS of the second equality of (18) can be also written as∑
j∈I qij vj = ρvi, the (column) vector v (with elements vi’s) is the Perron eigenvector of a

nonnegative matrix Q with elements qij = pij e
γrij and ρ is the spectral radius of Q. It is well

known that if Q is irreducible then the Perron eigenvector v can be selected strictly positive.
Observe that Q is irreducible if the matrix P is irreducible. Moreover, v can be selected strictly
positive if the matrix P is only unichain and the risk sensitive coefficient γ is sufficiently close
to null (cf. Gantmakher (1959)).

Since for suitably selected g, wi’s E eγφXn−1,Xn (w,g)+c|Xn−1 = i] = eγc holds, then for the
RHS of (18) we can conclude that

Ei e
γ[

n−1∑
k=0

φ̃Xk,Xk+1
(w,g)−c]

= Ei e
γ[

n−2∑
k=0

φ̃Xk,Xk+1
(wγ ,g)−c]

and on iterating the above displayed formula we can conclude that

Ei e
γ[

n−1∑
k=0

φ̃Xk,Xk+1
(wγ ,g)−w′]

= Ei e
γ[−w′].

Inserting into (18) we arrive at the following bounds on Ui(γ, n)

eγ[ng+wγ
i ]−c ≤ Ui(γ, n) ≤ eγ[ng+wγ

i ]+c (19)

For the central moments similarly to (12), (13) we can conclude from (18), (19) that

Ũi(γ, n) := Ei e
γ[ξ(n)−(ng−wi+wXn )] =

∑
j∈I

pije
γ(rij−g+wi−wj)Ũj(γ, n− 1) (20)

where

Ũj(γ, n− 1) = Eje
γ[ξ(1,n)−(n−1)g+wj−wXn ].

In analogy to (11) we get

1 +

∞∑
k=1

γk

k!
M̃

(k)
i (n+ 1) =

∑
j∈I

pij
(
1 +

∞∑
k=1

γk

k!
[rij − (g+wi −wj)]

k
)
×
(
1 +

∞∑
k=1

γk

k!
M̃

(k)
j (n)

)
. (21)

3 Higher central moments: Explicit Formulas

Similarly as in the previous section our analysis based on (12),(13),(14) and (19) enables to
generate recursively all central moments of ξ(n). Recall that

Ũi(γ, n+ 1) =
∑
j∈I

pij e
γ [rij−(g+wi−wj)]Ũj(γ, n), Ũj(γ, n) = 1 +

∞∑
k=1

γk

k!
M̃

(k)
j (n)

eγ [rij−(g+wi−wj)] = 1 +
∞∑
k=1

γk

k!
[rij − (g + wi − wj)]

k
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By comparing in (20) the terms γk (k = 1, 2, . . .) we obtain the following recursive formulas

for the central moments (obviously, the first central moment M̃
(1)
i (n) ≡ 0 for all n).

In particular,

For k = 1 : M̃
(1)
i (n+ 1) =

∑
j∈I

pij M̃
(1)
j (n) ⇒ M̃

(1)
j (n) = 0. (22)

For k = 2 : M̃
(2)
i (n+ 1) =

∑
j∈I

pij [(rij + wj)− (g + wi)]
2 +

∑
j∈I

pij M̃
(2)
j (n). (23)

For k = 3 : M̃
(3)
i (n+ 1) =

∑
j∈I

pij [(rij + wj)− (g + wi)]
3

+3
∑
j∈I

pij [(rij + wj)− (g + wi)] M̃
(2)
j (n) +

∑
j∈I

pij M̃
(3)
j (n). (24)

For k = 4 : M̃
(4)
i (n+ 1) =

∑
j∈I

pij [(rij + wj)− (g + wi)]
4

+6
∑
j∈I

pij [(rij + wj)− (g + wi)]
2 M̃

(2)
j (n)

+ 4
∑
j∈I

pij [(rij + wj)− (g + wi)] M̃
(3)
j (n) +

∑
j∈I

pij , M̃
(4)
j (n) (25)

In general:

M̃
(s)
i (n+ 1) =

∑
j∈I

pij {[(rij + wj)− (g + wi)]
s}

+
∑
j∈I

pij

{
s−1∑
k=1

(
s
k

)
[(rij + wj)− (g + wi)]

k M̃
(s−k)
j (n)

}
+
∑
j∈I

pij M̃
(s)
j (n) (26)

that can be also written as

M̃
(s)
i (n+ 1) =

s∑
k=0

(
s
k

) ∑
j∈I

pij

{
[(rij + wj)− (g + wi)]

k M̃
(s−k)
j (n)

}
(27)

4 Growth rates of the central moments

To begin with, let us recall the result for the growth rate of the variance of the total reward.
In virtue of (23) we immediately conclude that the variance (i.e. the central second moment)

of the total reward grows linearly over time and the growth rate g(2) of M̃
(2)
i (n) in (24) can be

found as a solution of

M̃
(2)
i (n) = ng(2) + w

(2)
i where (28)

g(2) + w
(2)
i = s

(2)
i +

∑
j∈I

pijw
(2)
j , s

(2)
i =

∑
j∈I

pij [(rij + wj)− (g + wi)]
2. (29)
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To establish the growth rate of M̃
(3)
i (n), it suffices to insert into (24) from (23). Since∑

j∈I pij [(rij + wj)− (g + wi)] g
(2) = 0 we can conclude that∑

j∈I
pij [(rij + wj)− (g + wi)] (ng

(2) + w
(2)
j ) =

∑
j∈I

pij [(rij + wj)− (g + wi)]w
(2)
j .

On inserting into (23) we have

M̃
(3)
i (n+ 1) =

∑
j∈I

pij [(rij + wj)− (g + wi)]
3 + 3

∑
j∈I

pij [(rij + wj)− (g + wi)]w
(2)
j

+
∑
j∈I

pij M̃
(3)
j (n). (30)

Hence using the same arguments as for the second central moment we can conclude that

M̃
(3)
i (n) = ng(3) + w

(3)
i where g(3) + w

(3)
i = s

(3)
i +

∑
j∈I

pijw
(3)
j (31)

s
(3)
i =

∑
j∈I

pij

{
[(rij + wj)− (g + wi)]

3 + 3 [(rij + wj)− (g + wi)]w
(2)
j

}
. (32)

Conclusion: The growth of the second and the third central moments of the total reward is
linear over time.

Unfortunately, this approach cannot be directly applied for finding formulas for the higher
central moments of exponential utility functions as the following analysis can show. In particular,

to establish the growth rate of M̃
(4)
i (n), we insert into (25) from (24) and (23). After some

algebra, since
∑

j∈I pij [(rij + wj)− (g + wi)] g
(3) = 0, we arrive at

M̃
(4)
i (n+ 1) =

∑
j∈I

pij [(rij + wj)− (g + wi)]
4 + 6

∑
j∈I

pij [(rij + wj)− (g + wi)]
2 (ng(2) + w

(2)
j )

+ 4
∑
j∈I

pij [(rij + wj)− (g + wi)]w
(3)
j +

∑
j∈I

pij M̃
(4)
j (n). (33)

Observe that the above equations (33) for the fourth central moments M̃
(4)
i (n) have the same

structure as recursive equations (23),(24) for second a third central moments M̃
(2)
i (n), M̃

(3)
i (n).

Unfortunately, the second term on the RHS of (33) contains also n, hence analogy with formulas
for calculating average reward of a (unichain) Markov decision process cannot be used.

5 Conclusions

In the paper explicit formulae for calculating variance and higher central moments of the total
reward generated by the Markov reward chain were obtained along with their growth rates if
the considered time horizon tends to the infinity. In particular, it is shown that not only the
variance (i.e. the second central moment) but also the skewness (i.e. the third central moment)
grow linearly over time. Unfortunately, the linear growth rate does not hold for higher central
moments.
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