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Abstract. In this note we consider continuous-time Markov decision processes with
finite state and actions spaces where the stream of rewards generated by the Markov
processes is evaluated by an exponential utility function with a given risk sensitivity
coefficient (so-called risk-sensitive models). If the risk sensitivity coefficient equals
zero (risk-neutral case) we arrive at a standard Markov decision process. Then we
can easily obtain necessary and sufficient mean reward optimality conditions and the
variability can be evaluated by the mean variance of total expected rewards. For the
risk-sensitive case, i.e. if the risk-sensitivity coefficient is non-zero, for a given value
of the risk-sensitivity coefficient we establish necessary and sufficient optimality con-
ditions for maximal (or minimal) growth rate of expectation of the exponential utility
function, along with mean value of the corresponding certainty equivalent. Recall that
in this case along with the total reward also its higher moments are taken into account.
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1 Introduction
The usual optimization criteria examined in the literature on stochastic dynamic programming, such as a total
discounted or mean (average) reward structures, may be quite insufficient to characterize the problem from the
point of a decision maker. To this end it may be preferable if not necessary to select more sophisticated criteria that
also reflect variability-risk features of the problem. Perhaps the best known approaches stem from the classical
work of Markowitz (cf. [9]) on mean variance selection rules, i.e. we optimize the weighted sum of average or
total reward and its variance.

In this paper we restrict attention on continuous-time Markov decision chains models with finite state spaces
where the variability is measured either by an exponential utility function with a given value of the risk-sensitivity
coefficient or in the class of long-run average optimal policies by choosing policies with minimal mean-variance.
Observe that in the former case along with the total reward also its higher moments are taken into account.

The article is structured as follows. Section 2 contains notations and summary of basic facts on continuous-
time Markov reward processes. Markov models with exponential utility function (called risk-sensitive Markov
chains) are studied in section 3 along with the corresponding moment generating functions. Section 4 is devoted
to mean-variance optimality in continuous-time Markov decision chains; the results are mostly adapted from [17].
Section 5 summarized algorithmic procedures for finding optimal decisions. Conclusions are made in Section 6.

2 Notations and Preliminaries
In this note we consider Markov decision processes with finite state space I = {1, 2, . . . , N} in continuous-time.
In particular, the development of the considered Markov decision process X = {X(t), t ≥ 0} (with finite state
space I) over time is governed by the transition rates q(j|i, a), for i, j ∈ I, depending on the selected action
a ∈ Ai. For j ̸= i q(j|i, a) is the transition rate from state i into state j, q(i|i, a) =

∑
j∈I,j ̸=i q(j|i, a) is the

transition rate out of state i. As concerns reward rates, r(i) denotes the rate earned in state i ∈ I, and r(i, j) is the
transition reward accrued to a transition from state i to state j.

Let ξ(t) :=
∫ t

0
r(X(τ)dτ +

∑N(t)
k=0 r(X(τ−), X(τ+)), obviously ξ(t) is the (random) reward obtained up to

time t, where X(t) denotes the state at time t, X(τ−), X(τ+) is the state just prior and after the kth jump, and N(t)

is the number of jumps up to time t. Similarly ξ(t′, t) :=
∫ t

t′
r(X(τ))dτ +

∑N(t)
k=N(t′) r(X(τ−), X(τ+)) is the
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total (random) reward obtained in the time interval [t′, t); hence ξ(t+∆) = ξ(∆)+ξ(∆, t+∆) or ξ(t+∆) =
ξ(t) + ξ(t, t+∆).

In this note we shall suppose that the obtained random reward, say ξ, is evaluated by an exponential utility function,
say uγ(·), i.e. utility functions with constant risk sensitivity depending on the value of the risk sensitivity coefficient
γ.

In case that γ > 0 (the risk seeking case) the utility assigned to the (random) reward ξ is given by uγ(ξ) :=
exp(γξ), if γ < 0 (the risk averse case) the utility assigned to the (random) reward ξ is given by uγ(ξ) :=
− exp(γξ), for γ = 0 it holds uγ(ξ) = ξ (risk neutral case). Hence we can write

uγ(ξ) = sign(γ) exp(γξ) (1)

and for the expected utility we have (E is reserved for expectation)

Ū (γ)(ξ) := Euγ(ξ) = sign(γ)E[exp(γξ)], where E [exp(γξ)] =
∞∑
k=0

E
1

k!
(γξ)k. (2)

Then for the corresponding certainty equivalent Zγ(ξ) we have

uγ(Zγ(ξ)) = sign(γ)E[exp(γξ)] ⇐⇒ Zγ(ξ) = γ−1 ln{E [exp(γξ)]}. (3)

From (2),(3) we immediately conclude that

Zγ(ξ) ≈ Eξ +
γ

2
Var ξ. (4)

In this note we focus attention on properties of the expected utility and the corresponding certainty equivalents
if the stream of rewards generated by continuous-time Markov reward chain is evaluated by exponential utility
functions. Recall that exponential utility function is separable, i.e. uγ(ξ(1) + ξ(2) = sign(γ)uγ(ξ(1)) · uγ(ξ(1)),
what is very important for sequential decision problems. For what follows we shall need some more notions and
notation.

A (Markovian) policy controlling the decision process is given as a piecewise constant right continuous function
of time. In particular, π = f(t), is a piecewise constant, right continuous vector function where f(t) ∈ F ≡
A1 × . . .×AN , and fi(t) ∈ Ai is the decision (or action) taken at time t if the process X(t) is in state i. Since π
is piecewise constant, for each π we can identify the time points 0 < t1 < t2 . . . < ti < . . . at which the policy
switches; we denote by f i ∈ F the decision rule taken in the time interval (ti−1, ti]. Policy which takes at all times
the same decision rule, i.e. π ∼ f , is called stationary; Q(f) is the transition rate matrix with elements q(j|i, fi).

Let for f ∈ F Q(f) = [qij(fi)] be an N × N matrix whose ijth element qij(fi) = q(j|i, fi) for i ̸= j and
for the iith element we set qii(fi) = −q(i|i, fi). The sojourn time of the considered process X in state i ∈ I is
exponentially distributed with parameter [q(i|i, fi)]. Hence the expected value of the reward obtained in state i ∈ I
equals r̃i(fi) = [q(i|i, fi)]−1 r(i) +

∑
j∈I,j ̸=i q(j|i, fi) r(i, j) and r̃(f) is the (column) vector of reward rates at

time t.

Recall that the row sums of a transition rate matrix Q(f) are equal to null. Hence ρ(f) = 0 is an eigenvalue of
Q(f), the corresponding eigenvector is a unit vector. Moreover, the real part of every other eigenvalue of Q(f) is
negative. In particular, if for some i ∈ I and f ∈ F it happens that

∑
j ̸=i qij(fi) < qii(fi) on reaching state i the

process X stops with probability qii(fi) = −
∑

j ̸=i qij(fi) and if Q(f) is irreducible then for the spectral radius
of Q̃(f) = Q(f) it holds ρ̃(f) < 0 and the real part of every other eigenvalue of Q(f) is less than ρ̃(f). Observe
that [I − Q̃(f)]−1 =

∑∞
k=0[Q̃(f)]k exists2. It can be shown (see e.g. Gantmakher [1]) that the matrix Q̃(f) is

nonsingular.

Using policy π = f(t) means that if the Markov chain X was found to be in state i at time t, the action chosen
at this time is fi(t), i.e. the ith coordinate of f(t) ∈ F . For any policy π = f(t) the accompanying set of transition
rate matrices {Q(f(t)), t ≥ 0} determines a continuous-time (in general, nonstationary) Markov process.

Let P (·, ·, π) be the N × N matrix of transition functions associated with Markov chain X , i.e. for each
0 ≤ s ≤ t the ijth element of P (·, ·, π), denoted Pij(s, t, π), is the probability that the chain is in state j at time
t given it was in state i at time s and policy π is followed. Obviously, by the well-known Chapman–Kolmogorov
equation P (s, t, π) =

∑
u∈I P (s, u, π)P (u, t, π) for each 0 ≤ s < u < t. The values P (s, t, π) are absolutely

continuous in t and satisfy the system of differential equations (except possibly where the piecewise constant policy
switches)

∂P (s, t, π)

∂t
= P (s, t, π)Q(f(t)),

∂P (s, t, π)

∂s
= −Q(f(s))P (s, t, π) (5)
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where P (s, s, π) = I . In what follows it will be often convenient to let P (t, π) = P (0, t, π). By (5) we then
immediately get for any t ≥ 0

dP (t, π)

dt
= P (t, π)Q(f(t)) along with P (t, π) = I +

∫ t

0

P (u, π)Q(f(u))du. (6)

Moreover, if the considered time horizon t tends to null, i.e. if for any piecewise constant policy π = f(t) the
considered time horizon ∆ ↓ 0, for the ij-th element of P (∆, π) we have

Pij(∆, π) =

{
1 + qii(fi(t))∆ + o(∆2) for i = j

qij(fi(t))∆ + o(∆2) for i ̸= j
(7)

It is well known that for any stationary policy π ∼ f there exists limt→∞ P (t, π) = P ∗(π) and, moreover,
that for any t ≥ 0 (for stationary policy π ∼ f we write f instead of π)

P (t, f)P ∗(f) = P ∗(f)P (t, f) = P ∗(f)P ∗(f) = P ∗(f), (8)

Q(f)P ∗(f) = P ∗(f)Q(f) = 0 where P (t, f) = exp(Q(f)t) =
∞∑
k=0

1

k!
[Q(f).t]k. (9)

3 Exponential Utility and the Corresponding Moments
Supposing that stationary policy π ∼ f is followed, let U (γ)

i (t, f) := Ef
i e

γξ(t) and by (2) Ū (γ)
i (t, f) := Ef

i u
γ(ξ(t))

be the expected value of the random reward evaluated according the exponential utility function uγ(·) earned up
to time t if the process starts in state i (obviously Ū

(γ)
i (t, f) = sign(γ)U

(γ)
i (t, f)). Recall that E f

i [exp(γξ(t))] =

U
(γ)
i (t, f) is also the moment generating function of ξ(t). Hence (cf. (2)) for the k-th moment of ξ(t) it holds

M
(k)
i (ξ(t), f) :=

dk

dγk
E f

i [exp(γξ(t)))]|γ=0 = E f
i ξ(t))

k−1 (10)

and the Taylor expansion around γ = 0 reads

U
(γ)
i (ξ(t), f) = 1 +

∞∑
k=1

γk

k!
M

(k)
i (ξ(t), f) for |γ| < h. (11)

Since uγ(·) is separable and multiplicative we have

uγ(ξ(t) + ∆) = sign(γ)uγ(ξ(∆)) · uγ(ξ(∆, t)), or uγ(ξ(t+∆)) = sign(γ)uγ(ξ(t)) · uγ(ξ(t, t+∆)).

On taking expectations we immediately conclude that for U (γ)
i (t, f) := Ef

i {eγξ(t)} we have (δij is the Kronecker
symbol)

U
(γ)
i (t+∆, f) =

N∑
j=1

Pij(∆, f) · [eγr(i)∆δij + eγr(ij)(1− δij)] · U (γ)
j (t, f). (12)

Since

eγr(i)∆ = 1 + γr(i)∆ + o(∆2), Pij(∆, f) =

{
1 + qii(fi)∆ + o(∆2) for i = j

qij(fi)∆ + o(∆2) for i ̸= j

on letting ∆ → 0+ we conclude that

U
(γ)
i (t+∆, f) = (1 + qii(fi)∆)eγr(i)∆U

(γ)
i (t, f) +

N∑
j=1, j ̸=i

qij∆eγr(ij) · U (γ)
j (t, f) + o(∆2). (13)

Since the process X is time homogeneous and (1 + γr(i)∆)(1 + qii(fi)∆) = 1 + (qii(fi) + γr(i))∆ + o(∆2)
after some manipulation we arrive at

dU
(γ)
i (t, f)

dt
= (qii(fi) + γr(i))U

(γ)
i (t, f) +

N∑
j=1,j ̸=i

qij(fi)e
γr(ij) · U (γ)

j (t, f) (14)



that can be also written in matrix form as

dU (γ)(t, f)

dt
= Q̄(γ)(f) · U (γ)(t, f) (15)

where U (γ)(t, f) = [U
(γ)
i (t, f)] is a (column) vector, and Q̄(γ)(f) = [q̄

(γ)
ij (fi)] is an N ×N matrix with nonneg-

ative off-diagonal elements

q̄
(γ)
ij (fi) =

{
qii(fi) + γ · r(i) for i = j

qij(fi) · eγ r(i,j) for i ̸= j

Hence by (15) if U (γ)(0, f) = e

U (γ)(t, f) = exp[Q̄(γ)(f).t] · e =
∞∑
k=0

1

k!
[Q̄(γ)(f).t]k · e. (16)

To study asymptotic behavior of U (γ)(t, f) first recall (cf. Gantmakher [1]) that for any matrix with non-negative
off-diagonal elements there exists a positive eigenvalue (called the dominant eigenvalue) such that the real part of
any other eigenvalue is nongreater than the dominant eigenvalue. In addition, the corresponding eigenvector can be
selected positive and even strictly positive if the considered matrix is irreducible or at least unichain. In particular,
let σ(γ)(f) be the dominant eigenvalue of Q̄(γ)(f) and v(γ)(f) the corresponding eigenvector, i.e.

Q̄(γ)(f) · v(γ)(f) = σ(γ)(f) · v(γ)(f).

Observe that if the matrix Q(f) is unichain then Q̄(γ)(f) remains unichain at least if risk-sensitive coefficient γ is
sufficiently close to null.

4 Mean Variance Optimality
Another approach how to handle variability-risk features in continuous-time Markov decision processes is based
on mean variance selection rules, i.e. we optimize the weighted sum of average or total reward and its variance. To
this end, we focus attention on undiscounted continuous-time Markov decision chains, i.e. we assume that the risk
sensitive coefficient γ = 0, hence the corresponding utility u(0)(ξ) = ξ and the expected utility Ū (0)(ξ) := Eξ.
Hence for the selected long-run stationary policy the variability is measured either by the ratio of long-run average
reward and long run average variance. Of course, it is optimal in the class of policies with a fixed average reward
to select policy with minimal average variance. This method that transforms finding minimal variance to finding
minimal average reward of suitably transformed Markov decision process was initially suggested in [7] for discrete-
time Markov decision chains, similar procedure for continuous-time models were used in [3],[4],[17].

To begin with, we start with well-known approach for evaluating and finding optimal average policy for
continuous-time Markov decision processes (see e.g. [5, 2]). Similar approach can be also used for finding second
moment and the corresponding variance of the considered Markov reward chain.

Considering the risk-neutral models, on taking expectations we conclude that for U (0)
i (t, f) := Ef

i {ξ(t)} we have

U
(0)
i (t+∆, f) = r(i) ·∆+ (1 + qii(fi) ·∆)U

(0)
i (t, f) + ∆

N∑
j=1,j ̸=i

qij(fi)[r(ij) + U
(0)
j (t, f)] + o(∆2) (17)

Since the process X is time homogeneous, after some manipulations, on letting ∆ → 0+, we arrive at

dU
(0)
i (t, f)

dt
= r(i) +

N∑
j=1,j ̸=i

qij(fi) · r(ij) +
N∑

j=1,j ̸=i

qij(fi) · [U (0)
j (t, f)− U

(0)
i (t, f)] (18)

It is well-known from the literature if the considered continuous-time Markov chain has a single class of
recurrent states that the long-run average reward is independent on the initial state and g(f) = limt→∞

1
tU

(0)
i (t, f)

exists and is independent of the starting state. In addition, it is well-known that there exist vector w(f) (with
elements wi(f)) such that

U
(0)
i (t, f) = g(f) · t+ wi(f)− [P (t, f)w(f)]i ([w]i denotes the ith entry of the column vector w).



In what follows we shall be also interested in the second moment and the corresponding variance of random
reward ξ(t). Since Ef

i [ξ(t + ∆)]2 = Ef
i [ξ(t)]

2 + 2 · Ef
i ξ(t) · ∆ + Ef

i [∆]2, for the second moment of ξ(t), say
Si(f)(ξ) := Ef

i (ξ)
2, we get

Si(t+∆, f) = (1 + ∆ · qii(fi))
{
2∆ · r(i)U (0,f)

i (t, f) + Si(t, f)
}

+∆
∑

j∈I,j ̸=i

qij(fi)
{
[r(ij)]2 + 2r(ij)U

(0)
j (t, f) + Sj(t, f)

}
+ o(∆2). (19)

Hence (similarly to (18)) for ∆ → 0+ from (19) we get

dSi(t, f)

dt
= 2r(i)U

(0)
i (t, f) +

∑
j∈I,j ̸=i

qij(fi)
{
[r(ij)]2 + 2r(ij)U

(0)
j (t, f)

}
+

∑
j∈I,j ̸=i

qij(fi)[Sj(t, f)− Si(t, f)]. (20)

Since σi(t, f) = Si(t, f)− [U
(0)
i (t, f)]2 we thus obtain:

d

dt
σi(t, f) =

d

dt
Si(t, f)− 2U

(0)
i (t, f)

d

dt
U

(0)
i (t, f)

= 2r(i)U
(0)
i (t, f) +

∑
j∈I,j ̸=i

qij(fi)
{
[r(ij)2 + 2r(ij)U

(0)
j (t, f)

}
+

∑
j∈I,j ̸=i

qij(fi)[Sj(t, f)− Si(t, f)]

−2U
(0)
i (t, f)

r(i) +
∑

j∈I,j ̸=i

qij(fi)r(ij) +
∑

j∈I,j ̸=i

qij(fi)[U
(0)
j (t, f)− U

(0)
i (t, f)]

 (21)

By substituting Sj(t, f) = σj(t, f) + [U
(0)
j (t, f)]2 (21) can be rewritten as:

d

dt
σi(t, f) =

∑
j∈I

qij(fi)σj(t, f)− 2U
(0)
i (t, f)

 ∑
j∈I,j ̸=i

qij(fi)r(ij) +
∑
j∈I

qij(fi)U
(0)
j (t, f)

 (22)

Using a more detailed analysis (see [17]) it can be shown that

G(f) := lim
t→∞

1

t
σi(t, f) (23)

exists and is independent of the initial state i. For unichain models the values G(f) of the average variance can be
calculated as average reward of a continuous time Markov chain where one stage reward in state i, say si(f), is
equal to

si(f) =
∑

j∈I,j ̸=i

qij(fi){[r(ij) + wj(f)]
2 − [wi(f)]

2}+ 2[r(i)− g(f)]wi(f), or (24)

s
(1)
i (f) =

∑
j∈I,j ̸=i

qij(fi){[r(ij) + wj(f)]
2 − [wi(f)]

2}+ 2r(i)wi(f), or (25)

s
(2)
i (f) =

∑
j∈I,j ̸=i

qij(fi){[r(ij)]2 + 2r(ij)}+ 2r(i)wi(f). (26)

5 Finding optimal control policy
Considering continuous-time Markov decision processes, it has been shown in section 3 that the growth of risk-
sensitive optimality is governed by matrices with nonnegative off-diagonal elements. Recalling that for any matrix
with nonnegative off-diagonal elements there exists a real eigenvalue (called the dominant eigenvalue) such that
the real part of any eigenvalue of the matrix is nongreater than the dominant eigenvalue, for maximizing the risk-
sensitive average reward it suffices to find stationary policy defining feasible matrix with maximum possible real
eigenvector. To this end we can employ policy iteration or value iteration specified in [14]. This methods also
enable to generated upper and lower estimates on the maximum possible dominant eigenvalue in each iteration
step.



Another approach for finding optimal policies was studied in section 4. Using this approach the decision
maker selects by standard policy or value iteration methods the set of all (non-randomized) stationary policies with
maximal average reward. In the next step in the class of stationary policies maximizing the average reward the
decision maker selects the policy with minimal average variance. Observe that the construction of the policy with
minimal average variance is limited only on the class of optimal policies (resp. another selected class of policies)
since the formulas for construction the policy with minimal variance heavily employ values of some coefficients
constructed for optimal policies (cf. formulas (24)–(26)). Up to now we looked for policies with minimal variance
in the class of policies with maximal total reward. However, considering stationary policy (even randomized), not
maximizing the average reward, policy and value iteration methods can be used for finding policies guaranteeing
the desired reward with minimal possible variance.

6 Conclusions
In this note we studied risk-sensitive average optimality in risk-sensitive continuous-time Markov decision chains.
The obtained results extend some older result reported for uncontrolled models in [13] and are overlapping with
recent results reported in [18] obtained by different methods and are similar to the results reported in [3] and [4].

The reported result are also confronted with so-called mean-variance optimality criterion for finding policies
with minimal average variance in certain class of policies (usually in the class of policies with maximal average
reward). The results reported in section 4 are similar to Thm.10.5 in [2], Thm.3 in [3] or Thm.3.4 in [10] (in these
references no transient rewards are considered).
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