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Abstract. Many real-life applications lead to risk-averse multi-stage stochastic prob-
lems; therefore effective solution of these problems is of great importance. Many
tools can be used to their solution (GAMS, Coin-OR, APML or, for smaller prob-
lems, Excel); it is, however, mostly up to researcher to reformulate the problem into
its deterministic equivalent. Moreover, such solutions are usually one-time, not easy
to modify for different applications.
We overcome these problems by providing a front-end software package, written in
C++, which enables to enter problem definitions in a way close to their mathemat-
ical definition. Creating of a deterministic equivalent (and its solution) is up to the
computer.
In particular, our code is able to solve linear multi-stage with Multi-period Mean-
CVaR or Nested Mean-CVaR criteria. In the present paper, we describe the algorithms,
transforming these problems into their deterministic equivalents.
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1 Introduction
Generally, adding risk measures into decision problems destroys their favourable properties such as convexity
and linearity. The CVaR risk measure, however, is an exception because it may be reformulated as a convex
minimization problem [2], which can be linearised if the underlying distribution is discrete with finite number of
atoms. It follows that the favourable properties of CVaR are inherited by the Mean-CVaR risk criterion (see e.g.
[4]). Consequently, Mean-CVaR decision problems with convex or linear payoff and constraint functions may be
reformulated as convex ones, linear ones, respectively. In the present paper, we do the same in the dynamic case.
In particular, we show how to preserve convexity/linearity of multi-stage stochastic programming problems with
the Multi-period Mean-CVaR criterion or the Nested Mean-CVaR criterion (see [3] for more about these and other
dynamic risk measures).

2 Multistage Stochastic Programming Problem
Let T ≥ 0. We define T+1-stage Stochastic Programming Problem as

min
xk∈Xk0≤k≤T

ρ
�
f0(ξ0, x0), . . . , fT (ξT , xT

�
), (1)

Xk = Xk(ξk, x̃k−1) =
�
xk ∈ Rdk , xk ∈ Fk : xk ∈ Rk(ξk), gk(ξk, xk)�k

0 a.s.
�
.

Here, ξ = (ξ0, . . . , ξT ) is a random process taking values in Rn0 ×· · ·×RnT with ξ0 deterministic, F0, . . . ,FT is
its induced filtration. Further, for each 0 ≤ k ≤ T , dk is a deterministic constant. For each 0 < k ≤ T , we define
xk = (x̃k−1, xk), where x̃k−1 is a sub-vector of xk−1, and we put x0 = x0; symbol ξk is defined analogously.
For each 0 ≤ k ≤ T and each feasible xk, fk(•, xk) is a measurable function such that E|fk(ξk, xk)| < ∞, and
gk is a rk−vector of functions, each of which is non-constant in xk and measurable in ξk; here, rk ∈ {0, 1, . . . } is
ξk-measurable. Further, for each 0 ≤ k ≤ T,, �k is a ξk-measurable rk−vector of symbols from {=,≤,≥} and
Rk is a Cartesian product of dk closed ξk-measurable intervals. Finally, ρ is a real (risk) functional on the space
of integrable random variables which can be the expected sum

ρ = ρE, ρ(Z0, . . . , ZT ) =
T�

k=0

EZk,
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the Multi-period Mean-CVaR

ρ = ρmλ,α ρmλ,α(Z0, . . . , ZT ) = Z0+

T�

k=1

ρλ,α(Zk|Fk−1), ρλ,α(Z|F) = [(1− λ)E(Z|F) + λCVaR(Z|F)] ,

where 0 ≤ λ,α ≤ 1, or the Nested Mean-CVaR

ρ = ρnλ,α ρnλ,α(Z0, . . . , ZT ) = ρλ,α(ρλ,α(. . . ρλ,α(

T�

k=0

Zk|FT−1) . . .F1)|F0),

where 0 ≤ λ,α ≤ 1.

3 Reformulation of the Risk-Averse Problems
If ρ = ρE and f0, . . . , fT are convex or linear, then so is ρ. Specially, if ξ is discrete with a finite number of atoms
and all the f ’s and g’s are linear, then the deterministic equivalent of (1) is a linear programming problem.

If ρ = ρm then, by Proposition 1 (i) (see Appendix), problem (1) may be reformulated as

min x0,...,T∈X0,...,T ,,u0,...,T−1∈F0,...,T−1
f0(ξ0, x0) +E

�
T�

k=1

hk(ξk, xk, uk−1)

�
(2)

where hk(ξk, xk, uk−1) = uk−1 +
�
fk(ξk, xk)− uk−1

�
µ,ν

; here, [x]a,b =

�
xa x ≤ 0

xb x ≥ 0
, µ = 1 − λ and ν =

1−λ+ λ
α . If f1, . . . , fT are convex, so are ht, . . . , hT (note that [x]µ,ν is convex). Moreover, if the distribution of

ξ is discrete finite, we apply Proposition 1 (ii) to reformulate (2) as

min x0,...,T∈X0,...,T ,,u0,...,T−1∈F0,...,T−1,θ1,...,T∈Θ1,...,T
f0(ξ0, x0) + E

�
T�

k=1

θ +

T−1�

k=0

uk

�
,

Θk = Θk(ξk, xk, uk−1) = {θk ∈ R, θk ∈ Fk : θk ≥ [fk(ξk, xk) − uk−1]µ,ν}, 1 ≤ k ≤ T. (3)

Specially, if fk and gk are linear, k = 0, . . . , T , then the deterministic equivalent of (3) is a linear programming
problem.

Finally, if ρ = ρnλ,α and ξ is discrete with a finite number of atoms such that, without loss of generality, the
support of ξk is {1, 2, . . . ,mk} for any k, and that P[ξk+1 ∈ •|ξ0, . . . , ξk] = P[ξk+1 ∈ •|ξ̃k] (the latter implying
ρλ,α(h(ξk)|Fk−1) = ρλ,α(h(ξk)|ξ̃k−1) for any h by the definition of Mean-CVaR), then, by the translational
invariance of CVaR and by Proposition 1 (iii),

min
x•∈X•

ρ(f0, . . . , fk) = min
x•∈X•

�
f0 + ρλ,α(f1 + ρλ,α(f2 + · · ·+ ρλ,α(fT |ξ̃T−1) . . . |ξ̃1))

�

= min
x0∈X0

{f0 + ρλ,α( min
x1∈X1

{f1 + ρλ,α( min
x2∈X2

{f2 + · · ·+ ρλ,α( min
xT∈XT

{fT }|ξ̃T−1) . . . |ξ̃2)}|ξ̃1)})}

= min
x0∈X0

q0(ξ0, x0)

where, for any 0 ≤ k ≤ T − 1,

qk(ξk, xk) = fk(ξk, xk) + ρλ,α

�
Qk(ξk+1, x̃k)|ξ̃k

�
, Qk(ξk+1, x̃k) = min

xk+1∈Xk(ξk+1,x̃k)
qk+1(ξk+1, xk+1),

and qT (ξT , xT ) = fT (ξT , xT ). Moreover, if, for some 1 ≤ k ≤ T − 1,

Qk(ξk+1, x̃k) = min
y∈Yξk+1

k (ξ̃k,x̃k)

ζ
ξk+1

k (y; ξ̃k, x̃k) (4)

for some functions ζ1, ζ2, . . . , ζmk+1 and parametric sets Y1, . . . ,Ymk+1 , we get, by Proposition 1 (iii) and (iv),
that

qk(ξk, xk) = fk(ξk, xk) + min
u∈R,yi∈Yi

k(ξ̃k,x̃k),θi≥[ζi(yi;ξ̃k,x̃k)−u]µ,ν ,i=1,...,mk+1

�
u+

mk+1�

i=1

θiπi
k+1(ξ̃k)

�
(5)
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where πi
k+1(ξ̃k) = P[ξk+1 = i|ξ̃k], 1 ≤ i ≤ mk+1, and, consequently,

Qk−1(ξk, x̃k) = min
(xk,u,y1,θ1,...,ymk+1 ,θmk+1 )∈Yξk

k−1(ξ̃k−1,x̃k−1)

�
fk(ξk, xk) + u+

mk+1�

i=1

θiπi
k+1(ξ̃k)

�

where

Zξk
k−1(ξ̃k−1, x̃k−1) = Xk(ξk, x̃k−1)× R× Y1(ξ̃k, x̃k)× {θ1 ≥ [ζ1(y1; ξ̃k, x̃k)− u]µ,ν}×

· · · × {θmk+1 ≥ [ζmk+1(ymk+1 ; ξ̃k, x̃k)− u]µ,ν}
which fulfills (4) with k − 1 in place of k. As (4) holds for k = T − 1, we get, by induction, that (5) holds for any
0 ≤ k ≤ T − 1. Consequently,

min
x•∈X•

ρ(f0, . . . , fk) = min
x0∈X0,u∈R,yi∈Yi

1(ξ̃0,x̃0),θ1≥[ζi
1(y

i;ξ̃0,x̃0)−u]µ,ν ,i=1,...,m1

�
f0(ξ0, x0) + u+

m1�

i=1

θiπi

�
(6)

Specially, if f0, . . . , fT are linear in x and g0, . . . , gT affine in x then, by induction, (6) is a linear programming
problem.

4 Conclusion
In this paper, two algorithms linearizing risk averse multistage stochastic programming problems were described.
These algorithms are implemented in the MS++, which is a C++ software package developed by the authors.
Even though the algorithms use standard techniques, which are routinely applied to solve particular problems (see
e.g. [1]), they have been neither rigorously described nor generally implemented yet to the best knowledge of the
authors. The package is freely available on https://github.com/cyberklezmer/mspp.
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Appendix
Proposition 1. (i) For any integrable random variable Z,

ρλ,α(Z|F) = min
u∈R

�
u+ E( [Z − u]µ,ν |F)

�

where [x]a,b =

�
xa x ≤ 0

xb x ≥ 0
, µ = 1− λ, ν = 1− λ+ λ

α .

(ii) If Z|F ∼ (zi,πi)
n
i=1, then

ρλ,α(Z|F) = min
u∈R,θi≥µ(zi−u),θ≥ν(zi−u),i=1,...,n

�
u+

n�

i=1

θiπi

�
.

(iii) If, in addition, F is finite and zi = minxi∈Xi ζi(xi), i = 1, . . . , n, for some sets X1,X2 . . . and functions
ζ1, ζ2, . . . , all possibly dependent on some F-measurable parameter, then

ρλ,α(Z|F) = min
xi∈Xi,i=1,...,n

{ρλ,α(ζi(xi))}
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(iv) Moreover,

ρλ,α(Z|F) = min
u∈R,xi∈Xi,i=1,...,n

�
u+

n�

i=1

[ζi(xi)− u]µ,ν πi

�

= min
u∈R,xi∈Xi,θi≥µ(ζi(xi)−u),θi≥ν(ζi(xi)−u),i=1,...,n

�
u+

n�

i=1

θiπi

�
.

Proof. Ad (i) and (ii). Clearly, cx+ d [x]+ = [x]c.c+d for any c, d ≥ 0. Using that and [2] and we get

�(Z) = (1− λ)E(Z) + λCVaRα (Z)

= (1− λ)EZ + λmin
u

�
u+

1

α
E [Z − u]+

�

= min
u

�
(1− λ)EZ + λu+

λ

α
E [Z − u]+

�

= min
u

�
(1− λ)EZ − (1− λ)u+ u+

λ

α
E [Z − u]+

�

= min
u

�
(1− λ)E(Z − u) + u+

λ

α
E [Z − u]+

�

= min
u

�
u+ E

�
(1− λ)(Z − u) +

λ

α
[Z − u]+

��

= min
u

�
u+ E [Z − u]µ,ν

�
= min

u,θi=[Zi−u]µ,ν

�
u+

�

i

πiθi

�

= min
u,θi≥µ(Zi−u),θi≥ν(Zi−ui)

�
u+

�

i

πiθi

�
= min

u,θ∈σ(Z),θ≥µ(Z−u),θ≥ν(Z−u)
[u+ E(θ)]

Ad. (iii) and (iv). Denote x = (x1, . . . , xn), X = X1×· · ·×Xn and x̂ = (argminx1∈X1
ζ1(x), . . . , argminxn∈Xn

ζn(x)).
For any x ∈ X , introduce a random variable Y (x) ∼ (ζi(xi),πi). We have Z ≤ Y (x) for any x ∈ X so, by
monotonicity of Mean-CVaR, ρ(Z) ≤ ρ(Y (x)) so ρ(Z) ≤ infx ρ(Y (x)). As Y (x̂) = Z, the infimum is attained,
so

ρ(Z) = min
x∈X

(ρ(Y (x)).

The first equality in (iv) now follows by (i), the second one may be got analogously to the proof of (ii).

Two Algorithms for Risk-averse Reformulation of Multi-stage Stochastic Programming Problems

554


