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Solution of Emission Management Problem
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Abstract

Optimal covering of emissions stemming from random production is a multistage stochastic
programming problem. Solving it in a usual way - by means of deterministic equivalent
– is possible only given an unrealistic approximation of random parameters. There exists
an efficient way of solving multistage problems – stochastic dual dynamic programming
(SDDP); however, it requires the inter-stage independence of random parameters, which
is not the case which our problem. In the paper, we discuss a modified version of SDDP,
allowing for some form of interstage dependence.
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1. Introduction

In order to reduce CO2 emissions, EU, as well as some other countries, introduced the Cap-
and-Trade system: Each year, companies are obliged to hand out emission allowances, one
for each ton of CO2 they emitted in the previous year. The allowances may be bought
from the government in auctions, the companies may trade with them on various secondary
markets; moreover, from protectionist reasons, governments grant some allowances to the
companies for free. The allowances may be banked (saved for later). In addition to spots
(the allowances themselves), various derivatives are traded on secondary markets, including
futures and options. Thus, optimal covering of the emissions, amount of which is usually
uncertain, is a complex problem.
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4, 182 08 Praha 8. Czech Republic. e-mail: smid@utia.cas.cz.
This work was supported by grant No. GA 16-01298S of the Czech Science Foundation.

1



9th International Scientific Conference Managing and Modelling of Financial Risks
VŠB-TU Ostrava, Faculty of Economics, Department of Finance

Ostrava
5th – 6th September 2018

2. Solution of the Optimal Emission Covering Problem

As the problem of optimal emission covering is dynamic with uncertain parameters, its math-
ematical description naturally leads to multi-stage stochastic programming problems, random
parameters of which include at least the emitted amounts of CO2 and the prices of the al-
lowances spots and derivatives (see [9, 10]). Unfortunately, solution of such a problem by
standard techniques is virtually impossible. Solving the problem by means of determinis-
tic equivalent requires unrealistic approximations, otherwise it would lead to extremely huge
equivalent problems. Dynamic programming, on the other hand, cannot be used due to an
extensively rich state space.

Stochastic dual decomposition (SDDP) – a well known efficient technique for solving multi-
stage problems – cannot be used, too, as it requires the stage-wise independence of the under-
lying random processes. This assumption, however, is not met by the emission prices, time
series of which are are non-stationary. Although the non-stationarity can be circumvented
by working with returns, see [3], such a trick is impossible within the emission management
problem because there is anoother random parameter - the emitted amounts – involved.

There is, however, a way of reconciling the SDDP with dependence: using a hidden Markov
model. In particular, we can assume the price process, to be a sum of a (non-homogeneous)
Markov chain (e.g. one with a single initial state {0}, states {−1, 1} at time one, {−2, 0, 2}
at time two, etc.) and an i.i.d. variable. Given this setting, we can use the modification
of the SDDP for Markov Chains, described below, to solve the problem. Even though the
(unconditional) distribution of the (log-)random parameter is not then a random walk as it
would be if we modelled the price process standard way, it is similar to it (and may be made
arbitrarily close by making the MC denser; this, however, would make the solution slower).

3. Stochastic dual dynamic programming with Markov Chains

Stochastic dual dynamic programming algorithm is very popular for solving multi-stage
stochastic programs. On of the most common risk-averse formulations, nested CVaR model,
presented for instance in [3] or [8] can we written in terms of dynamic programming equations
as follows:

min
x1,u1

c>1 x1 + λ2u1 +Q2(x1, u1)

s.t. A1x1 = b1

x1 ≥ 0

(1)

with the recourse value Qt(xt−1, ξt) at stage t = 2, . . . , T given by:

Qt(xt−1, ξt) = min
xt,ut

c>t xt + λt+1ut +Qt+1(xt, ut)

s.t. Atxt = bt −Btxt−1

xt ≥ 0,

(2)

where

Qt+1(xt, ut) = E
[
(1− λt+1)Qt+1(xt, ξt+1) +

λt+1

αt+1

[
Qt+1(xt, ξt+1)− ut

]
+

]
. (3)
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We use stochastic dual dynamic programming to solve, or rather approximately solve,
equations above. SDDP does not operate directly on these equation. Instead, we first form
a sample average approximation (SAA) of the model, and SDDP approximately solves that
SAA. Thus in our context SDDP forms estimators by sampling within an empirical scenario
tree. In the remainder of this article we restrict attention to solving that SAA via SDDP.
See Shapiro [7] for a discussion of asymptotics of SAA for multi-stage problems, Philpott
and Guan [6] for convergence properties of SDDP, and Chiralaksanakul and Morton [2] for
procedures to assess the quality of an SDDP-based policy.

In most common applications of stochastic dual dynamic programming , we assume stage-
wise independence of the underlying random process ξt, t = 2, . . . , T . Following the idea
of Philpott and Matos [5] we weaken here the assumption of stage-wise independence and
suppose that the underlying random process depends on state of the system, which is a
Markov chain. That said, we suppose that in the initial stage, our Markov chain is in the
deterministic state denoted s1 ∈ S1, |S1| = 1. For second stage, possible states are given by
a set S2 and transition is driven by transition matrix T1,2. Generally, transition from stage t
to t+ 1 is driven by matrix Tt,t+1.

We assume that for each stage t = 2, . . . , T and each state st ∈ ST there is a known
(possibly continuous) distribution Pt,st of ξt and that we have a procedure to sample i.i.d.
observations from this distribution. Using this procedure we obtain empirical distributions
P̂t,st , t = 2, . . . , T, st ∈ ST . The scenarios generated by this procedure all have the same
probabilities, but this is not required by the SDDP algorithm, which also applies to the case
where the scenario probabilities differ.

We let Ω̂t,st denote the stage t sample space for state st, where |Ω̂t,st| = Dt,st . All possible

realizations in stage t are denoted Ω̂t, Ω̂t =
⋃
st∈St

Ω̂t,st , with |Ω̂t| = Dt, Dt =
∑

st∈St
Dt,st .

We use jt ∈ Ω̂t to denote a stage t sample point, which we call a stage t scenario. For each
sample point, we can determine its actual state in Markov chain, s(jt) ∈ St. We define the
mapping a(jt) : Ω̂t → Ω̂t−1, which specifies the unique stage t − 1 ancestor for the stage t

scenario jt. Similarly, we use ∆(jt, st+1) : Ω̂t → 2Ω̂t+1,st+1 and ∆(jt) =
⋃
st+1∈St+1

∆(jt, st+1) to
denote the set of descendant nodes for jt, where |∆(jt, st+1)| = Dt+1,st+1 and |∆(jt)| = Dt+1.

The empirical scenario tree therefore has stage t realizations denoted ξjtt , jt ∈ Ω̂t. At the
last stage, we have ξjTT , jT ∈ Ω̂T , and each stage T scenario corresponds to a full path of
observations through each stage of the scenario tree. That is, given jT , we recursively have
jt−1 = a(jt) for t = T, T − 1, . . . , 2. For this reason and for notational simplicity, when
possible, we suppress the stage T subscript and denote jT ∈ Ω̂T by j ∈ Ω̂.

We emphasize using the same set of Dt,st observations at stage t for state st to form
the descendant nodes of all Nt−1 scenarios at stage t − 1. This ensures the resulting em-
pirical scenario tree has required independence properties. The SDDP algorithm does not
apply, for example, to a scenario tree in which we instead use a separate, independent set of

i.i.d. observations ξ1
t,st , . . . , ξ

Dt,st
t,st for each of the stage t− 1 scenarios.

In order to apply SDDP, we split the recourse values in stage t by their corresponding states
and arrive in the setup which resembles the classical stage-wise independent formulation. Let’s
denote the probability of transition from state st to st+1 pt,t+1, which is an element of the
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matrix Tt,t+1 . The equations (2) and (3) now read as follows:

Qt(xt−1, ξt,st) = min
xt,ut

c>t xt + λt+1ut +Qt+1(xt, ut)

s.t. Atxt = bt −Btxt−1

xt ≥ 0,

(4)

where
Qt+1(xt, ut) =

∑
st+1∈St+1

pt,t+1Qt+1(xt, ut, st+1). (5)

and

Qt+1(xt, ut, st+1) = Est+1

[
(1− λt+1)Qt+1(xt, ξt+1,st+1

) +
λt+1

αt+1

[
Qt+1(xt, ξt+1,st+1

)− ut
]

+

]
.

(6)
We give a brief description of the SDDP algorithm in order to give sufficient context

for presenting our results. For further related details on SDDP, see [3], [4] and [8]. SDDP
applies to the dynamic programming equations (1), (1) and (5). During a typical iteration of
the SDDP algorithm, cuts have been accumulated at each stage. These represent a piecewise
linear outer approximation of the expected future cost functions, Qt+1(xt, ut, st+1), separately
for each possible state. On a forward pass we sample a number of linear paths through the
tree. As we solve a sequence of master programs (which we specify below) along these forward
paths, the cuts that have been accumulated so far are used to form decisions at each stage.
Solutions found along a forward path in this way form a policy, which does not anticipate the
future. In fact, the solutions can be found at a node on a sample path via the stage t master
program, even before we sample the random parameters at stage t+ 1. The sample mean of
the costs incurred along all the forward sampled paths through the tree forms an estimator
of the expected cost of the current policy, which is determined by the master programs.

In the backward pass of the algorithm, we add cuts to the collection defining the current
approximation of the expected future cost function at each stage. We do this by solving
subproblems at the descendant nodes of each node in the linear paths from the forward pass,
except in the final stage, T . The cuts collected at any node in stage t apply to all the nodes
in that stage, and hence we maintain a single set of cuts for each stage, however, separately
for each future state st+1. We let Ctt+ 1 denote the number of cuts accumulated so far in
stage t. This reduction is possible because of our Markov property assumption.

The following model (7) is based on equations above and acts as a master program for its
stage t+ 1 descendant scenarios and acts as a subproblem for its stage t− 1 ancestor:

Q̂t = min
xt,ut,θt

c>t xt + λt+1ut + θt (7a)

s.t. Atxt = bt −Btxt−1 : πt (7b)

θt ≥
∑

st+1∈St+1

pt,t+1θt,st+1 (7c)

θt,st+1 ≥ Q̂
j
t+1,st+1

+
(
gjt+1,st+1

)> [
(xt, ut)−

(
xjt , u

j
t

)]
, (7d)

∀st+1 ∈ St+1, j = 1, . . . , Ct,st+1

xt ≥ 0 (7e)
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Decision variable θt in the objective function (7a), coupled with cut constraints in (7c) and
(7d), forms the outer linearisation of the recourse function Qt+1(xt, ut) from model (4) and
equations (5) – (6) . The structural and nonnegativity constraints in (7b) and (7e) simply
repeat the same constraints from model (4). In the final stage T , we omit the cut constraints
and the θT term.

As we indicate in constraint (7b), we use πt to denote the dual vector associated with
the structural constraints. As detailed in the articles [3] and [8], this dual vector is used to
develop the cuts in the backward pass of the SDDP algorithm. For simplicity in stating the
SDDP algorithm below, we assume we have known lower bounds Lt on the recourse functions.

Algorithm 1. Stochastic dual dynamic programming algorithm

1. Let iteration k = 1 and append lower bounding cuts θt ≥ Lt, t = 1, . . . , T − 1.

2. Solve the stage 1 master program (t = 1) and obtain xk1, u
k
1, θ

k
1 .

Let zk = c>1 x
k
1 + λ2u

k
1 + θk1 .

3. Forward pass: sample independent paths from Ω̂ and index them by Sk. Each path is
sampled by first sampling the next stage state st+1 by corresponding probability and then
by sampling a scenario from Pt,st

For all j ∈ Sk {
For t = 2, . . . , T {

Form and solve sub(jt) to obtain
(
xjtt
)k

and
(
ujtt
)k

;
}

}

Form the upper bound estimator zk with one of the estimators provided in [3].

4. If a stopping criterion, given zk and zk, is satisfied then stop and output first stage
solution x1 = xk1 and lower bound z = zk, otherwise continue to step 5.

5. Backward pass:

For t = T − 1, . . . , 1 {
For all j ∈ Sk {

Determine the state in stage t+ 1 in path j: st+1 = s(jt+1)
For all descendant nodes it+1 ∈ ∆(jt, st+1) {

Form and solve sub(it+1) to obtain Q̂
it+1

t+1 and π
it+1

t+1 ;
Calculate subgradient (see [3], [8]);

}
Average optimal values and subgradients (see [3], [8]);
Append the resulting cut to the collection (7d) for stage t;

}
}

6. Let k = k + 1 and goto step 2 with extended sets of cuts.

See Bayraksan and Morton [1] for stopping rules that can be employed in step 4 and
Philpott et al. [5] for an alternative upper bound evaluation procedure.
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VŠB-TU Ostrava, Faculty of Economics, Department of Finance

Ostrava
5th – 6th September 2018

4. Conclusion

We outlined a way how to incorporate non-stationary random parameters into the (Markov)
SDDP method. Clearly, there is much to do further, including a discussion about convergence
of such algorithm, its accuracy, and numerical study. However, even without these, our paper
may give an instruction for practical situations in which a multi-stage model with a non-
stationary random parameter has to be solved.
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