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Abstract

Shenoy’s paper published in this Proceedings of WUPES 2018 introduces
an operator that gives instructions how to compute an expected value in the
Dempster-Shafer theory of evidence. Up to now, there was no direct way
to get the expected value of a utility function in D-S theory. If needed, one
had to find a probability mass function corresponding to the considered belief
function, and then - using this probability mass function - to compute the
classical probabilistic expectation.

In this paper, we take four different approaches to defining probabilistic
representatives of a belief function and compare which one yields to the best
approximations of Shenoy’s expected values of various utility functions. The
achieved results support our conjecture that there does not exist a probabilis-
tic representative of a belief function that would yield the same expectations
as the Shenoy’s new operator.

1 Introduction

Criteria for finding optimal decisions are usually based on a maximum expected
utility principle. As Glenn Shafer [8] wrote already in 1986: The controversy raised
by this book (here he meant the Savage’s book [7]) and Savage’s subsequent writ-
ings is now part of the past. Many statisticians now use Savage’s idea of personal
probability in their practical and theoretical work, ... To do otherwise is to violate
a canon of rationality. This reflects the fact that the maximum expected utility
principle is often used not only when the knowledge from the respective field of
application is embodied in a probabilistic model but also when the applied model is
built within the framework of belief function theory. Nevertheless, to compute the
necessary value of expected utility, the respective belief function is usually trans-
formed into an appropriate probability distribution. For this, several procedures
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were designed - we call them probability transforms in this paper. As advocated
by Cobb and Shenoy, the only one, which is compatible with the Dempster-Shafer
theory of belief functions is the plausibility transform [1]. The other transforms are
more likely compatible with the theory of belief functions interpreted as generalized
probability [4]. This interpretation reflects the fact that a belief function specifies
a convex set of probability distributions, which is called a credal set. In this paper
we consider widely used pignistic transform advocated by Philippe Smets [10], and
two others that are usually omitted in the context of belief function: maximum
entropy and Perez’ barycenter [6].

To our best knowledge, the first idea how to compute an expected value for
a belief function directly, i.e., avoiding its transformation into a probability dis-
tribution, is due to Prakash Shenoy [9]. From the theoretical point of view, it is
a concept deserving a deep further investigation. As we will see in the following
paragraph, it is defined with the help of commonality functions, which means that
it suffers from a great computational complexity. If new computational procedures
(avoiding the calculation of a commonality function and subsequent summation
over all nonempty subsets of a state space) are not found, the application of this
approach in practical problems will be limited. Though we conjecture that there
does not exist a probability transform that would yield the same expectations as
the Shenoy’s operator, there arises an interesting problem: find a probability trans-
form, which approximates the results of the new operator best. And it is the goal
of this paper to compare the above-mentioned four probability transforms from
this point of view.

To achieve this goal, the rest of the paper is organized as follows. Section 2
recalls basic concepts of belief function theory and introduces the necessary nota-
tion. In Section 3, four selected probability transforms are formally introduced. A
battery of basic assignments, as well as a set of utility functions used for compar-
ison are presented in Section 4. The main result of this paper (the comparison of
the computed expected values) is presented in Section 5. The paper is concluded
by Section 6, where the further research is proposed.

2 Notation

Suppose X is a random variable with a finite state space ΩX . Let 2ΩX denote
the set of all non-empty1 subsets of ΩX . A basic probability assignment (basic
assignment for short) m for X is a function m : 2ΩX → [0, 1] such that

∑

a∈2ΩX
m(a) = 1.

The subsets a ∈ 2ΩX such that m(a) > 0 are called focal elements of m. An
important example is the vacuous basic assignment for X, denoted by ιX , such
that ιX(ΩX) = 1. It corresponds to a total ignorance. If all focal elements of m

1Notice that we exclude the empty set from 2ΩX in this paper.
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are singletons (one-element subsets) of ΩX , then we say m is Bayesian. In this
case, m is equivalent to a probability distribution.

The information in a basic assignment m can be equivalently represented by
corresponding belief and plausibility functions Belm and Plm, respectively that are
defined as

Belm(a) =
∑

b∈2ΩX : b⊆a

m(b), P lm(a) =
∑

b∈2Ω:b∩a 6=∅

m(b),

for all a ∈ 2ΩX . In this paper we need also the fourth possibility of expressing a
belief function. A commonality function for m is defined for all a ∈ 2ΩX

Qm(a) =
∑

b∈2ΩX : b⊇a

m(b).

Notice that it is obvious that for all a ∈ 2Ω, Bel(a) ≤ Pl(a). For singletons
(one-element subsets of ΩX) commonality and plausibility functions coincide:

Qm({x}) = Plm({x})

for all x ∈ ΩX . Since we consider only normal basic assignments for which
∑

a∈2ΩX
m(a) = 1, it can be shown that

∑

a∈2ΩX

(−1)|a|+1Qm(a) = 1.

For a basic assignment m on ΩX and the corresponding commonality function
Qm, Shenoy proposes a new operator computing the expected value of a general
function2 g : 2ΩX −→ R [9]. Let us adopt his approach to the computation of an
expected value of utility function u : ΩX −→ R. First we need to extend the utility
function from ΩX to the whole 2ΩX (we denote the extension û) in the way that
for all a ∈ 2ΩX

min
x∈a
{u(x)} ≤ û(a) ≤ max

x∈a
{u(x)}.

Following Shenoy’s idea we take the weighted average

û(a) =

∑

x∈a
u(x)Qm({x})

∑

x∈a
Qm({x})

(in case that
∑

x∈a Qm({x}) = 0 the value û(a) does not influence the resulting
expected value of u and therefore we can choose any value from the above specified
interval; for example û(a) = (minx∈a{u(x)} + maxx∈a{u(x)})/2). Then Shenoy
defines the expected value of u with respect to m as follows:

Em(u(X)) =
∑

a∈2ΩX

(−1)|a|+1û(a)Qm(a).

2
R denotes the set of real numbers.
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The last notion introduced in this section was already mentioned in Introduc-
tion. Basic assignment m specifies the following convex set of probability distribu-
tions P on Ω (PΩ denote the set of all probability distributions on Ω):

P(m) =

{

P ∈ PΩ :
∑

x∈a

P (x) ≥ Belm(a) for ∀a ∈ 2Ω

}

.

P(m) is called a credal set of basic assignment m. If m is Bayesian, then P(m)
contains just one probability distribution.

3 Probability transforms

In this paper, we study properties of the following four mappings that assign a
probability distribution to each basic assignment. For other probability transforms
see e.g. [2]. Perhaps, the most famous is pignistic transform, defined for all x ∈ ΩX

by the formula

Bet Pm(x) =
∑

a∈2Ω:x∈a

m(a)

|a|
.

Another transform is the so-called plausibility transform, which is the respective
plausibility function normalized on singletons. Formally it is defined for all x ∈ ΩX

Pl Pm(x) =
Pl({x})

∑

y∈ΩX

Pl({y})
.

The other two probability transforms select a specific representative from the
corresponding credal set. One is the Maximum entropy element of P(m), i.e.,

Me Pm(x) = arg max
P∈P(m)

H(P ),

where H(P ) is the Shannon entropy of probability distribution P

H(P ) = −
∑

x∈ΩX

P (x) log2 P (x).

The other is the Perez’ barycenter [6] that has undeservedly fallen into oblivion:

Bac Pm(x) = arg min
P∈P(m)

max
Q∈P(m)

Div(Q;P ),

where Div(Q;P ) denote the well-known relative entropy (called also Kullback-
Leibler divergence in the literature)

Div(Q;P ) =











+∞, if ∃ x ∈ ΩX : P (x) > 0 = Q(x);

∑

x∈ΩX

P (x) log
(

P (x)
Q(x)

)

, otherwise3.

3We always take 0 log
(

0

0

)

= 0.
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4 Basic assignments and utility functions

All the examples presented in this paper correspond to a situation when a color ball
is drawn from an urn. We consider ΩX = {r, b, y, g, w}, and the random variable
X achieves its value in correspondence whether the color of a drawn ball is red,
blue, yellow, green, or white.

Though quite uninteresting from the point of view of this paper (we will see
it later), we cannot avoid the vacuous basic assignment ιX representing a total
ignorance. In this case, we do not have any other information about the balls in
the urn but

• there is at least one ball in the urn (∅ is excluded from 2ΩX );

• the urn contains balls of the specified colors only.

We will also consider a situation described by the famous Ellsberg’s example
[3]. He considers the situation when the urn contains ninety balls, thirty of them
are red, the remaining balls are either blue or yellow with unknown proportion. It
may even happen that all of the remaining sixty balls are of the same color – blue
or yellow. This situation is well described by a basic assignment me with two focal
elements: me({r}) =

1
3 and me({b, y}) =

2
3 .

Like the Ellsberg’s example, a one-red-ball example [5] describes a situation
in which the behavior of human decision-makers is considered paradoxical. In
this example we know the total number of balls in the urn (it equals n) and that
one and only one ball is red. The proportion of the remaining colors in the urn
is unknown. The situation is depicted by basic assignment mr,n with two focal
elements: mr,n({r}) =

1
n
and mr,n({b, y, g, w}) =

n−1
n

. In the next section we will
consider several such basic assignments with different total numbers of balls. Thus,
e.g., for n = 5 we will consider mr,5({r}) =

1
5 and mr,5({b, y, g, w}) =

4
5 .

An interesting situation is got when we consider a basic assignment expressing
the knowledge that, like in the Ellsberg’s example, only balls of three colors (red,
blue, and yellow) are in the urn, and we know that at least 20 % of them are red
and not more than 50 % are yellow. This knowledge is expressed by the following
basic assignment mq: mq({r}) = 0.2, mq({r, b}) = 0.5, mq({r, b, y}) = 0.3. Notice
that in this case the focal elements of mq are nested ({r} ⊆ {r, b} ⊆ {r, b, y}) , and
therefore the corresponding belief function is known to be a possibilistic measure.

Another possibilistic measure is the following basic assignment mp for which:
mp({r}) = 0.1, mp({r, b}) = 0.2, mp({r, b, y}) = 0.3, mp({r, b, y, g}) = 0.2,
mp(Ω) = 0.2.

For a survey of all basic assignments considered in the following section see
Table 1. In this table, only focal elements are presented. In other words, if a set
a ∈ 2Ω does not explicitly appear in the table, it means that its corresponding basic
assignment equals 0.

For the purpose of this paper, we used just eight utility function. Naturally, to
make a really serious comparison of probability functions we expect to use much
larger batteries of basic assignments and utility functions, as well as we expect
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Table 1: Basic assignments

denotation values of all focal elements

ιX ιX(Ω) = 1

me me({r}) =
1
3 , me({b, y}) =

2
3

mr,n mr,n({r}) =
1
n
, mr,n({b, y, g, w}) =

n−1
n

mq mq({r}) = 0.2, mq({r, b}) = 0.5, mq({r, b, y}) = 0.3

mp mp({r}) = 0.1, mp({r, b}) = 0.2, mp({r, b, y}) = 0.3,

mp({r, b, y, g}) = 0.2, mp(Ω) = 0.2

ma ma({r, b}) = 0.2, ma({y, g, w}) = 0.3, ma(Ω) = 0.5

to widen also the set of the compared probability transforms. For the considered
utility functions see Table 2. Notice that the first four utility functions correspond
to the Ellsberg’s example.

Table 2: Utility functions

r b y g w

u1 100 0 0 0 0
u2 0 100 0 0 0
u3 100 0 100 0 0
u4 0 100 100 0 0
u5 0 100 200 300 0
u6 0 100 0 200 0
u7 100 0 0 200 100
u8 50 150 70 220 30

5 Computations

In this section, we describe results obtained from the experimental computations.
For each pair, a basic assignment from Table 1 (we considered three basic assign-
ments corresponding to one-red-ball example: mr,3, mr,5, and mr,15, i.e., 8 basic
assignments in total) and a utility function from Table 2 we compute five values:

• Shenoy’s expected utility value;

• expected utility value computed using pignistic transform;

• expected utility value computed using plausibility transform;
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• expected utility value computed using maximum entropy transform;

• expected utility value computed using Perez’ barycenter transform.

ma

mp

mq

mr,15

mr,5

mr,3

me

ιX

u1 u2 u3 u4 u5 u6 u7 u8

0 10 20 30

(a) Pignistic transform
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mr,3
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ιX

u1 u2 u3 u4 u5 u6 u7 u8
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(b) Plausibility transform
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u1 u2 u3 u4 u5 u6 u7 u8

(c) Maximum entropy

ma

mp

mq

mr,15

mr,5

mr,3

me

ιX

u1 u2 u3 u4 u5 u6 u7 u8

(d) Perez’barycenter

Figure 1: Difference between Shenoy’s expected utility values and those computed
using probability transforms

Each expected utility value computed using a probability transform is then
compared with the corresponding Shenoy’s expected utility value. Thus, for each
probability transform we receive 8 × 8 = 64 matrix of values (absolute values of
the differences) expressing the difference between the results achieved with the
help of the corresponding probability transform and those achieved by the new
operator. To make it visually attractive, we depict each such matrix by a 8×8 table,
where each difference corresponds to one box. The darker the box, the higher the
corresponding difference. Figure 1 depicts the corresponding differences, Figure 2
depicts by how many percent the expected value computed with the help of the
respective probability transform differs from the Shenoy’s expected value.

We see that the first row in all tables corresponding to ιX is empty meaning
that under the condition of total ignorance all the considered approaches yield
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(a) Pignistic transform
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(b) Plausibility transform
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(c) Maximum entropy
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Figure 2: Relative difference between Shenoy’s expected utility values and those
computed using probability transforms

the same expected utility (all probability transforms give the uniform probability
distribution).

6 Conclusions

Though the results achieved in this study should be considered preliminary, they
give a hint that the plausibility transform, regardless it is considered by Cobb and
Shenoy the only one corresponding to Dempster-Shafer theory of evidence, is quite
unsuitable for estimating the expected utility. The question is whether there is
any positive result that can be concluded from the described simple study. The
achieved results may support the Smets’ conviction that the pignistic transform
is the best one for decision-making. The results may also suggest that for the
situations described by simple basic assignments, the pignistic transform yield the
same results as the maximum entropy principle and the Perez’ barycenter.

In any case, this study is a starting milestone for further research. From the
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theoretical viewpoint, it would be interesting to know whether our conjecture about
the nonexistence of a probability transform yielding the same expected values as
Shenoy’s operator is true or not. From the practical point of view, because of a
great computational complexity of the new expectation operator, it is interesting to
perform a study similar to the one presented in this paper, but with much greater
the number of basic assignments and a higher the number of utility functions.
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