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CARLES NOGUERA Subdirect Representation
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Abstract.  This paper continues the investigation, started in Livicka and Noguera (Stud
Log 105(3): 521-551, 2017), of infinitary propositional logics from the perspective of their
algebraic completeness and filter extension properties in abstract algebraic logic. If follows
from the Lindenbaum Lemma used in standard proofs of algebraic completeness that, in
every finitary logic, (completely) intersection-prime theories form a basis of the closure
system of all theories. In this article we consider the open problem of whether these prop-
erties can be transferred to lattices of filters over arbitrary algebras of the logic. We show
that in general the answer is negative, obtaining a richer hierarchy of pairwise different
classes of infinitary logics that we separate with natural examples. As by-products we
obtain a characterization of subdirect representation for arbitrary logics, develop a fruitful
new notion of natural expansion, and contribute to the understanding of semilinear logics.

Keywords: Abstract algebraic logic, Infinitary logics, Natural extensions, Natural expan-

sions, Semilinear logics, Subdirect representation.

1. Introduction

Abstract algebraic logic (AAL) studies the nature of the connection between
propositional logical systems and semantical counterparts based on alge-
bras. At the heart of the theory lies the generalization of the standard
Linbendaum—Tarski proof of completeness of classical logic. Recall that when
proving completeness w.r.t. the two-element Boolean algebra, we first prove
the classical Lindenbaum Lemma, which can be formulated in the following
two ways:

1. Syntactical version: Let 'U{¢} be a set of classical formulas. If I" ¥y, ¢,
then there is a mazimally consistent theory T € Th(CL) such that ' C T
and o ¢ T.

2. Semantical version: Let A be an algebra for the language of classical
logic, a € A, and F € Ficr(A) a logical filter. If a ¢ F', then there is a
mazimally consistent filter G € Ficp(A) such that F C G and a ¢ G.
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When proving the algebraic completeness for an arbitrary non-classical
logic we often apply a convenient version of this method. In most cases,
instead of maximally consistent theories or filters (recently studied in gen-
eral in [22]), we meet other significant kinds of theories and filters such as
prime (in case of logics with a form of disjunction [6]) and linear (in case of
logics with implication [8]). The abstract viewpoint of AAL allows to iden-
tify the underlying abstract notions: completely intersection-prime (which
subsumes maximally consistent) and intersection-prime (subsumes prime
and linear).! They give rise (as well as their instances) to corresponding
extension properties, which are in fact a general Lindenbaum lemma for an
arbitrary logic L:

1. Syntactical version: Let I' U {¢} be a set of formulas in the language
of L. If T ¥, ¢, then there is a (completely) intersection-prime theory
T € Th(L) such that ' C T and ¢ ¢ T'.

2. Semantical version: Let A be an algebra for the language of L, a € A,
and F € Fip,(A) a logical filter. If a ¢ F', then there is a (completely)
intersection-prime filter G € Fip,(A) such that F C G and a ¢ G.

The extension properties corresponding to the two abstract types of theories
were introduced in [6] as CIPEP and IPEP. Extension properties allow us
to prove completeness w.r.t. refined classes of models; e.g. prime, linear,
or simple? models. CIPEP and IPEP entail completeness w.r.t. abstract
versions of such models: (finitely) relatively subdirectly irreducible models,
R(F)SI-models for short. Whereas it is easy to prove that each finitary logic?
enjoys the IPEP and CIPEP, this is no longer true for infinitary logics. This
was the topic of [21], where all these properties were studied and shown to
provide a new hierarchy of propositional logics (see Figure 1).

We thus obtained a classification of infinitary logics, i.e. systems where
a proposition may follow from an infinite set of premises, but not from
any of its finite subsets.* The literature of non-classical logics provides

1(Completely) intersection-prime theories are those that cannot be written as an inter-
section of any (finite, nonempty) set of different theories.

2These models are closely related to semisimplicity in universal algebra; cf. [22].

3That is, a logic such that whenever a proposition follows from a set of premises, it
must also follows from a finite subset of these premises; hence, any such logic can be given
by a proof system that generates only finite proofs.

4Consequently, any proof system for these logics necessarily generates some infinitely
long proofs. Infinitary proofs can be modelled by infinitely branching well-founded trees.
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Figure 1. Hierarchy of infinitary logics

several important examples of such logics, including the infinitely-valued
Lukasiewicz logic Lo [23] or the infinitely-valued product logic I, [20].

Observe that the semantical version of the Lindebaum lemma has the
same form as the syntactical one, only that it has been generalized from the
algebra of formulas to arbitrary algebras; it is its transferred version. But
are they equivalent? That is, can the properties CIPEP and IPEP be always
transferred from theories to filters over arbitrary algebras? In fact, finitary
logics satisfy both versions of the Lindenbaum lemma, but is this also true
for infinitary logics?

The present paper is devoted to solving the transfer problem for CIPEP
and IPEP and showing that, far from being a marginal technicality in AAL
as one might be tempted to think, it is actually an important problem that
brings several valuable by-products. Let us substantiate it more precisely in
the following points:

1. A finer hierarchy: We will solve the question in the negative way, that is,
by showing that these properties do not transfer in general. This means
that their transferred versions are distinct properties that define new
classes of logics that had not been considered in [21]. We will provide
natural examples to separate all the resulting classes and, hence, obtain
a finer classification of infinitary logics.

2. Subdirect representation: A central result of universal algebra allows to
represent algebras from a variety (resp. quasivariety) as subdirect prod-
ucts of (resp. relatively) subdirectly irreducible ones. A natural ques-
tion is whether such result can be extended from algebras to matrices in
order to obtain a corresponding subdirect representation for the models
of propositional logic. It is well known that all finitary logics have this
property. We will give a conclusive answer to this question by proving
that subdirect representation is equivalent to the conjunction of protoal-
gebraicity and the transferred CIPEP.

3. Preservation in expansions: Given any relevant property of a logic it is
customary to ask whether it is preserved under extensions of the logic
(obtained by adding axioms or rules) or, even, expansions (obtained by
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adding new connectives to the language and, usually, axioms and rules
to describe their behavior). We will prove that all the extension proper-
ties considered in this paper and in [21] are preserved under axiomatic
extensions, but in general can be lost when adding rules. Moreover, we
will obtain reasonable conditions for their preservation under axiomatic
expansions.

4. Natural expansions: The study of subdirect representation and preser-
vation in expansions in the two previous points have a common tech-
nical requirement: first one needs to understand how can a logic be
expanded to a richer language where either the set of variables or the
set of connectives have been augmented while, essentially, leaving all log-
ical properties untouched. The former notion (i.e. increasing the number
of variables) has been commonly used in AAL known as natural exten-
stons. In order to deal with the latter, we will elaborate a new notion,
which we will call natural expansion, as a kind of dual operation that
keeps the set of variables but adds new connectives. This will give us
another interesting addition to the general theory of AAL prompted by
the main problem considered in the paper.

5. Semilinear logics: An important family of non-classical logics are those
that enjoy a semantics of linearly ordered models, usually known as fuzzy
logics [4] or, in AAL, as semilinear logics [5]. The two infinitary logics
mentioned above, L, and I1,,, are actually semilinear. We will use them
and some variations thereof to provide the necessary examples that we
need in this paper to illustrate notions and separate classes of logics.
In this way, as another unintended consequence of our investigation, we
will also obtain some new knowledge about these two logics and about
semilinear logics in general regarding their standing in the infinitary
hierarchy and their subdirect representation properties.

The paper is organized as follows. Section 2 gives some necessary pre-
liminaries from the general AAL theory and regarding filter extension prop-
erties. In Section 3 we recall the notion of natural extension and develop
a new dual theory of natural expansions. Building on the methods of the
previous section, Section 4 studies the preservation of the transferred and
non-transferred extension properties in (axiomatic) expansions. Then Sec-
tion 5 concludes the theoretical development of the paper by characterizing
subdirect representation in propositional logics and providing the necessary
natural examples to solve the transfer problem and separate all the classes in
the hierarchy. We end the paper with some concluding remarks in Section 6.
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2. Preliminaries

2.1. Abstract Algebraic Logic

In this subsection we briefly recall the definitions and fix the notations of
some basic notions of abstract algebraic logic that will be needed in the
paper (for comprehensive monographs and a survey see [10,14,16-18,29]);
we assume some familiarity with basic notions of universal algebra (see
e.g. [1]).

A propositional language L is a pair (L, Varz), where L is an algebraic
type and Var, an infinite set of variables. We say that £’ is an extension of
L (and denote it as £ < L’) whenever £ C £’ and Varg C Var /. Further-
more, we say L’ is a variable (resp. type) extension of L whenever £ < L'
and £ = L' (resp. Vary = Var,s). Although usual practice in algebraic
logic does not need such level of precision in the treatment of propositional
languages, the present paper will require it for reasons apparent later.

By Fmg(X) (resp. Fmz(X)) we denote the absolutely free term alge-
bra of type £ with the set X as generators (resp. its universe). We call
Fm,(Varg) the algebra of L-formulas and we denote it simply by Fm
(we write Fmg for its universe, i.e. for the set of all £-formulas).

An L-consecution is a pair I' > ¢. Given a set of L-consecutions L, we
write I' k-, ¢ rather than I' > ¢ € L. A logic L in the language L is a set of
L-consecutions (i.e. L C P(Fmg) x Fmg) satisfying:

o If p T, then I' Fp, ¢. (Reflexivity)
e A pand A CT then I'ty, (Monotonicity)
o If Aty o for each ¢p € T" and T' by, ¢, then A by, . (Cut)
o If 'y, ¢, then o[I'] by, o(p) for each L-substitution o. (Structurality)

Finally, logic L is finitary if it satisfies the following condition:
o If Ty, ¢, then there is finite IV C T such that " Fp, ¢. (Finitarity)

We write I' b, A when T by, ¢ for every ¢ € A. A theory of a logic L is a
set of formulas closed under the consequence relation. The set of all theories
of L is a closure system, denoted as Th(L). By Thy,(I") we denote the theory
generated by I’

An L-matrix is a pair A = (A, F'), where A is an L-algebra (the algebraic
reduct of the matrix) and F' C A is a subset called the filter of the matrix.
Given a class K of L-matrices and a language £ = (L, Var,), the corre-
sponding semantical consequence relation is defined as: I' g ¢ iff for each
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(A, F) € K and each A-evaluation e (i.e. a homomorphism e: Fm, — A)
such that e[I'] C F, we have e(¢) € F. Clearly, =k is a logic in L.

Given a matrix A = (A, F), we say that a congruence 6 of A is com-
patible with F' iff for each a,b € A, if (a,b) € 0 and a € F, then b € F.
Compatible congruences with F' form a complete sublattice of the lattice of
all congruences of A, and thus there exists the maximum congruence com-
patible with F', which is called the Leibniz congruence of A and denoted as
Q4 (F). We say that A is a reduced matriz if Qs (F) = Id 4.

A matrix A is a model of L if -, C |=¢a}. The class of models (resp.
reduced models) of a logic L is denoted as MOD(L) (resp. MOD*(L)).
It is well-known that, for any logic L, both of these classes give a com-
plete semantics (in symbols: -, = FEwmobpr) = FmMob+(1)); however it
is common to consider meaningful subclasses of reduced models, such as
relatively (finitely) subdirectly irreducible matrices, which may provide
stronger completeness theorems. A matrix A € MOD*(L) is relatively
(finitely) subdirectly irreducible in MOD™ (L), in symbols A € MOD™(L)gs1
(A € MOD*(L)gpsi), if it cannot be decomposed as a non-trivial sub-
direct product of an arbitrary (finite non-empty) family of matrices from
MOD*(L). The class of algebraic reducts of MOD*(L) is denoted as
ALG*(L).

Given a matrix A = (A, F'), we say that F' is an L-filter provided that A
is a model of L. By Fir,(A) we denote the set of all L-filters over A; Fir,(A)
is also a closure system (and, consequently, a complete lattice) and hence it
also induces a closure operator.

In this paper we will consider some logics belonging to the following
implication-based class introduced in [5] (which generalizes implicative logics
in sense of Rasiowa [27]). Let =(p,q,7) C Fmg be a set of formulas in two
variables and, possibly, parameters 7. Then, given formulas p,1 € Fmg,
we define ¢ = ¢ as |J{=(p, ¥, @) | @ € Fmr}, i.e. the union of the sets
obtained by substituting in =(p, q, 7) p by ¢, ¢ by ¥ and allowing all possible
substitutions for the parameters. Moreover, we denote by ¢ < 1 the set
(¢ = ¥)U (¥ = ¢). We say that = is a weak p-implication (or just weak
implication if there are no parameters ) in L if the following conditions are
satisfied:

(R) FL e = ¢,

(MP) ¢, o= ¢ by 9,

(T) o= v=xFLe=X

(sCng) e YL X1y oy Xis®©se-sXn) = (X1s-v s Xis ¥y e ooy Xn)
for each (c,n) € £ and each i < n.
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A logic is called weakly (p-)implicational if it has a weak (p-)implication.
If = is given by just one formula in two variables (without parameters),
then we denote it as — and call the logic weakly implicative. Weakly p-
implicational logics are actually an alternative presentation of protoalgebraic
logics, which can be described in terms of equivalences <.

An important property of such logics is that their models can be given a
preorder relation induced by the implication. Indeed, given a weakly implica-
tive logic L, a matrix (A, F') € MOD(L), and elements a,b € A, we define:
a < biff a =4 b C F. This binary relation is always a preorder, it is an
order iff the model is reduced, and moreover it allows to characterize the
Leibniz congruence on each model in the following way: (a,b) € Q4 (F) iff
(a =2 b)U (b =4 a) C F. A reduced model is called linear if its corre-
sponding order is total; in this case F' is called a linear filter. The class of
all linear models is denoted as MOD*(L). A logic L is semilinear (w.r.t. a
weak p-implication =) if it is complete with respect to the class MOD*(L).

2.2. Intersection-Prime Filters

In this subsection we first recall (from [6,10]) the definitions of the two kinds
of filters that we will use in the rest of the paper and their corresponding
extension properties; secondly we recall how they entail completeness with
respect to subclasses of reduced matrix models mentioned above.

In general, given a closure system C on a set A, a set X € C is called
intersection-prime in C if it is finitely N-irreducible, i.e. there are no closed
sets X1, Xo € C such that X = X3 N Xy and X € X;, Xs. Similarly, X is
completely intersection-prime in C if it is N-irreducible, i.e. whenever X =
Nics Xi for a family of closed sets {X; | i € I} C C, there is ig € I such
that X = X;,. Given a logic L, an algebra A, and a filter F', we say that F
is (completely) intersection-prime® if it is (completely) intersection-prime in
Fiy,(A); it is analogously defined for theories and Th(L). It is well-known [10,
Proposition 1.3.4.] that

e (A F) e MOD"(L)gpg iff F is intersection-prime in Fip,(A),
e (A, F) e MOD™(L)ggj iff F' is completely intersection-prime in Fig,(A).

The following lemma will be useful later and, interestingly, it implies that
in semilinear logics MOD(L) = MOD*(L)grsi.

LEMMA 2.1. ([8, Lemma 4]) If a logic L is semilinear, then intersection-
prime and linear filters coincide.

5We follow the terminology used in [10], p. 147.



T. Lavicka, C. Noguera

Recall that, given a closure system C, a family B C C is a basis if for every
X € C there is a D C B such that X = (D (which can be equivalently
formulated as an extension property: for every X € C and every a € A\X
there is Y € B such that X C Y and a ¢ Y). Using these notions one can
define the following properties for closure systems and for logics.

DEFINITION 2.2. We say that a closure system C has the (completely)
intersection-prime extension property, (C)IPEP for short, if the (completely)
intersection-prime closed sets form a basis of C. A logic L has the (C)IPEP
if Th(L) does. We say that it has the transferred-(C)IPEP, 7-(C)IPEP for
short, if for every L-algebra A the closure system Fir,(A) has the (C)IPEP.

A logic L is R(F)SI-complete if t-1, = ):MOD*(L)R(msr

In [6] it was shown that all semilinear logics have the IPEP, though in
general they do not have the CIPEP (example in [21, Sect. 3.2]). The non-
transferred versions of these properties have been studied in [21] where their
relationships have been described as depicted in Figure 1. We now present
the two best-known examples of infinitary semilinear logics:

1. The infinitary Lukasiewicz logic Lo [23]. Consider a language with a
denumerable set of variables, a unary connective — and a binary con-
nective —. Let [0, 1];, be the algebra defined over the real interval [0, 1]
with the operations:

1 ifa<b
01t p — ) = 01, — 1 —

“a= b {1—a+b, otherwise. a=1-a.
The logic Lo is defined as [=((0,1),,11})-

2. The infinitary product logic Tl [20]. Consider now a language with
a denumerable set of variables, binary connectives & and —, and a
constant 0. Let [0, 1];; be the algebra defined over the real interval [0, 1]
with the operations:

1, if a <b, —[0,1]11

. =0
b otherwise,
a

N R {

The logic Il is defined as = (jo,1)5,{1})-

Both logics are infinitary, weakly implicative, and semilinear (w.r.t. —).
They both validate the following proper infinitary rule:

{z—-y&y - &y|neN}F-zVy (A)
—_—

n times
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Also, L, and I, have been proved to have the CIPEP in [21, Sect.
3.1]. Their associated classes of algebras, ALG*(L,) and ALG"(Il,), are
certain subclasses of, respectively, MV-algebras and product algebras (see
e.g. [4]). Of course, the order induced by — is the usual lattice order on
these algebras. In fact, since the logics are infinitary and have countable
languages and sets of variables, we obtain the following description of their
classes of algebras:

ALG* (L) = ISPR,, ([0,1]y) and ALG*(Ily.) = ISPg,, ([0, 1]n),

where Pr,, is the class operator for reduced products over N;-complete
filters (i.e. filters closed under countable intersections). Moreover, linear
models (and consequently all RSI models) of these logics are particularly
well-behaved:

PROPOSITION 2.3. The linear models of L (resp. Il ) are embeddable into
[0,1] (resp. into [0,1]r). That is

MOD*(LOO)R,SI - MOD*(LOO)RFSI = MODK(LOO) - S(<[Oa 1]L7 {1}>)7
and analogously for 1l .

PROOF. First recall that a linear MV-(resp. product) algebra A is called
Archimedean, if for every a,b € A such that 0 #% a < b < 1, there is
a natural number n such that b&2 b--- &2 b < a. It is easy to observe
n times
that the rule (A) implies that every linear model of both logics is, in
fact, Archimedean. Every Archimedean MV- (resp. product) algebra is well-
known to be embeddable into the standard one. In both cases it is proven
using relations between the categories of corresponding algebras and lattice-
ordered Abelian groups (for MV-algebras see e.g. [24] or [4, Chapter 5], and
for product algebras see e.g. [2]). Then the result is a consequence of Holder’s
theorem which says that every Archimedean linear lattice-ordered Abelian
group can be embedded into the additive group of reals. [

3. Natural Expansions

Natural extensions are a standard tool, in abstract algebraic logic, to prove
transfer theorems, that is, to show, for a given logic L, that a property of
Th(L) remains true in Fir,(A) for any algebra A. They are often obtained
by enlarging the set of variables while essentially keeping all the properties
of the logic untouched (see [7,10,26]). We first recall the precise definition
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of natural extension and then introduce a dual notion that we call natural
expansion. The main motivation for us to introduce natural expansions lies
in the fact that they will prove useful when arguing about expansions in
general.

3.1. Extensions

Throughout this subsection we fix a logic L in £ and a variable extension
L' = (L, Var /). Then the natural extension of L to variables Var,s is a
logic in language £’, denoted as L£", which can be defined in a syntactical
way by using an axiomatization of L or, alternatively, semantically by means
of the class MOD(L), i.e. L' = FEMoD(L)-

Recall that the cardinality of a logic L, denoted as card(L), is the least
infinite cardinal s such that, whenever I" Fr, ¢, there is IV C T such that
I by, ¢, where |[IV| < k. For example L is finitary if and only if card(L) = w.

As shown in [7], under the assumption that

card(L) < |Varg|™ or |Vare| = | Var /|, (Asl)
we obtain the following useful characterization (given in [28]):
'k @ iff there is a homomorphism o: Fmg — Fm., (N)
and a set of formulas A U {¢} C Fm, such that
Aby ¢, 0[A] CT, and o(¢) = .

Moreover, as proved in the same paper, the same assumption in fact guar-
antees that L is the unique conservative extension of L with the same
cardinality. In symbols, it is the only logic with the following properties:

1. LC LY and L = LZ' | Fmg
2. card(L) = card(L£")
OBSERVATION 3.1. L and L have the same matrix models.

We are usually only interested in the cardinality of the set of variables.
Thus we also define the natural extension of L to k-many variables, denoted
as L", to be an arbitrary natural extension of L to Var . of size k.

3.2. Expansions

Now, instead of adding variables, we consider logics with additional connec-
tives. Let us fix a logic L in a language £ = (L, Varz) and its type extension
L= (L' Varg).
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DEFINITION 3.2. The natural expansion® of L to L’ is the logic axiomatized
by taking all £’-substitutions of an arbitrary presentation of L. We denote
it as Lgv.

Arguing as in [26, Proposition 7], we can describe some of the fundamental
properties of L./ by means of its semantical characterization (*):

PROPOSITION 3.3. L/ is the smallest conservative expansion of L to the
language L' with the same cardinality.

PROOF. Define S in the language £’ semantically as the logic of the following
class of matrices

{{A,F) | A an £'-algebra and (AL, F) € MOD(L)}. *)

We now show that S has all the properties mentioned in the statement
of the proposition. By definition, S is a conservative expansion of L to
L’. Moreover, it is the smallest expansion: To this end first observe that
MOD(L) = MOD(S) [ £; the inclusion from left to right is by definition
and the converse one is true because L C S. Thus, if L/ is any expansion of
L to £', then MOD(L/) [ £ € MOD(L) = MOD(S) [ L. Tt easily follows
that S C L. Let S’ denote the restriction of S to consecutions with less than
card(L) premises. Then, since it is obviously an expansion of L, we obtain
S C 9'; the other direction is clear. In particular L and S have the same

cardinality.
Finally, since L. is clearly the smallest expansion of L to £, we obtain
S = L,/. In particular, L,/ has all the desired properties. [

Now we aim at developing a link between natural extensions and expan-
sions (Proposition 3.6). Recall that the assumption (Asl) on L entails a use-
ful characterization for its natural extensions by means of (N); we will later
see an analogous characterization for natural expansions (Proposition 3.7).

To this end, define the following cardinal

) |Fmge| = max{| Varel,|L'|} if £\L has a non-nullary connective,
eN\L otherwise.

and define the following set of £’-formulas:

Xf, ={c(¢1,---,n) € Fmpr | ©1,...,0n € Fmgr and c € L'\ L}

5We choose the terminology “natural expansion” because it aptly captures the meaning
of the notion and its resemblance to natural extensions, despite the fact that it was already
used in the literature for different purposes (cf. [3]).
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and observe that e = | X f:'\ Finally, define the following set of variables:
Vars = Varg U{z, | ¢ € Xf'} (1)

Thus, Varg has a new variable for every formula of the new language starting
with a new connective. Now we show that L., the natural expansion of L to
L', and LS, the natural extension of L to variables Varg (i.e. to the language
S = (L, Varg)) are actually the same logics modulo a certain translation 7.

A map h : A — B, where A is an L-algebra and B an L’-algebra, is
called an L-homomorphism, if it is a homomorphism between A and the
L-reduct of B. Then the translation 7 is defined as an £-homomorphism
7: Fmg — Fmg by

x ifxe Varg

= , 2
7(@) {g@ x:xcpforcpEXf 2)

Moreover, define recursively a map 7’: Fm» — Fmg as follows: 7/(z) = =,
7'(c) = ¢ for each constant of £ and 7/(c) = z. for each new constant.
If ¢ is an m-ary connective of £ and ¢ = c(p1,...,¢n), then 7/(p) =
c(t'(p1),..., 7 (¢n)). If ¢ is a new n-ary connective and ¢ = ¢(¢1,...,¢n),
then 7/(¢) = z,. Using induction it is easy to prove:

LEMMA 3.4. T is a bijection from Fmg onto Fm g+ with inverse 7’.
Therefore, the formulas of LS and L,/ are in a bijective correspondence.

LEMMA 3.5. For every L-homomorphism 0: Fmg — Fmg/, there is a
homomorphism 6': Fmy — Fmg such that 6 = 70, i.e. the following
diagram commutes:

PROOF. By the previous lemma it is enough to set ¢'(x) = 7/0(x). |
PROPOSITION 3.6. For any fomulas T'U {¢} C Fmgs, we have
I'trs ¢ if and only if T kL., T(p). (3)

ProOOF. By Lemma 3.4, it is enough to show that the translations 7 and 7’
preserve proofs. First, suppose A1) is a rule of LS. By definition of the logic
LS, there is a rule A’>1)’ of L and a homomorphism h: Fm,; — Fmg such
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that h[A'] = A and h(¢)") = 1. Then Th witnesses that 7[A]>7(v)) is a rule
of Lz/. Conversely, let A1 be a rule of Lz/. By definition of the logic L
there is a rule A’ > ¢’ of L and £-homomorphism §: Fm,g — Fm s such
that 0[A’] = A and §(¢)') = 9. Let ¢’ be as in Lemma 3.5; then obviously
§'[A"] > (1) is a rule of LS equal to 7/[A] > 7/ (v)). u

PROPOSITION 3.7. Suppose that either card(L) < |Varg|™ or e < |Varg|.
Then the natural expansion of L to the language L' can be characterized as:

L'ty ¢ iff thereis an L-homomorphism o: Fmge — Fmg., (M)
and a set of formulas AU {¢Y} C Fmg such that
AFp Y, 0[A] CT, and o(¢) = .

PROOF. Take Vars as in (1). Then the logic LS satisfies the assumptions
(Asl), since if e < |Varg| then |Varg| = | Varg|. Then using the fact that
LS is characterized by (N), one can, similarly as in Proposition 3.6, obtain
the desired characterization of L. [

Note that, as in the case of natural extensions, the conditions of the
previous proposition are there to ensure that the relation defined by the right
side of (M) satisfies (Cut). The conditions are necessary: indeed, thanks to
Proposition 3.6 (extending by variables is basically the same as expanding
by constants), we can use the same counterexample as in [7]. On the other
hand, not even under the assumptions of the previous proposition, we can
guarantee that L,/ is the unique conservative natural expansion with the
same cardinality. Indeed, let L. be the least logic in £. Then L with an
additional new constant ¢ which is also added as an axiom c¢ has all the
properties mentioned above (and it is different from L,/).

We can capture the translatability between natural extensions and expan-
sions by means of the following notion.

DEFINITION 3.8. Let L and L’ be logics in languages with £ C £’, with
variables Varz and Var ./, respectively. We say that L isomorphically embeds
into L, in symbols L 3 L/, if there is an isomorphism 7: Fmg — Fm,/ [ L
and for every 'U {¢} C Fmg

'k ¢ if and only if 7[I'] ki 7(¢). (4)

In the conditions of the previous definition, we denote V = 77 1[Var z/];
obviously V' C Var,. It is easy to see that L’ is an expansion of S =L [ L
and L is a conservative extension of S, obtained by extending the set of
variables V' to Var.. Moreover, if L and S have the same cardinality and S
satisfies (Asl), then L/ is the natural expansion of S to L.
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In particular, LS isomorphically embeds into Lz, that is LS = Lz,
where, of course, Lz is the natural expansion of L to £’ and LS the corre-
sponding natural extension to variables Varg described in this section.

ProrosiTiON 3.9. If L X L/, then Th(L) and Th(L') are isomorphic lat-
tices. Consequently, L has the (C)IPEP if and only if L' does.

PROOF. Let 7 witness L X L and let 7/ be its inverse. Lift these functions in
the obvious way to 7 : P(Fmg) < P(Fmg/) : 7'. These lifted mappings are
as well inverse to each other and monotonous. Moreover, (4) ensures that
7[Th(L)] € Th(L') and 7/[Th(L’)] € Th(L). Thus, 7 restricted to theories
is the desired lattice isomorphism. Finally, the IPEP and the CIPEP are
clearly properties preserved by isomorphism between complete lattices. m

4. (C)IPEP and Expansions

In this section we investigate the preservation of the (C)IPEP under expan-
sions. In Section 4.1 we see that these properties are in general not preserved
when adding rules (even finitary rules in the same language). Then, in Sec-
tion 4.2, we show that the IPEP and the CIPEP are always preserved by
axiomatic extensions and we specify a condition under which they are also
preserved by axiomatic expansions. Moreover, we show that their transferred
variants are preserved by axiomatic expansions of protoalgebraic logics. To
obtain the results about preservation under expansions we use the notion of
natural expansion developed in the previous section.

4.1. Finitary Extensions

We define a logic L in a language £ with three unary connectives [,r,0
and countable set of variables. We use metavariables s, s’,... for finite non-
empty sequences of {l,7}. We denote the set of all of them as Seq, which is
naturally ordered by: s < s iff s is a strictly initial sequence of s’. Therefore
(Seq, <) can be seen as the full binary tree of height w without root. So we
can see ls as the extension of the node s to the left, and rs as the extension
to the right in (Seq, <). Recall that B C Seq is a branch in (Seq, <) if it is a
maximal chain. The logic L is axiomatized by taking the following infinitary
rule for each branch B:

{s(¢) | s € B} I o(p). B)

(
Let us show that L has the CIPEP. Indeed, let T' be a theory and ¢
a formula and suppose that ¢ ¢ T then, if ¢ is not of the form o(1))
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for some formula 1), we can take the completely intersection-prime theory
T" = Fme\{p} (the formula ¢ simply cannot be proven from any premises).
If ¢ = o(v)) then define

C = {s € Seq | s(¢) ¢ T and whenever s’ < s then s'(¢)) € T}

and let 77" = Fm\({s(¥) | s € C} U{p}). First observe that for every
branch B, there is a unique s € B such that s(¢) ¢ T’. Indeed, such s
always exists, since otherwise one application of (B) would yield T Fp, ¢. If
there were two, let us say, s < s, then by the definition of C' both s(¢)) € T
and s(¢) ¢ T.

Let us prove now that 7’ is an L-theory. Since ¢ is the only formula
starting with o which is not in 7", then, by the definition of L, Thy (7") = 7"
or Thy,(T") = T" U {¢}. If it was the second case, then for some branch
B, {s(¢) | s € B} C T’, however, as argued above, this is not possible.
Moreover T” clearly extends T'. T" is a maximal theory w.r.t. ¢: If s(¢) is
not in 77 and B is any branch containing s, then, by the uniqueness part
of the observation above, for every other s’ € B we have s'(v)) € T and
consequently 77, s(¢) b1, ¢, as witnessed by one application of (B); thus L
has the CIPEP.

Define L' as the extension of L by the following finitary rules:

l(p) =@ and r(p) ¢, (5)

that can be interpreted as: If a theory contains the node s(¢y), then it con-
tains all of its predecessors. We show that L’ does not have the IPEP. Obvi-
ously I(p),r(p) ¥L o(p). Let T be any theory containing /(p) and r(p) such
that T ¥ o(p). It follows that there must be some sequence sy such that
so(p) € T and there is no succeeding node s’ above sg such that s'(p) € T
(otherwise the rules (5) and (B) would give that o(p) € T). It is now a
simple observation that {lso(p)} UT and {rso(p)} UT are L'-theories (it is
obviously closed under (5), and any infinitary rules that was not applicable
in T would have to be of the form {s(x) | s € B} I o(x) for some branch B,
but any such a rule lacks infinitely many premises in 7). It is obvious that
T = ({lso(p)} UT)N ({rso(p)} UT), and hence L does not have the IPEP.

4.2. Axiomatic Expansions

In this section we study the preservation of IPEP and the CIPEP under
axiomatic expansions. Let us fix language £ and its type extension L’.
Clearly, axiomatic expansions can be seen as axiomatic extensions of the
corresponding natural expansions; thus we can divide accordingly the preser-
vation theorem into two parts.
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ProrosiTioN 4.1. IPEP, CIPEP, 7-IPEP, and 7-CIPEP are preserved

under axiomatic extensions.”

PRrROOF. Let L' be an axiomatic extension of L. Assume, for instance,
that L has the 7-IPEP (the proof for the other cases is analogous). Take
(A, F) € MOD(L') and a € A\F'. Since clearly also F' € Fir,(A), there is
an intersection-prime filter F’ € Fir,(A) such that a ¢ F'. However we also
have that F' € Fiy (A), because F’ it is closed under all rules of L' and
moreover, since ' C F’, it is also closed under the new axioms. [

Capitalizing on the results of the previous section, we can also prove the
preservation under natural expansions. To this end, we need the following
auxiliary result; recall the cardinal ¢ defined on page 11.

PROPOSITION 4.2. Let L be a logic in £ and take k = max{| Varc|,e}. Then
the following are equivalent:

(i) L” has the (C)IPEP,
(i) Lz has the (C)IPEP.

PROOF. Take Varg as in (1). The assumptions ensure that | Vars| = &, thus
we can identify LS with L*. By Proposition 3.6 and comments below Defini-
tion 3.8, we obtain L” = L,/. Then the result follows from Proposition 3.9.

|

THEOREM 4.3. Let L' in L' be an axiomatic expansion of L in L£ and
assume that ¢ < |Varg|. If L has the (C)IPEP, then so does L.

PROOF. The assumption e < |Varg| says that Proposition 4.2 applies for
k = |Varg|, thus L* can be identified with L and we can conclude that L.
has the (C)IPEP. Further, since L’ is clearly an axiomatic extension of L/,
it has the (C)IPEP by Proposition 4.1. |

In particular the theorem always applies if £’ and Var, are countable.
Also observe that axiomatic expansions by countably many constants always
preserve both IPEP and CIPEP (this kind of expansions have been deeply
studied in the field of fuzzy logics, see e.g. [11,13]). Moreover, the cardi-
nal restriction in Theorem 4.3 is necessary (even for protoalgebraic logics);
indeed, the infinitary product logic I1o, does have the CIPEP (see [21]), but
there exists a cardinal x such that the logic II5 does not have the IPEP
(see Theorem 5.13), thus by Proposition 4.2 the natural expansion of I

"In the case of the IPEP this result was already proved in [6, Lemma 2.8].
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to a language with additional k-many constants enjoys neither the CIPEP
nor the IPEP.

THEOREM 4.4. For protoalgebraic logics both T-IPEP and 7-CIPEP are pre-
served under arbitrary aziomatic expansions.

PROOF. Assume L is a protoalgebraic logic in £ and it has the 7-(C)IPEP.
Since protoalgebraic logics are closed under arbitrary axiomatic expansions,
by Corollary 5.3 and Proposition 4.1, it is enough to argue that any arbitrar-
ily large natural extension (Lz/)* (which is a logic in language £ = (£, k))
of the natural expansion L,/ has the (C)IPEP.

This can be proven by a slight modification of the reasoning seen in
Section 3. We can again prove a variant of Proposition 3.6 for (Lz )", i.e.

['Fys ¢ if and only if 7[T] )= T(0),

which can be done completely analogously, with the difference that instead
of the set X4 we use:

Xﬁ ) - {C<Q017 7@071) € Fmﬁ/(’%) ’ P1y - Pn € Fm[/("f% and ¢ € El\ﬁ}

and, of course, as the set Vars we choose Varg U{z, | ¢ € Xf.:' (")}_

Similarly as in Section 3, the translation 7 is an isomorphism from Fmg
onto Fmg | L. Therefore for A = |Vars| we have L* = (L./)". Conse-
quently, since L* has the (C)IPEP, so does (Lgz/)* (Proposition 3.9). [

5. Subdirect Representation and Examples

In this section we consider the notion of subdirect representation, a cor-
nerstone of universal algebra, in the framework of abstract algebraic logic.
Namely, we say that a logic L is (finitely) subdirectly representable if its
reduced models are representable as subdirect product of (finitely) subdi-
rectly irreducibles, in symbols: MOD*(L) = Psp(MOD"(L)gr)s1). We
will prove that such property is equivalent with protoalgebraicity plus 7-
(C)IPEP. As an example, we will show that the infinitary Lukasiewicz logic
has the 7-CIPEP and so do its axiomatic expansions (by Theorem 4.4);
as a consequence, we will obtain that every such an expansion is subdi-
rectly representable. The rest of the section is devoted to the presentation
of other examples of semilinear logics that separate all the classes in the
hierarchy.
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5.1. Subdirect Representation in Abstract Algebraic Logic

Let us prove first that, in protoalgebraic logics, surjective homomorphisms
preserve the (C)IPEP.

PROPOSITION 5.1. Let L be a protoalgebraic logic in a language £. Let A
and B be L-algebras and h : A — B be a surjective homomorphism. Then,
Fir(B) has the (C)IPEP whenever Fiy,(A) does.

PROOF. Assume Fir,(A) has the (C)IPEP and take F' € Fir(B). Consider
h as a strict surjective homomorphism between matrices

h:{(A,h'[F]) - (B, F)

The correspondence theorem of protoalgebraic logics (see e.g. [14, Theo-
rem 6.20]) ensures that if h~1[F] can be decomposed as an intersection of
(completely) intersection-prime filters, so can F. [ ]

COROLLARY 5.2. Let L be a protoalgebraic logic in a language L, |Vare| < K
an infinite cardinal, and suppose L" has the (C)IPEP. Then Fiy,(A) has the
(C)IPEP for every L-algebra A with |A| < k.

PROOF. Observation 3.1 clearly implies that Fiy,(Fm(x)) has the (C)IPEP
if and only if Th(L") does (i.e. if and only if L has the (C)IPEP). But there
is a surjective h : Fmg(k) — A. The rest follows from the previous propo-
sition. [

As an easy consequence, we can obtain a useful characterization of the
7-IPEP and the 7-CIPEP in terms of natural extensions:

COROLLARY 5.3. Let L be a protoalgebraic logic. Then the following are
equivalent:

(i) L” has the (C)IPEP for every k > |Vare|,

(ii) L has 7-(C)IPEP.

Moreover, the implication from bottom to top holds for each logic L.
PROOF. The implication from (i) to (ii) simply follows from Corollary 5.2.
The other one: 7-(C)IPEP implies that Fir,(Fmg(x)) has the (C)IPEP,

but then so does Th(L") (by Observation 3.1 they are in fact the same
lattices). |

We still need another auxiliary result connecting the transferred extension
properties with a decomposition of filters in reduced models:
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PROPOSITION 5.4. A protoalgebraic logic L has 7-(C)IPEP if, and only if, for
each (A, F) € MOD*(L), F is an intersection of (completely) intersection-
prime filters.

PROOF. The direction from left to right is obvious. For the other one con-
sider (A, F) € MOD(L) and let h be the reduction map:

h: (A, F) — (A, F)* = (A*, F*).

Since L is protoalgebraic, h is strict and surjective, and F* = [;; Gj,
where every G; is intersection-prime, we obtain F = (,c; h ![G;], as we
wanted. The correspondence theorem ensures that h=![G;] are (completely)
intersection-prime. [

Using all these elements now we are ready to prove the main result of
this subsection.

THEOREM 5.5. For any logic L, the following are equivalent:

i. L is protoalgebraic and has the T-IPEP (resp. 7-CIPEP ).

ii. MOD* (L) = Psp(MOD*(L)grsi)
(resp. MOD*(L) = Psp(MOD*(L)gs) ).

PROOF. We prove the case of the 7-IPEP (for the 7-CIPEP it is analogous).
(i) implies (ii): Take (A, F) € MOD™(L). Then, by the 7-IPEP and the
previous proposition, we have F' = (,.; F;, where each F} is an intersection-
prime filter. Therefore there is a natural subdirect representation:

h: (A F)—sp [[{A F)".
icl

The fact that (A, F;)* € MOD"(L)grrs1 easily follows from the assumption
that every Fj is intersection-prime (recall the equivalence before Lemma 2.1).
The other inclusion is due to protoalgebraicity.

(ii) implies (i): Since MOD™(L) is closed under formation of subdirect prod-
ucts, L is protoalgebraic. By Proposition 5.4, it is sufficient to prove that
every filter F' from a reduced model (A, F') € MOD*(L) can be decomposed
as an intersection of intersection-prime filters. By the assumption, there is
a set of RFSI reduced models {(B;, G;) }icr and an embedding

h: (A, F) —sp H<Bi>Gi>'
icl
It is easy to verify that F is the intersection of all filters F; = (m; o h)~1[G}],
where 7; is the i-th projection of the product [],.;(B;, G;). Moreover every
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filter F; is intersection-prime, because G is intersection-prime, L is protoal-
gebraic, and m; o h is strict and surjective. [

5.2. Subdirect Representation in Universal Algebra

In universal algebra, it is well-known (Birkhoff’s theorem; see e.g. [1]) that
any variety V and quasivariety QQ of algebras can be described in terms of
subdirect products of their (relatively) subdirectly irreducible members:

V=Psp(Vsi) and Q =Psp(Qrsi).

Notice the clear formal analogy with subdirect representation for models
of logics. It is well-known that finitary logics are representable and, of course,
there is an obvious connection between finitary of logics and (quasi)varieties:
namely, both can be syntactically presented by expressions with finitely-
many premises (finite rules in the case of logics, quasiequations in the case of
quasivarieties). A natural question is whether the subdirect representations
can be extended to more general classes of algebras and to infinitary logics.
The example in Section 5.3.2 will give a negative answer to this question.

The equational counterpart of infinitary rules are generalized quasiequa-
tions, which are expressions of the form:

{ay=piliel>arf, (6)

for possibly infinite sets I. A class of algebras K is called a prevariety if it is
the class of models of a collection of generalized quasiequations. Moreover,
K is a prevariety precisely when it is closed under isomorphisms, subalge-
bras, and products, i.e. K = ISP(K). Thus, every prevariety contains free
algebras. Prevarieties are often simply called ISP -classes.

In analogy with the development of the previous subsection, we can char-
acterize when a given prevariety is (finitely) subdirectly representable, that
iS, when K = PSD (KRSI) (resp. K= PSD(KRFSI))-

THEOREM 5.6. Let K be a prevariety. Then the following are equivalent:
i. K is (finitely) subdirectly representable,

ii. Cong(A)® has the CIPEP (resp. IPEP) for every L-algebra A,

iii. Cong(F'mg(k)) has the CIPEP (resp. IPEP) for every cardinal k.

Note that, similarly to Proposition 5.4, the condition (ii) is equivalent to

iv. For every A € K, the identity congruence is an intersection of (com-
pletely) intersection-prime K-congruences.

8Cong(A) is the set of all K-congruences, i.e. congruences © on A such that A/0 € K.
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5.3. Examples

In this subsection we show three examples of semilinear logics that, based
on previous results of the paper, allow to separate all the classes in our
hierarchy of infinitary logics.

5.3.1. Infinitary Lukasiewicz Logic For each infinite cardinal s, let L
be the logic of the standard Lukasiewicz matrix, ([0, 1]y, {1}), in a language
with k-many variables. We want to prove the transfer result using Corol-
lary 5.3; to this end we show that L , is in fact the natural extension of
Loo-

PROPOSITION 5.7. Let k be an infinite cardinal. Then L .. has cardinality
Ry. In particular, L . is the natural extension of Lo to k-many variables,
i.e. Loo w = L.

PROOF. Define for each formula ¢ and each rational ¢ € (0, 1) the following
sets of evaluations:

NSAT () ={v: K — [0,1] | v(p) # 1}
SAT(¢) ={v: K — [0,1] | v(p) = 1}
SATy(p) = {v: k = [0,1] [ v(p) > ¢}

Since the operations of Lukasiewicz logic are all continuous w.r.t. the
standard interval topology on [0, 1], we obtain that for each ¢ and g the sets
NSAT(¢) and SAT,(¢) are open in [0, 1]*, the topological product of k-many
copies of [0, 1]. This follows from the fact that we can see every formula ¢
as a continuous mapping ¢ : [0,1]" — [0, 1] such that ¢(v) = v(p), thus for
example SAT,(¢) = ¢ [t q], where ftq = {r € [0,1] | ¢ < r}, which is, of
course, an open set.

Moreover, for every set of formulas A and every formula x, we have the
following equivalence:

Aty x <= |J NSAT(y) USAT(x) = [0, 1] (7)
PeA

Furthermore, since the filter {1} can be obtained as the intersection of
countably many sets of the form 1} ¢, for each rational ¢ € (0,1), it follows
that SAT () is an intersection of countably many open sets:

SAT(p) = [ SAT,( (8)
q€(0,1)

Clearly, since L . is a conservative extension of L, it has cardinality
at least N;. To prove the other inequality assume I' -y = ¢. We need to



T. Lavicka, C. Noguera

show that there is a countable I C T" such that I' s . From (7) we
obtain

|J NSAT () USAT(p) = [0, 1]".

yer
Then for any rational g, since obviously SAT(¢) C SAT,(y), we obtain

|J NSAT () USAT,(¢) = [0,1]".

vel
Thus we have an open cover of [0, 1]*. Therefore, by compactness, we obtain

a finite I'y € I' that generates a subcover. We define I = {J c(.1jnq T's-

Using (8), it is easy to see that
|J NSAT(y) USAT(¢) = [0,1]%,
yer’
which, by (7), implies I'' - __ . ¢ and, moreover, I is clearly countable.
It follows that L., is the unique natural extension of L., (cf. Sec-
tion 3.1). [ ]
In order to obtain that L., has the 7-CIPEP we recall [21, Corollary 3.9]:
LEMMA 5.8. For every protoalgebraic L and every class of matrices K such
that L = =k, the following hold:
1. If S(K) € MOD*(L)gpsi, then L has the IPEP.
2. If S(K) C MOD*(L)gs1, then L has the CIPEP.

THEOREM 5.9. L., has the 7-CIPEP and, consequently, so does each of its
axtomatic erpansions.

PRrOOF. By Corollary 5.3 it is enough to show that L5 has the CIPEP
for every infinite x. By Proposition 5.7 we have Ly, = =01],,{1}) and
moreover it is easy to show that S(([0,1]y,{1})) € MOD"(Ly)rsr — see
e.g. [21, Example 10]. Thus the previous lemma applies. The part about
axiomatic expansions is due to Theorem 4.4. [

From the previous theorem and Theorem 5.5 we obtain:

COROLLARY 5.10. Any axiomatic expansion L of Lo is (finitely) subdirectly
representable; in symbols:

MOD*(L) = Psp(MOD™(L)gr)st)-

Consequently, we obtain an analogous result for the equivalent algebraic
semantics of L:

ALG" (L) = Psp(ALG™ (Lo )r(F)sD)- (9)
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This shows that ALG" (L) is an example of a subdirectly representable
class of algebras, where the representation theorem is not a consequence of
Birhoff’s theorem (recall that ALG" (L) is not a quasivariety). The same
is true for every infinitary axiomatic expansion of L.

Moreover, as another consequence of Proposition 5.7, we can obtain a
nice description of the class ALG"(L).

PROPOSITION 5.11. The class of algebras of L is the prevariety generated
by the algebra [0, 1]y,; in symbols:

ALG"(Loo) = ISP([0, 1]1).

PROOF. The inclusion from right to left clearly holds (recall, for instance,
that ALG" (L) = ISPr,, ([0, 1]1.)). For the other inclusion we can prove

ALG" (L) = Psp(ALG™ (Loo)rst) € ISP(([0, 1]1),

where the equality is (9) and the inclusion follows from Proposition 2.3,
which says that ALG" (Lo )rst € IS([0,1]1). |

The proof of Proposition 5.7 suggests a general methodology to obtain
an upper bound for the cardinality of a logic in k variables defined by a class
of matrices K, call it Lk ,.. The proof of the theorem is omitted, since it can
be easily abstracted from that of Proposition 5.7.

THEOREM 5.12. Suppose A is a reqular cardinal and K is a class of matrices,
such that |K| < X. Then for every cardinal k the logic Lk , has cardinality
at most A whenever the following conditions hold for every (A, F) € K:

1. There is a compact topology T on A such that all connectives are inter-
preted by continuous functions w.r.t. T,

2. F can be written as an intersection of strictly less than \ open sets in
7—7

3. A\F is open in T.

5.3.2. Infinitary Product Logic We will now show that in general nei-
ther IPEP nor CIPEP transfer. Indeed, we will see that 11, does not have
7-IPEP, but as proved in [21], it has the CIPEP. The crucial difference
between L, and Il is in the fact that the connectives of the latter are not
continuous on the unit interval topology.

THEOREM 5.13. Il does not have the T-IPEP.

Proor. By virtue of Corollary 5.3, it is enough to prove that one natural
extension of Il,, does not have the IPEP. Let k be an arbitrary cardinal
strictly larger than the continuum ¢ and consider the natural extension 117 .
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Since Il is obviously semilinear w.r.t. —, by Lemma 2.1 any filter F'is
intersection-prime if, and only if, it is linear. Furthermore, since models of
Il and II%, coincide (Observation 3.1), it follows that every theory 7' of
I1% is intersection-prime exactly if it is linear. Define

I'={(xq —23) 20| 0 << f <K}

Let us show that I' ¥1x xq. Indeed, otherwise there would be a countable
subset I of I' such that I Fp. xo (II%, is a natural extension of Il
therefore it has cardinality 8;). Then we could take a substitution o such
that o[Var[I']] C Var. Then o[I'] Frx o(x0) and hence, o[I'] i, o(o).
Let us define vy = o(xg) and enumerate the remaining variables of T as
{v1,v2,...} in such a way that {(v, — vy) = v0|0<n <m<w} b vo.
This derivation can be falsified by taking the evaluation e(vg) = 3 and
e(vy) = 5oy for each n > 1.9

If 115, had the IPEP, there would be a linear theory 7" O I, such that
T ¥ns . Consider the Lindenbaum-Tarski model given by T', that is
(Fmg(k)*,T*). It is easy to see that Fm,(k)* is an Archimedean (see
proof of Proposition 2.3) linear product algebra, thus by Proposition 2.3 it
embeds into [0, 1]y.

Furthermore observe that for any 0 < a < 8 < k we have z, — 23 ¢ T,
which implies that |Fme(k)*| = k (because (p,9) € Q(T) iff both ¢ — ¢ €
T and ¢ — ¢ € T'). However, since k > ¢, we have a contradiction. [

By Theorem 5.5, Il is not finitely subdirectly representable, thus the class
MOD*(I1) is not generated as subdirect products of chains. In fact, in the
proof of the theorem, we have constructed an algebra, namely Fm,(k)*,

which is not a subdirect product of algebras from ALG" (Il )grsr, that is
ALG"(Il) # Psp(ALG™ (Il )rFs1).

Another consequence of the theorem is that the logic with x variables
given semantically by the standard product chain need not have cardinality
Ny (e.g. whenever k > ¢). Moreover, as mentioned in Section 4.2, not every
axiomatic expansion of I1,, has the IPEP (CIPEP); e.g., by Proposition 4.2
and the previous theorem, adding more than continuum many constants
does not preserve any of them.

5.3.3. A Non-RSI-Complete Logic with 7-IPEP In this final subsection
we introduce an infinitary version of the degree-preserving Lukasiewicz logic

9Note that the same argument for Lo would fail here, i.e. it is the case that {(z; —
zj) — xo |4 < jin IN} by, @o.
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with rational constants, which can be seen as a natural combination of the
degree-preserving Lukasiewicz logic studied in [15] and Lukasiewicz logic
with rational constants studied in [19,25]. After an elementary presentation
of the logic we shall show that, as desired, it has 7-IPEP but it is not RSI-
complete.

Take the language of Lukasiewicz logic with rational constants, that is:

L={—,&,0}U{q]qe (0,1]NQ} and Varg = w.

Let [0,1]% denote [0,1];, expanded with the natural interpretations of the
constants. Let Tq denote the lattice filter generated by a rational number ¢
in [0,1], i.e. Tg = {r € [0,1] | » > ¢}. Define L, as the matrix ([0, 19, 1¢)
and define the set K= {L; | ¢ € (0,1] N Q}. Then we define

L= .

Note that, since rationals are a dense subset of the reals, L is indeed the
degree-preserving logic over the algebra [0, 1];‘;Q (i.e. in fact every lattice filter
on [0,1]2 is a filter of L). Indeed, we could define L as

'Foe <<= /\v[P] < v(p), for all v € Hom(Fm, [0,1]2).

However, as we will see later, it is of significance that the logic can be defined
over countably many matrices.
Define the following generalized implication connective:

z=y={(=—y)"|nel}

where (—)™ denotes the n times iterated conjunction. It is easy to check that
= is a weak implication in L. Indeed, observe that for every (A, F) € K and
every a,b € A it holds that a =4} C Fif and only if a < b, where < is the
standard order on reals. Clearly, K € MOD* (L) and hence L is semilinear.

Therefore, on every reduced model (A, F'), we have the induced order
relation <# given by a<b iff a =4 b C F. Moreover, it is easy to see that
L proves:

r=ytL(z—y)=>landz=ybp 1= (z—y),

which implies the left to right implication in the following characterization
of the order on reduced models (the other implication is obvious):

a<Abh = a—b=1", (10)
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Now we can easily see that L is infinitary (in fact, card(L) = R;); indeed:

U g=xtLz
q€(0,1)NQ
but no finite subset of premises would entail x.
Note that L is equivalential, but not algebraizable, which is a consequence
of the fact that all the matrices L, are reduced (on every algebra in alge-

braizable logics there is at most one filter making the corresponding matrix
reduced).

PROPOSITION 5.14. L has the 7-IPEP.

PROOF. Let Lk ,, be the logic in k-many variables semantically given by the
class K. We can apply Theorem 5.12 to prove that Lk , has cardinality N;
and thus show that L* = L ,, (the condition necessary to ensure the unique-
ness of natural extensions is fulfilled; see Section 3.1). The theorem applies,
because K is countable, the standard interval topology on [0, 1] is compact
and all the connectives are continuous w.r.t. it and finally, all the filters Tq
can obviously be approximated by countably many open subsets of [0, 1]. So
L* is complete w.r.t. K and, consequently, it is semilinear w.r.t. = (because
K € MOD*(L)) and has the IPEP (in fact, every semilinear logic has the
IPEP; see [8, Theorem 3]). By Corollary 5.3, since L is protoalgebraic, it
has the 7-IPEP. ]

PRrOPOSITION 5.15. L is not RSI-complete.

PROOF. First observe that L satisfies for every real number r € (0,1] the
following density rule:

{g=zlg<riui{qlg>r}tra (11)

We show that L has no RSI-models which implies that it cannot be RSI-
complete because it is not the inconsistent logic. In pursuit of contradic-
tion suppose there is a reduced model (A, F) in which F is completely
intersection-prime. In particular, ' # A and, since L is semilinear, F' is
linear (by Lemma 2.1), which implies that <# is a linear order. Consider
the following set of rationals

Cr={qe(0,1]|g* € F}.

Claim 1: For each a € A\F, there is ¢ such that a <® ¢4 and ¢ ¢ Cp.
Proof: Take a € A\F and assume that there is no such ¢. By linearity of
<A, we have ¢4 <?a for every q ¢ Cp. Thus, applying (11) for » = inf Cp,

we obtain that a € F'; a contradiction.
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Let us define 7g4 = {a € A|a >4 g4}.
Claim 2: For every ¢ ¢ Cp, F C 1¢4.
Proof: Take a € F' and suppose ¢ fA a. By linearity a <# ¢, thus modus
ponens of = implies that ¢ € F' —a contradiction.
Claim 3: For every B € ALG*(L) and every ¢ € (0,1] N @, the set 1P is
an L-filter.
Proof: Since L is equivalential in a countable language with a countable set of
variables we have ALG* (L) = ISPg,, ([0,1]2), and hence B is embeddable
into C = []"[0,1]9/F for some F, an Ry-complete filter on « (see e.g. [9,
Theorem 1]). Take G = ([]" 1q)/F; it follows that (C, G) is a reduced model
of L (because MOD*(L) is closed under Pgr,, ). We show that G = T¢°:

@ elid® = {ack|qg—ala)=1}eF
— {ack|ala)elqteF
<~ [a] € G,

The claim follows because 1¢? = 1¢¢ N B.

It is now easy, by virtue of all the claims above, to conclude that F =
N 42Cr 1@*, where for each g ¢ Cp, g4 is a filter and does not coincide with
F' —a contradiction with the fact that F' is completely intersection-prime. m

6. Conclusions

In this paper we have considered the transfer problem, left open in [21], for
the properties IPEP and CIPEP, which naturally arise in AAL as general-
izations of finitarity in the study of propositional logical systems and their
completeness theorems. We have shown that these properties do not transfer
in general and, hence, we have obtained a richer hierarchy depicted in the
following figure:

Finitary =7 7-IPEP 7 IPEP 7 RFSI-complete

Sl

7-CIPEP —— CIPEP _—— RSI-complete

Moreover, we have used the transferred properties to obtain a character-
ization of subdirect representation for the matricial semantics of proposi-
tional logics (and for prevarieties in universal algebra). We have seen that,
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outside the scope of finitary logics (or quasivarieties), subdirect represen-
tation is not guaranteed (Section 5.3.2); however, there are still positive
examples of this phenomenon in Section 5.3.1.

The meaning of the classes in the hierarchy deserves some further
remarks. Indeed, determining the position of a logic in the hierarchy essen-
tially amounts to determining how many R(F)SI-models the given logic has.
Namely: (1) 7-(C)IPEP logics are those with the biggest amount of such
models, enough to build all the remaining models by subdirect products;
(2) (C)IPEP logics are complete w.r.t. R(F)SI-models built over the algebra
of formulas (i.e. Lindebaum—Tarski models); (3) R(F)SI-complete logics may
not have as many Lindebaum-Tarski models, but still have enough R(F)SI
models to provide a complete semantics.

Moreover, we have proved that the extension properties are preserved
under axiomatic extensions, while, in general, they may be lost when adding
rules. We have also found some conditions that ensure preservation under
axiomatic expansions, hence solving another of the open problems of [21].
All these results are based on two auxiliary technical notions: natural exten-
sions and natural expansions; the former already known before, the latter
introduced in this paper. Both notions allow to prove the preservation of
properties of Th(L) to logics in expanded languages; other properties for
which such technique might turn out useful in future work include distribu-
tivity and filtrality (because they are preserved under lattice isomorphisms,
cf. Proposition 3.9). Finally, the study we have performed has incidentally
brought some new insight on semilinear logics that we would like to stress:

1. IPEP is the smallest class in the hierarchy that contains all semilin-
ear logics. Indeed, II,, does not enjoy the 7-IPEP and the example in
Section 5.3.3 does not have the CIPEP.

2. All semilinear logics are RFSI-complete (because they have the IPEP),
but they are not all RSI-complete as shown by the example in Sec-
tion 5.3.3, or another semilinear logic with rational truth-constants
introduced in [21, Subsection 3.2].

3. Semilinear logics take their name from the fact their finitely subdirectly
irreducible models are linear, that is, MOD*(L) = MOD*(L)grs1, and
moreover they are complete w.r.t. these models. However, this does not
entail that they are always finitely subdirectly representable, as shown
again by the infinitary product logic Il.
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4. Our preservation result of the 7-CIPEP and the 7-IPEP under axiomatic
expansions allows to show that many other interesting infinitary semi-
linear logics enjoy these properties, such as usual the expansions with
the projection connective A or other truth hedges, logics with additional
truth-constants, logics with additional involutive negation, etc. [12].

Let us end by collecting a few (minor) open problems that arise from the
investigation of this paper:

e Are 7-CIPEP and the 7-IPEP preserved under axiomatic expansions for
non-protoalgebraic logics?

Is also R(F)SI-completeness preserved under axiomatic expansions?

Are the extension properties preserved when adding rules (and keeping
the language) to protoalgebraic logics?

Is there an example of an algebraizable logic with the 7-IPEP but not
RSI-complete?

Since almost all the examples in this paper are semilinear logics, this
open problem from [21] still remains: is there a natural RFSI-complete
logic without the IPEP, besides the rather complicated system that was
built there?

Acknowledgements. We thank the anonymous referees for their suggestions
and corrections. Both authors were supported by the grant GA17-04630S of
the Czech Science Foundation. Moreover, this project has received fund-
ing from the European Union’s Horizon 2020 research and innovation pro-
gramme under the Marie Sktodowska-Curie grant agreement No 689176.

References

[1] BURRIS, S., and H. P. SANKAPPANAVAR. A Course in Universal Algebra, volume 78
of Graduate Texts in Mathematics. Springer-Verlag, 1981.

[2] CiaNoLL, R., and A. TORRENS, An algebraic analysis of product logic. Multiple- Valued
Logic 5(1):45-65, 2000.

[3] CieNoLL, R., and A. TORRENS, Free algebras in varieties of Glivenko MTL-algebras
satisfying the equation 2(z?) = (22)2. Studia Logica 83(1-3):157-181, 2006.

[4] CiNTULA, P., C. G. FERMULLER, P. HAJEK, and C. NOGUERA, (eds.), Handbook of
Mathematical Fuzzy Logic (in three volumes), volume 37, 38, and 58 of Studies in
Logic, Mathematical Logic and Foundations. College Publications, 2011 and 2015.

[5] CINTULA, P., and C. NOGUERA, Implicational (semilinear) logics I: A new hierarchy.
Archive for Mathematical Logic 49(4):417-446, 2010.



T. Lavicka, C. Noguera

[6] CinTULA, P., and C. NOGUERA, The proof by cases property and its variants in
structural consequence relations. Studia Logica 101(4):713-747, 2013.

[7] CINTULA, P., and C. NOGUERA, A note on natural extensions in abstract algebraic
logic. Studia Logica 103(4):815-823, 2015.

[8] CiNTULA, P., and C. NOGUERA, Implicational (semilinear) logics II: Additional
connectives and characterizations of semilinearity. Archive for Mathematical Logic
55(3):713-747, 2016.

[9] CiNTULA, P., and C. NOGUERA, Implicational (semilinear) logics III: Completeness
properties. Archive for Mathematical Logic in press.

[10] CZELAKOWSKI, J., Protoalgebraic Logics, volume 10 of Trends in Logic. Kluwer, Dor-
drecht, 2001.

[11] EsTEVA, F., J. GispErT, L. Gopo, and C. NOGUERA, Adding truth-constants to
logics of continuous t-norms: Axiomatization and completeness results. Fuzzy Sets
and Systems 158(6):597-618, 2007.

[12] ESTEVA, F., L. Gopo, and E. MARCHIONI, Fuzzy logics with enriched language. In
P. Cintula, P. Hijek, and C. Noguera, (eds.), Handbook of Mathematical Fuzzy Logic -
Volume 2, volume 38 of Studies in Logic, Mathematical Logic and Foundations. College
Publications, London, 2011, pp. 627-711.

[13] ESTEVA, F., L. Gopo, and C. NOGUERA, On expansions of WNM t-norm based logics
with truth-constants. Fuzzy Sets and Systems 161(3):347-368, 2010.

[14] FonT, J. M., Abstract Algebraic Logic. An Introductory Textbook, volume 60 of Studies
in Logic. College Publications, London, 2016.

[15] FonT, J. M., A. GIL, A. TORRENS, and V. VERDU, On the infinite-valued Lukasiewicz
logic that preserves degrees of truth. Archive for Mathematical Logic 45(7):839-868,
2006.

[16] FoNnT, J. M., and R. JANSANA, A General Algebraic Semantics for Sentential Logics,
volume 7 of Lecture Notes in Logic. Association for Symbolic Logic, Ithaca, NY, 2 edi-
tion, 2009. Freely downloadable from http://projecteuclid.org/euclid.Inl/1235416965.

[17] FonT, J. M., R. JANSANA, and D. L. P1¢0ozz1, A survey of Abstract Algebraic Logic.
Special Issue on Abstract Algebraic Logic II. Studia Logica 74(1-2): 13-97, 2003.

[18] FonT, J. M., R. JANSANA, and D. L. Picozzi, Update to “a survey of Abstract
Algebraic Logic”. Studia Logica 91(1):125-130, 20009.

[19] HAJEK, P., Metamathematics of Fuzzy Logic, volume 4 of Trends in Logic. Kluwer,
Dordrecht, 1998.

[20] HAJEK, P., L. Gopo, and F. ESTEVA, A complete many-valued logic with product
conjunction. Archive for Mathematical Logic 35(3):191-208, 1996.

[21] LAVICKA, T., and C. NOGUERA, A new hierarchy of infinitary logics in abstract alge-
braic logic. Studia Logica 105(3):521-551, 2017.

[22] LAVICKA, T., and A. PRENOSIL, Protonegation and inconsistency lemmas. Unpub-
lished manuscript.

[23] LUKASIEWICZ, J., and A. TARSKI, Untersuchungen iiber den Aussagenkalkiil. Comptes
Rendus des Séances de la Société des Sciences et des Lettres de Varsovie, cl. III,
23(iii):30-50, 1930.


http://projecteuclid.org/euclid.lnl/1235416965

Extension Properties and Subdirect Representation

[24] MunDIcl, D., Interpretations of AF C*-algebras in Lukasiewicz sentential calculus.
Journal of Functional Analysis 65(1):15-63, 1986.

[25] PAVELKA, J., On fuzzy logic I, I, IIL. Zeitschrift fir Mathematische Logik und Grund-
lagen der Mathematik 25:45-52, 119-134, 447-464, 1979.

[26] PRENOSIL, A., Constructing natural extensions of propositional logics. Studia Logica
104(6):1179-1190, 2016.

[27] Rasiowa, H., An Algebraic Approach to Non-Classical Logics. North-Holland, Ams-
terdam, 1974.

[28] SHOESMITH, D. J., and T. J. SMILEY, Deducibility and many-valuedness. Journal of
Symbolic Logic 36(4):610-622, 1971.

[29] Wéucickl, R., Theory of Logical Calculi, volume 199 of Synthese Library. Kluwer
Academic Publishers, Dordrecht/Boston/London, 1988.

T. LAVICKA, C. NOGUERA

Institute of Information Theory and Automation
Czech Academy of Sciences

Pod Vodéarenskou Vézi 4

182 08 Prague

Czech Republic

lavickat@utia.cas.cz

C. NOGUERA
noguera@utia.cas.cz
URL: http://wuw.utia.cas.cz/people/noguera



	Extension Properties and Subdirect Representation  in Abstract Algebraic Logic
	Abstract
	1. Introduction
	2. Preliminaries
	2.1. Abstract Algebraic Logic
	2.2. Intersection-Prime Filters

	3. Natural Expansions
	3.1. Extensions
	3.2. Expansions

	4. (C)IPEP and Expansions
	4.1. Finitary Extensions
	4.2. Axiomatic Expansions

	5. Subdirect Representation and Examples
	5.1. Subdirect Representation in Abstract Algebraic Logic
	5.2. Subdirect Representation in Universal Algebra
	5.3. Examples
	5.3.1. Infinitary Łukasiewicz Logic
	5.3.2. Infinitary Product Logic
	5.3.3. A Non-RSI-Complete Logic with τ-IPEP


	6. Conclusions
	Acknowledgements
	References




