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Abstract. Given finitely many events in a probability space, conditional
independences among the indicators of events are considered simultaneously with
the signs of covariances. Resulting discrete structures are studied restricting at-
tention mostly to all couples and triples of events. Necessary and sufficient con-
ditions for such structures to be represented by events are found. Consequences
of the results for the patterns of conjunctive forks are discussed.

1. Introduction

Let N be a finite set. Elements i, j, k of N are not distinguished from sin-
gletons and the symbol for union of subsets I , J , K of N is omitted for sim-
plicity. The set of couples (ij|K) where i and j are not necessarily different
and i, j �∈ K is denoted by T (N). A subset L of T (N) is called probabilisti-
cally (p-) representable if there exist random variables ξi, i ∈ N , taking finite
numbers of values such that (ij|K) ∈ L if and only if ξi and ξj are condition-
ally independent given ξK = (ξk)k∈K , in symbols ξi ⊥⊥ ξj|ξK . In particular,
ξi⊥⊥ ξi|ξK means that ξi is a function of ξK . A set L p-represented by random
variables is the pattern of conditional independences.

A subset L of T (N) is binary (bin-) representable if there exist events Ai

in a probability space such that the indicator functions 1Ai
, i ∈ N , p-repre-

sent L. If additionally (1Ai
)i∈N takes 2|N | values with positive probabilities

then L is bin+-representable. This condition on the events is referred to as
the positivity assumption. It excludes functional dependence and forces L
to be contained in R(N), defined as the set of (ij|K) ∈ T (N) with i �= j.
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A mapping σ : (N
2
) → {−1, 0, 1} is sign-representable by events Ai, i ∈ N ,

if σij is equal to the sign of the covariance between 1Ai
and 1Aj

, i, j ∈ N .
Under the positivity assumption, it is sign+-representable. A mapping σ
sign-represented by events is the pattern of signs.

In this work, the pattern of conditional independences is studied simulta-
neously with the pattern of signs. A pair [L, σ] is event-representable if there
exist events Ai, i ∈ N , such that they bin-represent L and sign-represent σ.
It is event+-representable when the events bin+-represent L and sign+-repre-
sent σ.

Let R0(N)/R1(N)denote the set of couples (ij|K) ∈ R(N) with K
empty/singleton and R01(N)be the union of R0(N)and R1(N). Theorem 1
presents necessary and sufficient conditions for the event- and event+-repre-
sentability of any pair [L, σ] with L ⊆ R01(N). The assertion is based on
the following three notions.

For L ⊆ T (N) and M ⊆ N let L|M = L ∩ T (M) be the restriction of L
to M . If M has three elements then it is a 3-restriction.

A subset L of T (N) is called solvable if the system of equations

(1) xij = xik + xjk , (ij|k) ∈ L ∩R1(N) ,

in real indeterminates xij , ij ∈ (N
2
), has a solution with all coordinates posi-

tive, cf. [1]. Let L◦ denote the set of (ij|k) ∈ L∩R1(N) such that (ik|j) �∈ L
and (jk|i) �∈ L.

A sign mapping σ on (N
2
) is adjusted to L ⊆ T (N) if

σij = 0 ⇔ (ij|∅) ∈ L ∩R0(N) ,(2)

σij = σik σjk , (ij|k) ∈ L ∩ R1(N) .(3)

Theorem 1. For L ⊆ R01(N) and σ : (N
2
) �→ {−1, 0, 1}, the following

are equivalent :
(i) [L, σ] is event+-representable,
(ii) [L, σ] is event-representable,
(iii) the 3-restrictions of L are bin-representable, L◦ is solvable and σ is

adjusted to L.

The assertion of (iii) can be algorithmically verified in polynomial time.
In fact, the bin-representable sets over N with three elements are of seven
types, by Lemma 3. The solvability reduces to the question whether an
instance of the linear programming is feasible.

Example 1. Let N be the vertex set of a tree and let L consist of the
couples (ij|k) of distinct vertices such that k is on the path between i and j.
Let σij = (−1)dij where dij is the length of the path between i and j. Then,
L = L◦ has the 3-restrictions isomorphic to ∅ or {(12|3)}, which are both
bin-representable. It is solvable, taking xij = dij. Since σ is adjusted to L
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the pair [L, σ] is event+-representable by Theorem 1. This example settles
an open question formulated after [11, Example 1].

Section 3 presents a constructive proof of Theorem 1. In Section 4,
L ⊆ T (N) features in Theorem 2, covering more general situations that can
be reduced to that of Theorem 1. Section 5 discusses consequences, other
related material and literature. Section 6 works out consequences of the
results for the patterns of conjunctive forks.

2. Preliminaries

This section presents technicalities and four elementary lemmas.
Events live in a probability space (Ω,S, P ). The complement to an event

A ∈ S is Ā = Ω \A. The event is P -trivial if P (A) ∈ {0, 1}. The indicator
function 1A of A is equal to one if ω ∈ A and zero otherwise. The mean
EP1A of 1A is P (A). The centering ζA � 1A − P (A) has the mean zero.
The variance EP ζ

2
A of ζA, or 1A, or A, is P (A)− P (A)2.

Events A, B are P -equal if P (A△B) = 0, in symbols A
P
= B. They are

P -complementary if A
P
= B̄. The covariance EP (ζAζB) of A and B equals

�A,B�P � P (A ∩B)− P (A)P (B). If A,B are not P -trivial then it has the
same sign as the correlation between A and B

EP (ζAζB)
√

EP (ζ
2
A)

√

EP (ζ
2
B)

=
�A,B�P

√

�A,A�P
√

�B,B�P
.

Lemma 1. (i) �A,B�P � �A,A�P with equality if only if A is P -trivial

or A
P
= B,

(ii) |�A,B�P | � �A,A�P with equality if only if A is P -trivial or A
P
= B

or A
P
= B̄.

(iii) �A,B�2P � �A,A�P �B,B�P with equality if only if A or B is P -trivial,

or A
P
= B or A

P
= B̄.

Proof. (i) The inequality is equivalent to

P (A)P (Ā∩ B) + P (Ā)P (A ∩ B̄) � 0.

(ii) Since �Ā,B�P = −�A,B�P the inequality is obtained from (i) and its
instance with A replaced by Ā, by −�A,B�P = �Ā,B�P � �Ā, Ā�P = �A,A�P .

(iii) This follows from (ii) and its instance with A interchanged with B.
�

Actually, (iii) is the Cauchy inequality EP (ζAζB)
2 � EP (ζ

2
A)EP (ζ

2
B). It

is tight if and only if one of ζA, ζB is proportional to the other, P -a.s.
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A modern approach to the conditional stochastic independence is sum-
marized in [10]. For events A and B, the unconditional independence
1A⊥⊥1B is equivalent to �A,B�P = 0, vanishing of the covariance EP (ζAζB).
For events A, B and C, the conditional independence 1A ⊥⊥ 1B|1C is equiv-
alent to A⊥⊥B|C and A⊥⊥ B|C̄ , thus to

P (A ∩B ∩ C)P (C) = P (A ∩ C)P (B ∩ C) ,(4)

P (A ∩B ∩ C̄)P (C̄) = P (A ∩ C̄)P (B ∩ C̄) ,(5)

respectively. For P -trivial event C this reduces to the unconditional inde-
pendence 1A ⊥⊥ 1B . An event A is P -trivial if and only if 1A ⊥⊥ 1A. By (4)
and (5),

(6) 1A ⊥⊥ 1A|1B ⇔
[

A is P -trivial or A
P
= B or A

P
= B̄

]

.

The two equalities in disjunction express that 1A is a function of 1B and
vice versa, P -a.s.

The following implication goes back at least to [13, p. 160].

Lemma 2. If 1A ⊥⊥ 1B|1C then �A,B�P �C,C�P = �A,C�P �B,C�P .

Proof. The difference �A,B�P �C,C�P − �A,C�P �B,C�P equals
[

P (A ∩B ∩ C)P (C)− P (A ∩ C)P (B ∩ C)
]

P (C̄)

+
[

P (A ∩B ∩ C̄)P (C̄)− P (A ∩ C̄)P (B ∩ C̄)
]

P (C)

[6, p. 28, eq. (10)]. By the assumption, the brackets vanish, see (4) and (5).
�

The most basic property of conditional independence

(7)
[

1A ⊥⊥ 1B |1C and 1A ⊥⊥ 1C

]

⇔
[

1A ⊥⊥ 1C |1B and 1A ⊥⊥ 1B

]

holds even for σ-algebras [2]. By Lemma 2, 1A ⊥⊥ 1B|1C and 1A ⊥⊥ 1B imply
1A ⊥⊥ 1C or 1B ⊥⊥ 1C . On account of (7),

[

1A ⊥⊥ 1B|1C and 1A ⊥⊥ 1B

]

(8)

⇔
[

1A ⊥⊥ 1C |1B , 1A ⊥⊥ 1C or 1B ⊥⊥ 1C |1A, 1B ⊥⊥ 1C

]

.

If 1A ⊥⊥ 1B|1C and 1A ⊥⊥ 1C |1B then two instances of Lemma 2 combine to

�A,B�P · �A,C�P ·
[

�B,B�P �C,C�P − �B,C�2P
]

= 0 .

By Lemma 1(iii) and (6),
[

1A ⊥⊥ 1B|1C and 1A ⊥⊥ 1C |1B

]

(9)

⇒
[

1A ⊥⊥ 1B or 1A ⊥⊥ 1C or 1B ⊥⊥ 1B|1C or 1C ⊥⊥ 1C |1B

]

.
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Lemma 3. If L ⊆ R(N) with N = {1, 2, 3} = 123 is bin-representable
then it is isomorphic to one of the following

(10)

{

∅ {(12|∅)} {(12|∅), (13|∅)} {(12|∅), (13|∅), (23|∅)}

{(12|3)} {(12|3), (13|2), (12|∅), (13|∅)} R(123) .

Each of these sets is bin+-representable.

Proof. For L ⊆ R(123), if {(12|3)}�L then (13|∅) ∈ L or (12|∅) ∈ L
or (13|2) ∈ L, up to a permutation. Applying (7)–(9), bin-representable L is
isomorphic to one of the last two sets in (10). In (9), functional dependences
played no role because (2|3) �∈ L and (3|2) �∈ L. Otherwise, L is isomorphic
to one of the first five sets in (10).

The second assertion can be verified case by case, which is omitted. �

For L ⊆ T (N) let EL denote union of the sets {ij, ik, jk} over (ij|k)
∈ L ∩R1(N). This union indexes the variables xij that effectively occur in
the definition of solvability.

Lemma 4. If L ⊆ T (N) is bin-representable then L◦ is solvable.

Proof. Let Ai, i ∈ N , bin-represent L. For ij ∈ EL◦ there exists k ∈ N
different from i and j such that L ∩R1(ijk) is isomorphic to {(12|3)}. By
(7) and (8), L ∩R(ijk) is also isomorphic to {(12|3)}. Hence, all terms in

xij � ln

√

�Ai, Ai�P
√

�Aj , Aj�P
|�Ai, Aj�P |

, ij ∈ EL◦ ,

are positive. The ratio is greater than one by Lemma 1(iii) where the in-
equality is strict. In fact, Ai and Aj are not P -equal or P -complementary
because this implies that (ik|j) and (jk|i) be in L. Thus, xij > 0. Eqs. (1)
with L replaced by L◦ follow from Lemma 2, applied to Ai, Aj and Ak.
Thus, L◦ is solvable. �

3. Constructing event+-representations

In this section a constructive proof of Theorem 1 is worked out.
When considering only events Ai, i ∈ N , in a probability space (Ω,S, P )

there is no loss of generality in assuming that Ω is the Abelian group ZN
2

with the addition coordinatewise, all subsets of Ω are S-measurable and the
event Ai consists of all ω = (ωj)j∈N with the j-th coordinate ωj equal to 1.
Thus, P is the very distribution of (1Ai

)i∈N . The positivity of P means that
P (ω) > 0 for all ω ∈ Ω.
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Elementary instances of general results from the harmonic analysis have
the form

(11) P (ω) = 2−|N |
∑

L⊆N

P̂ (L)χL(ω) and P̂ (L) =
∑

ω∈ZN
2

P (ω)χL(ω)

where P̂ is the Fourier–Stieltjes transform of P and χL are the characters
of the group ZN

2 . Recall that χL(ω) equals +1 if ω has even number of 1’s
within its coordinates indexed by L and −1 otherwise. For I ⊆ N let AI

denote the intersection of Ai over i ∈ I . Then

(12) P (AI) = 2−|I|
∑

L⊆I

(−1)|L|P̂ (L)

follows from (11) by summing over ω having ωi = 1 for all i ∈ I .

Proof of Theorem 1. (i) ⇒ (ii). This holds by definitions.
(ii) ⇒ (iii). For L ⊆ R(N) and σ : (N

2
) �→ {−1, 0, 1}, let [L, σ] be event-

representable by Ai, i ∈ N . Any 3-restriction of L is bin-representable.
Lemma 4 implies that L◦ is solvable. As σ is the pattern of signs, (2)
holds. The implication (3) follows from Lemma 2 by taking signs. Hence,
σ is adjusted to L.

(iii) ⇒ (i). Let L ⊆ R01(N), every 3-restriction of L be bin+-repre-
sentable, L◦ be solvable and σ be adjusted to L. There exist xij > 1 with
ij ∈ EL◦ that witness the solvability. For ij ∈ (N

2
) \ EL◦ let xij = 1.

The space Ω = ZN
2 and events Ai, i ∈ N , are taken as above. Let FL

denote the family of ijk ∈ (N
3
) such that L|ijk ⊆ R0(N). A probability mea-

sure P on Ω is constructed by (11)

2|N |P = 1 +
∑

ij∈(N
2
)

σij γ
xij · χij +

∑

ijk∈FL

δijk · χijk +
∑

L⊆N,|L|�4

ε|L|
2

· χL

where 0 < γ < 1
3 |N |−2, 0 < δijk < 1

3 |N |−3, ε > 0 and ε4(1+ ε)|N | < 1
3 . The

strict inequalities imply that P is positive. Additionally, let δijk be differ-
ent from the difference σijγ

xij − σikσjkγ
xik+xjk and from the two differences

obtained by permuting for i, j, k.
Equation (12) implies that P (Ai) =

1
2 and P (Aij) =

1
4 [1 + σijγ

xij ], ij ∈

(N
2
). Then, sign�Ai, Aj�P equals σij so that the events sign+-represent σ.

Since σ is adjusted to L it follows from (2) that (ij|∅) ∈ L if and only if
1Ai

⊥⊥ 1Aj
.

By (12),

8P (Aijk) = 1 + σijγ
xij + σikγ

xik + σjkγ
xjk −

{

δijk , ijk ∈ FL ,

0 , ijk ∈ (N
3
) \ FL .
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The independence 1Ai
⊥⊥ 1Aj

|1Ak
is expressed, in accordance with (4)

and (5), as

P (Aijk) ·
1
2 = 1

16 ·
[

1 + σikγ
xik

]

·
[

1 + σjkγ
xjk

]

,(13)

[P (Aij)− P (Aijk)] ·
1
2 = 1

16 ·
[

1− σikγ
xik

]

·
[

1− σjkγ
xjk

]

.(14)

To verify that (ij|k) ∈ L is equivalent to 1Ai
⊥⊥ 1Aj

|1Ak
, the 3-restriction

L|ijk is considered. It is bin-representable by assumption, thus isomorphic
to some of the sets in (10).

If L|ijk is contained in R0(N) then (13) rewrites to δijk = σijγ
xij −

σikσjkγ
xik+xjk which fails by the choice of δijk. Thus, 1Ai

⊥⊥ 1Aj
|1Ak

fails
and, similarly, 1Ai

⊥⊥ 1Ak
|1Aj

and 1Aj
⊥⊥ 1Ak

|1Ai
do as well. Hence, L|ijk is

bin+-representable by Ai, Aj and Ak.
If L|ijk = R(ijk) then (13) and (14) reduce to 1

16 = 1
16 because ijk �∈ FL,

and σij , σik and σjk vanish, remembering the events sign-represent σ and
σ is adjusted to L. Again, L|ijk is bin+-representable by Ai, Aj and Ak.

If L|ijk is isomorphic to {(12|3), (13|2), (12|∅), (13|∅)} with i correspond-

ing to 1 then (13) and (14) reduce to 1
16 [1± σjk γ

xjk ] = 1
16 [1± σjk γ

xjk ].
Therefore, 1Ai

⊥⊥ 1Aj
|1Ak

. By symmetry, 1Ai
⊥⊥ 1Ak

|1Aj
. However, 1Aj

⊥⊥
1Ak

|1Ai
fails because (13) with ijk permuted to jki takes the form

1
16 [1 + σjk γ

xjk ] = 1
16 .

Here, σjk �= 0 because σ is adjusted to L. Hence, L|ijk is bin+-representable
by Ai, Aj and Ak.

If L|M = {(ij|k)} then (13) and (14) are equivalent to

1 + σij γ
xij ± σik γ

xik ± σjk γ
xjk = [1± σik γ

xik ][1± σjk γ
xjk ] .

Since (ij|k) ∈ L◦ the equations hold by the solvability (1) and adjustment
(3) assumptions. Transposing i and k, eq. (13) rewrites to σjk γ

xjk =
σik γ

xikσij γ
xij and fails. In fact, σij , σik and σjk are nonzero by adjust-

ment. Then, the equation xij = xik + xjk, xik > 0, from the definition of
solvability, implies 1 = γ2xik where γ < 1 and xik � 1, by construction. By
symmetry, L|ijk is bin+-representable by Ai, Aj and Ak.

So far it is verified that (ij|K) ∈ L is equivalent to 1Ai
⊥⊥ 1Aj

|(1Ak
)k∈K

whenever |K| � 1.
The probability P (AI), |I| � 3, is independent of ε. Remembering that

the characters are orthogonal, P̂ (L) = ε|L|
2

, |L| � 4, by (11). The leading
monomial of P (AI) is ε|I|

2

, |I| � 4, by (12). Hence, if (ij|K) ∈ R(N) and
|K| � 4 then P (AijK)P (AK)− P (AiK)P (AjK) has the degree (|K|+ 2)2 +
|K|2. If |K| equals 2/3, it has the degree 16/256. When ε avoids the roots of
those nonzero polynomials, 1Ai

depends on 1Aj
given (1Ak

)k∈K , |K| � 2, in
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accordance with (ij|K) �∈ L ⊆ R01(N). Therefore, L is bin+-representable.
In turn, [L, σ] is event+-representable. �

The discrete Fourier–Stieltjes transform [3] featured previously in the
proof of [8, Theorem 2], dealing with unconditional independence among
binary variables. The above construction of the probability measure P is
inspired by the one that was proposed by the author in the proof of the
unpublished [1, Theorem 1]. The measure can be arbitrarily close to the
uniform probability measure on Ω.

4. Event-representations

In this section, Theorem 1 is extended to situations where events are
allowed to be P -trivial, P -equal or P -complementary.

An element ℓ ∈ N is a loop of L ⊆ T (N) if (ℓ|∅) ∈ L. Let λ(L) denote
the set of loops. If ξi, i ∈ N , p-represent L then to be a loop ℓ means that
ξℓ is constant, a.s. Hence,

i ∈ λ(L) and i, j �∈ K ⇒ (ij|K) ∈ L,(15)

(ij|K) ∈ L ⇔ (ij|K \ λ(L)) ∈ L and i, j �∈ K ∩ λ(L).(16)

Elements i and j from N \ λ(L) are parallel in L, in symbols i�Lj, if
i = j, or both (i|j) and (j|i) belong to L. When L is p-representable by ξi,
i ∈ N , to be parallel means that ξi is a function of ξj and vice versa, a.s.
Therefore,

the relation �L is an equivalence on N \ λ(L),(17)

(ij|K) ∈ L, i�Li
′, i′, j �∈ K ′, K and K ′ intersect

the same blocks of �L ⇒ (i′j|K ′) ∈ L,
(18)

(i|k) ∈ L, i, j �∈ K, K intersects the block of �L
containing k ⇒ (ij|K) ∈ L.

(19)

A set L ⊆ T (N) is regular if it enjoys (15)–(19). The p-representable sets are
regular. Every L ⊆ R(N) is regular, having λ(L) = ∅ and i�Lj equivalent
to i = j. A crossing of a regular set L is a set M ⊆ N \ λ(L) that contains
exactly one element of each block of �L.

Lemma 5. Every regular set L ⊆ T (N) is uniquely given by λ(L), �L
and the restriction of L to any crossing M of L.

Proof. If L satisfies (15)–(16) then it recovers uniquely from its restric-
tion toN \λ(L). If the restriction satisfies (17)–(19) then it recovers uniquely
from L|M for any crossing M of L. In fact, let (ij|K) ∈ T (N \ λ(L)). There
exist unique i′, j′ ∈ M such that i�Li

′ and j�Lj
′. Let K ′ ⊆ M intersect the
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same blocks of �L as K. In the case i′, j′ �∈ K ′, (ij|K) ∈ L is equivalent to
(i′j′|K ′) ∈ L|M , by (18). Otherwise, i′ ∈ K ′ or j′ ∈ K ′ whence i�Lk or j�Lk
for some k ∈ K, due to (17). Then (19) implies (ij|K) ∈ L. �

Let σ|M denote the restriction of σ to (M
2
).

Theorem 2. For L ⊆ T (N) regular, σ : (N
2
) → {−1, 0, 1} adjusted to L

and a crossing M of L, [L, σ] is event-representable if and only if [L|M , σ|M ]
is event-representable. If additionally L|M ⊆ R01(M) then this is equivalent
to having the 3-restrictions of L|M bin-representable, L◦∩R(M) solvable and
σ|M adjusted to L|M .

Proof. The second assertion follows by Theorem 1. The forward im-
plication of the first one is trivial. Let L be regular, σ adjusted to L and
[L|M , σ|M ] be event-representable by Ai, i ∈ M . Let Aℓ = ∅ for ℓ ∈ λ(L).

The block of �L containing i ∈ M can be uniquely decomposed to a dis-
joint unionK∪L such that i ∈ K, σkℓ = −1 for k ∈ K and ℓ ∈ L, and σkℓ = 1
otherwise. In fact, by regularity (19) holds and all (jk|ℓ) ∈ R1(N) with j,
k, ℓ in the block belong to L. It suffices to assign k to K \ i if and only if
σik = 1, since σ is adjusted to L. Having a decomposed block K ∪ L of �L,
let Ak = Ai for k ∈ K, and Aℓ = Āi for ℓ ∈ L.

It remains to prove that Ai, i ∈ N , event-represent [L, σ]. Let K denote
the pattern of conditional independences and τ the pattern of signs among
the events. The sets L and K are regular, λ(L) = λ(K), �L = �K and the re-
strictions of L and K to the crossing M coincide, by construction. Lemma 5
implies that L = K is bin-representable by the events.

The values of σ and τ coincide at ij for ij contained in any block of �L, by
the construction of the events. By (15) with K = ∅, σij = 0 if i or j is a loop
of L. For i, j ∈ N \λ(L) not in the same block of �L, there are k, ℓ ∈ M differ-
ent such that i�Lk and j�Lℓ. If i �= k and j �= ℓ then σij = σikσjk = σikσjℓσkℓ,
using that σ is adopted to M and (ij|k) ∈ L and (jk|ℓ) ∈ L by (19). If i �= k
and j = ℓ then σij = σikσkℓ using that σ is adopted to M and (iℓ|k) ∈ L.
The remaining case is symmetric. The same argumentation goes through
with σ replaced by τ as τ is adjusted to L = K. Hence, σ = τ , and [L, σ] is
event-representable. �

Example 2. Over N = 1234, let L be the union
{

(12|∅), (13|∅), (23|∅), (14|∅), (24|∅)}

∪
{

(ij|K) : 3 ∈ ij, 4 ∈ K or4 ∈ ij, 3 ∈ K
}

Then, λ(L) = ∅, 3�L4 and L is regular. Let σij = 0 up to σ34 �= 0. Then,
σ is adjusted to L. For the crossing M = 123, the restriction L|M =

{(12|∅), (13|∅), (23|∅)} is bin+-representable. By Theorem 2, [L, σ] is event-
representable.
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Theorem 2, however, does not cover some desirable cases. For example,
it does not allow to recognize whether L = {(1|23), (2|13), (3|12)} over N =
123 is bin-representable.

5. Discussion

The combination of patterns of conditional independences with the signs
of covariances has not been studied before, up to the special case of conjunc-
tive forks that is discussed separately in the following section. One could
speak about a decoration of the patterns of conditional independence.

The question which L ⊆ T (N) is p-representable covers majority of ap-
proaches to patterns of the stochastic conditional independence [14]. Even
when N has four elements a solution is far from trivial [9], and the bin- or
bin+-representability remain open [16]. For patterns among Gaussian vari-
ables see [5,7,15].

The definition of p-representability adopted in this work includes func-
tional dependences. A frequently studied, but different, question is what
are intersections of the patterns of conditional independences L ⊆ T (N)
with R(N). For example, when 1A1

= 1A2
= 1A3

are nonconstant the pat-
tern is {(ij|K) ∈ T (N): K �= ∅}. It intersectsR(N) in {(12|3), (13|2), (23|1)}
which is not bin-representable. This question is not treated here.

The following trivial consequence of Theorem 1 is surely well-known. For
every sign mapping σ : (N

2
) �→ {−1, 0, 1} there exist events Ai, i ∈ N , such

that σij equals the sign of the covariance between Ai and Aj , ij ∈ (N
2
). In

fact, if L ⊆ R0(N) is constructed from σ by (2) then the 3-restrictions of L
are bin-representable, L◦ = ∅ is solvable and (3) is void. Thus, σ is adjusted
to L. By Theorem 1, [L, σ] is event+-representable whence σ is sign+-repre-
sentable.

As another consequence of Theorem 1, any L ⊆ R0(N) is bin+-repre-
sentable. For the general result on a binary representability of unconditional
independence structures with the positivity assumption see [8, Theorem 2].

Even the following two consequences of Theorem 1 are new.

Corollary 1. A set L ⊆ R01(N) is bin+-representable if and only if
it is bin-representable which is equivalent to having the 3-restrictions of L
bin-representable and L◦ solvable.

Proof. Let the 3-restrictions of L be bin-representable and L◦ be solv-
able. A sign mapping σ is defined by σij = 0 when (ij|∅) ∈ L ∩R0(N) and
by σij = 1 otherwise. Then, σ is adjusted to L. In fact, (2) holds by con-
struction, and (3) holds as 1 = 1 or 0 = 0, due to the assumption on the
3-restrictions. It suffices to apply Theorem 1 to [L, σ]. �

Corollary 2. A set L ⊆ R1(N) is bin-representable if and only if L
is solvable.
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Proof. This follows from Corollary 1 as the 3-restrictions of L are
empty or isomorphic to {(12|3)}, thus L = L◦. �

Conditions for p-representability of L ⊆ R01(N), or even L ⊆ R1(N),
seem to be elusive.

6. Patterns of conjunctive forks

The notion of conjunctive fork goes back to [13]. A historical definition
and references are in [1]. In a probability space (Ω,S, P ), events A,B,C
∈ S create a conjunctive fork (A,B :: C)P if 1A ⊥⊥ 1B|1C , �A,C�P > 0 and
�B,C�P > 0. By Lemma 2, �A,B�P > 0. Events Ai, i ∈ N , induce the
pattern of forks {(i, k, j) ∈ N3 : (Ai, Aj :: Ak)P}. A ternary relation r ⊆ N3

is fork-representable if it coincides with such a pattern. In a fork+-repre-
sentability the positivity is required as well. In this section, both kinds of
representability are exposed as consequences of Theorem 1.

Lemma 6. Any fork-representable relation r ⊆ N3 satisfies
[

(i, j, k) ∈ r and (i, k, j) ∈ r

]

⇒ (j, k, j) ∈ r ,(20)

(i, j, k) ∈ r ⇒
{

(i, j, j), (j, k, k), (k, i, i)
}

⊆ r ,(21)

(i, j, i) ∈ r ⇒ (j, i, j) ∈ r ,(22)
[

(i, j, i) ∈ r and (j, k, j) ∈ r

]

⇒ (i, k, i) ∈ r .(23)

Proof. By (9) and positivity of correlations, if (A,C ::B)P and (A,B ::C)P

then B
P
= C whence (B,B :: C)P . Then, (20) holds.

The fork (A,B :: B)P occurs if and only if �A,B�P > 0 which implies (21).

The fork (A,A :: B)P is equivalent to A
P
= B not P -trivial. By symmetry,

(A,A :: B)P if and only if (B,B :: A)P which implies (22). Likewise, (23)
holds. �

A relation r ⊆ N3 is a forkness [1] if it satisfies (20)–(23) and the sym-
metry condition

(24) (i, k, j) ∈ r ⇔ (j, k, i) ∈ r .

For r ⊆ N3 let Kr � {(ij|k) ∈ R1(N) : {(i, k, j), (j, k, i)} ⊆ r}. Theorem 1
has the following consequence.

Corollary 3. A relation r is fork+-representable if and only if it is a
forkness, (i, i, i) ∈ r, i ∈ N , and Kr is solvable.

Proof. Let r be fork+-represented by events. By Lemma 6, it is a fork-
ness. The positivity assumption implies that the representing events are
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not P -trivial which entails (i, i, i) ∈ r, i ∈ N . If (ij|k) ∈ Kr then (i, k, j) ∈ r,
and then (i, j, k) and (j, i, k) are not in r, using (9), positivity of correla-
tions and positivity of the distribution of the events. Hence (ij|K) belongs
to K◦

r
. Thus, Kr = K◦

r
. Since Kr is contained in the pattern L of condi-

tional independences among indicators and L◦ solvable by Lemma 4, Kr is
solvable.

Let r be a forkness that contains {(i, i, i) : i ∈ N} and Kr be solvable.
The latter implies Kr = K◦

r
. Any 3-restriction of Kr is empty or isomorphic

to {(12|3)}. Let σ be the sign mapping with σij = 1 for ij ∈ EKr
. Otherwise,

let σij = ±1 according to whether (i, j, j) ∈ r. By construction, σ is adapted
to Kr. It follows from Theorem 1 that [Kr, σ] is event

+-representable. Then,
r is fork+-representable, using {(i, i, i) : i ∈ N} ⊆ r and the construction of σ
outside of EKr

. �

For r ⊆ N3 let λ(r) = {i ∈ N : (i, i, i) �∈ r} and
r

∼ be the binary relation

on N \ λ(L) with i
r

∼ j if and only if (i, j, i) ∈ r. The relation
r

∼ is reflexive.
In a forkness, it is symmetric by (22), and transitive by (23). Thus, it is an
equivalence relation. A forkness is regular if

(i, j, k) ∈ r, i
r

∼ i′, j
r

∼ j′, k
r

∼ k′ ⇒ (i′, j′, k′) ∈ r .

Lemma 7. A regular forkness r ⊆ N3 is fork-representable if and only if
a restriction of r to M3 is fork-representable for any set M ⊆ N \ λ(r) that

contains exactly one element of each block of
r

∼.

Proof. One implication is trivial. For the set M , let a restriction of r
to M3 be fork-representable by Ai, i ∈ M . Let Aℓ = ∅, ℓ ∈ λ(r). Having a

block K of
r

∼ let Ak = Ai for k ∈ K and the unique i ∈ M . The forkness r
is regular and so is the pattern of forks within the events. Their restric-
tions to M3 coincide by construction. Then, their restrictions to (N \ λ(r))3

coincide by regularity. Hence, r is fork-representable. �

The main result of [1, Theorem 1] is a consequence of Corollary 3 of
Theorem 1 and auxiliary Lemmas 4 and 7.

Corollary 4. A ternary relation r on N is fork-representable if and
only if it is a regular forkness and for any set M ⊆ N \ λ(r) that contains

exactly one element of each block of
r

∼ the restriction Kr∩R1(M) is solvable.

Proof. The pattern r of conjunctive forks among events Ai, i ∈ N , is a

forkness by Lemma 6. It is regular because i
r

∼ j means that Ai
P
= Aj is not

P -trivial. Hence, if (ij|k) ∈ Kr ∩R1(M) then (ik|j) does not belong to this
restriction. Thus, Kr ∩R1(M) is contained in L◦ where L is the pattern of
conditional independences among the indicators of the events. It is solvable
since L◦ is solvable by Lemma 4.
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For the set M as above with Kr ∩R1(M) solvable, the restriction of r
to M3 is fork+-representable by Corollary 3. It follows from Lemma 7 that
r is fork-representable. �

The last part of this section discusses fork- and fork+- representability in
the restricted framework of the traditional notion of betweenness [12, p. 96].
They are equivalent to solvability.

A relation r ⊆ N3 satisfying the symmetry (24) and

(25)
[

(i, k, j) ∈ r and (i, j, k) ∈ r

]

⇔ j = k

is called betweenness. The implication ⇐ in (25) says that (i, j, j) ∈ r for ev-
ery i, j ∈ N . In particular, s

∗ =
⋃

i,j∈N{(i, j, j), (j, j, i)} is the inclusion

smallest betweenness. No betweenness contains a triple (i, j, i) with i �= j,
by ⇒ in (25).

Lemma 8. The mapping r �→ Kr is a bijection between the family of be-
tweennesses r on N and the family of sets L ⊆ R1(N) satisfying L = L◦.

Proof. If r is a betweenness then Kr = K◦
r
, by ⇒ in (25). Given L ⊆

R1(N), let

sL � s
∗ ∪

⋃

(ij|k)∈L

{(i, k, j), (j, k, i)} .

If L = L◦ then (24)–(25) hold for sL, thus sL is a betweenness. Since r = sKr

for a betweenness r, and L = KsL
once L = L◦, the mapping r �→ Kr is a

bijection and L �→ sL is its inverse. Thus,
r

∼ is the equality relation. �

Lemma 9. Every betweenness is a forkness.

Proof. Let r be a betweenness. The assumption in (20) is valid only if
two of i, j, k coincide. If i = j then (i, k, i) ∈ r implies i = k. By symmetry,
(20) holds with j = k. The implication (21) says that r contains s∗, and (22)
is void unless i = j. Also, (23) is void unless i, j, k coincide. �

Corollaries 3 and 4 together with Lemma 9 imply the following.

Corollary 5. A betweenness r is fork+-representable if and only if it
is fork-representable which is equivalent to the solvability of Kr.
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[1] V. Chvátal, F. Matúš and Y. Zwóľs, Patterns of conjunctive forks, arXiv:1608.03949
[math.PR] (2016).

[2] A. P. Dawid, Conditional independence in statistical theory (with discussion), J. R.
Statist. Soc. B, 41 (1979), 1–31.

Acta Mathematica Hungarica

ON PATTERNS OF CONDITIONAL INDEPENDENCES 523

Author's personal copy



Acta Mathematica Hungarica 154, 2018
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[7] R. Lněnička and F. Matúš, On Gaussian conditional independence structures, Kyber-

netika, 43 (2007), 327–342.
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