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e Barcelona Graduate School of Mathematics, Campus de Bellaterra, Edifici C, E-08193 Bellaterra, Catalonia, Spain

Received 15 January 2017; received in revised form 11 September 2017; accepted 27 January 2018

Abstract

This paper continues the study of model theory for fuzzy logics by addressing the fundamental issue of classifying models ac-
cording to their first-order theory. Three different definitions of elementary equivalence for fuzzy first-order models are introduced 
and separated by suitable counterexamples. We propose several back-and-forth conditions, based both on classical two-sorted 
structures and on non-classical structures, that are useful to obtain elementary equivalence in particular cases as we illustrate with 
several examples.
© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

Starting from several seminal works (e.g. [33,31,24]) and firstly systematized in Petr Hájek’s landmark mono-
graph [22], mathematical fuzzy logic (MFL) has been developed as a study of logical systems able to handle graded 
properties (and related notions of partial truth, vagueness, fuzziness, imprecision, etc.). A considerable amount of 
papers in the area have resulted in a deep knowledge of, mainly, propositional fuzzy logics as collected in the series 
of handbooks [8]. However, propositional logics may be seen as insufficient for some purposes because they involve 
only truth-functional connectives and are not expressive enough to model some important problems in computer sci-
ence and to provide a satisfactory tool for knowledge representation and analysis of reasoning with graded predicates. 
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There are indeed important areas in fuzzy set theory that deal with first-order notions and thus can be formalized in 
first-order predicate fuzzy logics such as fuzzy graphs [29], valued preference modeling [19], or fuzzy orders and 
similarities [2].

Predicate fuzzy logics in the full first-order language with universal and existential quantifiers and an arbitrary stock 
of functional and relational symbols were already introduced in Hájek’s initial works. However, only recently they 
have become the object of systematic research. The papers [23,9] give axiomatizations and completeness theorems in 
a very general framework for graded logics and lay the foundations for an incipient model theory of such logics.

Elementary equivalence is a central notion in classical model theory that allows to classify models by identifying 
those that validate the same first-order sentences. It was introduced by Tarski [34] and later used by himself and 
Vaught to study elementary extensions and elementary chains [35]. Inspired by the proof of Cantor’s theorem on 
countable dense linear orderings without endpoints [25,27], back-and-forth systems of partial isomorphisms were 
introduced to model theory, and a characterization of elementary equivalence in terms of these systems was introduced 
in Fraïssé [20,21]. Independently, the notion was characterized using games in Ehrenfeucht [18]. For general surveys 
on the subject and historical overviews we refer the reader to [1,5,17,26].

In the context of first-order fuzzy logics, the notion of elementary equivalence was defined in [23, Definition 10], 
where it was used to characterize conservative extensions of theories. A series of papers have followed this defini-
tion in various contexts: characterization of strong completeness with respect to models based on a particular class 
of algebras [7], study of mappings and diagrams [11], ultraproduct constructions [12], characterization of elementary 
equivalence in terms of elementarily mappings [14], characterization of elementarily classes as those closed under 
elementary equivalence and ultraproducts [13], and Löwenheim–Skolem theorems for non-classical logics [15]. An 
alternative approach considers models of first-order fuzzy logics with evaluated syntax [32,30]. Finally, an indepen-
dent, but related, stream of research is that of continuous model theory, in which the underlying logic is essentially 
Łukasiewicz logic expanded with connectives for each continuous function [6,4].

The goal of this paper is to contribute to the understanding of elementary equivalence of models of first-order fuzzy 
logics by focusing on two aspects:

a) considering three different possible generalizations of the classical notion of elementary equivalence to the fuzzy 
case, that were not distinguished in the previous literature, and

b) providing sufficient back-and-forth conditions to prove elementary equivalence of fuzzy models in particular 
cases.

The paper is organized as follows: after this introduction, Section 2 presents the necessary preliminaries we need re-
calling several semantical notions from mathematical fuzzy logic, namely, the algebraic counterpart of extensions of 
the uninorm logic UL, fuzzy first-order models based on such algebras, and some basic model-theoretic notions. Sec-
tion 3 defines the notions of elementarily equivalent, filter-strong elementarily equivalent, and strongly elementarily 
equivalent fuzzy models and separates them with natural counterexamples. Section 4 proposes a classical approach 
to the problem of finding back-and-forth conditions for elementary equivalence of fuzzy models by treating them 
as classical two-sorted structures. After this, Section 5 presents a genuinely non-classical approach that, based on a 
syntactical notion of nested rank, allows to build layered back-and-forth systems to prove elementary equivalence of 
fuzzy models restricted to sentences up to a certain degree of syntactical complexity. Finally, Section 6 ends the paper 
by discussing a straightforward generalization of the results to a much wider framework and some other concluding 
remarks.

2. Preliminaries

2.1. Fuzzy first-order models

Model theory studies mathematical structures using different formal languages. In this section we introduce fuzzy 
first-order models, the object of our study. On the one hand, they provide the semantics of first-order predicate fuzzy 
logics. On the other hand, fuzzy first-order models can be seen also as two-sorted classical structures. As a general 
reference for all the notions of mathematical fuzzy logic that we will use in the paper one can consult the handbook [8].
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As underlying propositional basis for the first-order predicate formalism, we choose a well-established class of 
propositional fuzzy logics: residuated uninorm-based logics (studied in [28]). Such class provides a reasonable frame-
work with several advantages: (1) it contains most of the well-studied particular systems of fuzzy logic that can be 
found in the literature, (2) it includes weakening-free logics and, hence, it benefits from their modeling power for 
reasoning with graded predicates as argued in [10], and (3) it retains the properties of associativity and commutativity 
of the residuated conjunction which simplifies the language and the formulation of many results.

These fuzzy logics can be introduced by means of algebraic semantics based on UL-algebras, that is, algebraic 

structures in the language L = {∧, ∨, & , →, 0, 1, ⊥, �} of the form A = 〈A,∧A,∨A, & A,→A,0
A
,1

A
,⊥A,�A〉

such that

• 〈A,∧A,∨A,⊥A,�A〉 is a bounded lattice,

• 〈A, & A,1
A〉 is a commutative monoid,

• for each a, b, c ∈ A, we have:

a & Ab ≤ c iff b ≤ a →A c, (residuation)

((a →A b) ∧ 1
A
) ∨A ((b →A a) ∧A 1

A
) = 1

A
. (prelinearity)

It is interesting to observe that in such algebras the lattice order can be described in terms of → in the following 

way: a ≤ b iff (a →A b) ∧A 1
A = 1

A
.

A is called a UL-chain if its lattice is linearly ordered. If A is defined over the real unit interval [0, 1] with its usual 
order, then it is called a standard UL-chain and the operation &A is a residuated uninorm, that is, a left-continuous 

binary associative commutative monotonic operation with a neutral element 1
A

(which need not coincide with the 
value 1).

Let FmL denote the set of propositional formulas written in the language of UL-algebras with a denumerable set 
of variables and let FmL be the absolutely free algebra defined on such set. Given a UL-algebra A, we say that an 
A-evaluation is a homomorphism from FmL to A. The logic of all UL-algebras is defined by establishing, for each 

� ∪{ϕ} ⊆ FmL, � �UL ϕ if and only if, for each UL-algebra A and each A-evaluation e, we have e(ϕ) ≥ 1
A

, whenever 
e(ψ) ≥ 1

A
for each ψ ∈ �. The logic UL is, hence, defined by means the preservation of truth over all UL-algebras, 

where the notion of truth is taken as belonging to the set of designated elements, or filter, FA = {a ∈ A | a ≥ 1
A}. The 

standard completeness theorem of UL proves that the logic is also complete with respect to its intended semantics: 
the class of UL-chains defined over [0, 1] by residuated uninorms (the standard UL-chains); this justifies the name of 
UL (uninorm logic).

As we mentioned above, a majority of propositional fuzzy logics can be obtained by extending UL with additional 
axioms and rules (in a possibly expanded language). A particular kind of expansions (we will refer to them in the 
paper) is obtained by adding a truth-constant r for each value r in a chosen algebra. We will also use some examples 

of logics satisfying the weakening law, that is, extensions of UL in which, for each algebra A of the logic, �A = 1
A

(hence the filter is the singleton FA = {1A}) and ⊥A = 0
A

. We will use two well-known examples of such logics with 
weakening: the Gödel–Dummett logic G and the Łukasiewicz logic Ł, respectively defined on the standard UL-chains, 
[0, 1]G and [0, 1]Ł given by the following operations:

a & [0,1]Gb = min{a, b},
a →[0,1]G b =

{
1, if a ≤ b,

b, otherwise,

a & [0,1]Łb = max{0, a + b − 1},
a →[0,1]Ł b =

{
1, if a ≤ b,

1 − a + b, otherwise.

A predicate language P is a triple 〈P,F,ar〉, where P is a non-empty set of predicate symbols, F is a set of 
function symbols, and ar is a function assigning to each symbol a natural number called the arity of the symbol. Let us 
further fix a denumerable set V whose elements are called object variables. The sets of P-terms, atomic P-formulas, 
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and 〈L,P〉-formulas are defined as in classical logic. A P-structure M is a pair 〈A,M〉 where A is a UL-chain 
and M = 〈M, 〈PM〉P∈P , 〈FM〉F∈F〉, where M is a non-empty domain; PM is a function Mn → A, for each n-ary 
predicate symbol P ∈ P; and FM is a function Mn → M for each n-ary function symbol F ∈ F. An M-evaluation
of the object variables is a mapping v : V → M ; by v[x→a] we denote the M-evaluation where v[x→a](x) = a

and v[x→a](y) = v(y) for each object variable y �= x. We define the values of the terms and the truth values of the 
formulas as:

‖x‖M
v = v(x),

‖F(t1, . . . , tn)‖M
v = FM(‖t1‖M

v , . . . , ‖tn‖M
v ), for F ∈ F,

‖P(t1, . . . , tn)‖M
v = PM(‖t1‖M

v , . . . , ‖tn‖M
v ), for P ∈ P,

‖◦(ϕ1, . . . , ϕn)‖M
v = ◦A(‖ϕ1‖M

v , . . . , ‖ϕn‖M
v ), for ◦ ∈ L,

‖(∀x)ϕ‖M
v = inf≤A{‖ϕ‖M

v[x→a] | a ∈ M},
‖(∃x)ϕ‖M

v = sup≤A
{‖ϕ‖M

v[x→a] | a ∈ M}.
If the infimum or supremum does not exist, the corresponding value is undefined. We say that M is a model (or 
P-model if we want to stress the predicate language) if it is safe, that is, if ‖ϕ‖M

v is defined for each P-formula ϕ and 
each M-evaluation v. Formulas without free variables are called sentences. Observe that if ϕ is a sentence, then its 
value does not depend on a particular M-evaluation; we denote its value as ‖ϕ‖A

M.
The notion of fuzzy first-order model just defined allows to provide a semantics for the first-order counterparts 

of the propositional fuzzy logics we have mentioned above. One can give axiomatizations and corresponding com-
pleteness theorems for such first-order fuzzy logics; however, this is not the topic of the present paper in which we 
concentrate on the study of the models.

The connection with two-sorted languages and structures is quite straightforward. We have described it in formal 
details in [15, Section 7]. The idea is that each fuzzy first-order structure 〈A,M〉 can be seen as a two-sorted structure: 
(1) the first sort contains the elements of A and has the algebraic operations as functionals applied to the first sort 
and taking values in the same sort, (2) the second sort contains the elements of the domain M and has the functional 
symbols of the predicate language acting as inner functionals of the second sort while the predicate symbols are 
functionals that apply to elements of the second sort and return values in the first sort. The two-sorted language has 
an equality symbol for each sort, which makes it expressive enough to describe the fuzzy structure to a big extent. In 
particular, one can build two-sorted formulas to express truth values of formulas of our predicate languages for fuzzy 
logics.

Finally, let us recall several notions of mappings and homomorphisms between fuzzy first-order structures that will 
be used in the paper. Let A and B be UL-chains and let 〈A,M〉 and 〈B,N〉 be P-structures. Let f be a mapping 
from A to B , and g be a mapping from M to N . The pair 〈f,g〉 is said to be a mapping from 〈A,M〉 to 〈B,N〉. If f

preserves all the existing infima and suprema, then 〈f,g〉 is called a σ -mapping. A mapping 〈f,g〉 is said to be a 
strong homomorphism if:

1) f is a homomorphism of UL-algebras.
2) g : M → N is a homomorphism between the algebraic reducts of the first-order structures, that is, for every n-ary 

function symbol F ∈P and d1, . . . , dn ∈ M ,

g(FM(d1, . . . , dn)) = FN(g(d1), . . . , g(dn)).

3) For every n-ary predicate symbol P ∈ P and d1, . . . , dn ∈ M ,

f (PM(d1, . . . , dn)) = PN(g(d1), . . . , g(dn)).

We say that a strong homomorphism 〈f,g〉 is an elementary homomorphism if for every formula ϕ(x1, . . . , xn), 
and d1, . . . , dn ∈ M ,

f (‖ϕ(d1, . . . , dn)‖A
M) = ‖ϕ(g(d1), . . . , g(dn))‖B

N .
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2.2. Back-and-forth systems for fuzzy first-order models

Now we introduce the notions of partial isomorphism and of back-and-forth systems between two fuzzy first-order 
structures. These notions are not new but a reformulation of the usual definitions for classical two-sorted structures.

Definition 1 (Partial mapping). Let 〈A,M〉 and 〈B,N〉 be P-models. Let p be a partial mapping from A to B , and r
be a partial mapping from M to N . The pair 〈p, r〉 is said to be a partial mapping from 〈A,M〉 to 〈B,N〉.

Definition 2 (Partial isomorphism). A partial mapping 〈p, r〉 is a partial isomorphism from 〈A, M〉 to 〈B, N〉 if

1. p and r are injective,
2. for every n-ary connective λ ∈L, and every a1, . . . , an ∈ A, such that a1, . . . , an, λA(a1, . . . , an) ∈ dom(p),

p(λA(a1, . . . , an)) = λB(p(a1), . . . , p(an)),

3. for every n-ary functional symbol F ∈ P and every d1, . . . , dn ∈ M such that d1, . . . , dn, FM(d1, . . . , dn) ∈
dom(r),

r(FM(d1, . . . dn)) = FN(r(d1), . . . , r(dn))

4. For every n-ary predicate symbol R ∈ P and d1, . . . , dn ∈ M such that d1, . . . , dn ∈ dom(r),

p(RM(d1, . . . , dn)) = RN(r(d1), . . . , r(dn)).

Remark 3. Observe that from the second condition of Definition 2 it follows that p(0
A
) = 0

B
and p(1

A
) = 1

B
, when-

ever such elements are in the domain of p. This, together with the first condition, implies that for every a ∈ dom(p), 
a ∈FA if and only if p(a) ∈FB . Observe, finally, that clause 4 states implicitly that for every n-ary relational R, and 
every d1, . . . , dn ∈ M , such that d1, . . . , dn ∈ dom(r), it holds that RM(d1, . . . , dn) ∈ dom(p).

An example of a partial isomorphism is 〈∅, ∅〉. A less trivial example is described as follows:

Example 4. Let P be a predicate language with a binary predicate symbol R and a binary functional symbol F . 
Consider the P-models 〈A,M〉, and 〈A,N〉, where M = N = {0, 1, 2}, and A is the UL-chain defined on {0, 12 , 1} by 
the monoidal operation given by the table:

∗ 0 1
2 1

0 0 0 0
1
2 0 1

2 1
1 0 1 1

Observe that FA = { 1
2 , 1} (because the constant 1 is interpreted as the neutral element 1

2 ). The interpretation of F
in both models is the operation ⊕ defined as follows:

⊕ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

RM is defined by the matrix:⎛
⎝ 0 1 1

1
2

1
2 1

1 1 1

⎞
⎠

2
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and RN is defined by the matrix:⎛
⎝ 0 1 0

1 1
2 1

0 1 1
2

⎞
⎠

Now consider the partial mapping 〈p, r〉 from 〈A,M〉 to 〈A,N〉, where p = IdA and r = {〈1, 2〉, 〈2, 1〉}. It is easy 
to check that 〈p, r〉 is a partial isomorphism.

Example 4 shows that, for a partial mapping 〈p, r〉 to be a partial isomorphism, dom(r) is not necessarily a sub-
structure of M (similarly, it is easy to obtain an example showing that dom(p) is not necessarily a subalgebra of A).

From Definition 2 it easily follows a particular way in which, in the case of relational languages, partial isomor-
phisms preserve atomic formulas:

Lemma 5. Let P be a relational language and 〈p, r〉 a partial isomorphism between P-structures 〈A, M〉 and 〈B, N〉. 
Then, for every atomic formula ϕ(x1, . . . , xn), and d1, . . . , dn ∈ dom(r),

‖ϕ(d1, . . . , dn)‖A
M ∈FA ⇒ ‖ϕ(r(d1), . . . , r(dn))‖B

N ∈ FB .

The previous lemma cannot be extended to languages with functional symbols. Indeed, consider in Example 4 the 
formula R(x ⊕y, y). Then it is easy to compute that ‖R(x ⊕ y, y)(2,1)‖A

M = 1 ∈FA but ‖R(x ⊕ y, y)(r(2), r(1))‖A
N

= 0 /∈FA.
We can now use partial isomorphisms to introduce back-and-forth systems between fuzzy first-order structures.

Definition 6 (Finitely isomorphic structures). Two P-structures 〈A, M〉 and 〈B, N〉 are said to be finitely isomorphic, 
written 〈A, M〉 ∼=f 〈B, N〉, if there is a sequence 〈In | n ∈ N〉 with the following properties:

1. Every In is a non-empty set of partial isomorphisms from 〈A, M〉 to 〈B, N〉.
2. For each n ∈ N, In+1 ⊆ In.
3. (Forth-property I) For every 〈p, r〉 ∈ In+1 and m ∈ M , there is 〈p, r ′〉 ∈ In such that r ⊆ r ′ and m ∈ dom(r ′).
4. (Back-property I) For every 〈p, r〉 ∈ In+1 and n ∈ N , there is 〈p, r ′〉 ∈ In such that r ⊆ r ′ and n ∈ rg(r ′).
5. (Forth-property II) For every 〈p, r〉 ∈ In+1 and a ∈ A, there is 〈p′, r〉 ∈ In such that p ⊆ p′ and a ∈ dom(p′).
6. (Back-property II) For every 〈p, r〉 ∈ In+1 and b ∈ B , there is 〈p′, r〉 ∈ In such that p ⊆ p′ and b ∈ rg(p′).

Definition 7 (n-Finitely isomorphic structures). Given a natural number n, we say that two P-structures 〈A, M〉
and 〈B, N〉 are n-finitely isomorphic, written 〈A, M〉 ∼=n 〈B, N〉, if there is a sequence 〈Im | m ≤ n〉 satisfying the 
properties of the previous definition.

3. Elementary equivalence in fuzzy first-order models

In this section we show that, in fuzzy first-order models, the usual classical notion of elementary equivalence can 
be generalized in three different meaningful ways. We will define them and give examples to show that they are not 
equivalent.

Definition 8. Given two UL-chains A and B , we say that two P-models 〈A, M〉 and 〈B, N〉 are elementarily equiva-
lent (in symbols: 〈A, M〉 ≡ 〈B, N〉) if they are models of the same sentences, i.e., for every P-sentence σ , ‖σ‖A

M ∈FA

if and only if ‖σ‖B
N ∈ FB .

Definition 9. Given a UL-chain A, we say that two P-models 〈A, M〉 and 〈A, N〉 are filter-strongly elementarily 
equivalent (in symbols: 〈A, M〉 ≡f s 〈A, N〉) if they are models of the same sentences to the same degree, i.e. for 
every P-sentence σ , ‖σ‖A

M ∈FA if and only if ‖σ‖A
N ∈FA and, moreover, ‖σ‖A

M = ‖σ‖A
N whenever ‖σ‖A

M ∈ FA.

These two notions are clearly equivalent for logics with weakening, because then FA = {1A}. We can add yet a 
stronger one.
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Definition 10. Given a UL-chain A, we say that two P-models 〈A, M〉 and 〈A, N〉 are strongly elementarily equivalent
(in symbols: 〈A, M〉 ≡s 〈A, N〉) if for every P-sentence σ , ‖σ‖A

M = ‖σ‖A
N .

The following lemma (a generalization of [16, Propositions 6.1 and 6.2]) will be useful to obtain examples of 
elementarily equivalent models.

Lemma 11. Let A and B be two UL-chains, 〈A,M〉 and 〈B,N〉 two P-models and let 〈f,g〉 be a strong homo-
morphism from 〈A,M〉 to 〈B,N〉. If f is a σ -mapping and g is onto, then 〈f,g〉 is an elementary homomorphism. 
Moreover, if f is one-to-one, we have 〈A, M〉 ≡ 〈B, N〉.

Proof. Let 〈f,g〉 be a strong homomorphism such that f is a σ -mapping and g is an onto mapping. By induction 
on the complexity of the formulas we show that 〈f,g〉 is an elementary homomorphism, that is, for every formula 
ϕ(x1, . . . , xn), and d1, . . . , dn ∈ M ,

f (‖ϕ(d1, . . . , dn)‖A
M) = ‖ϕ(g(d1), . . . , g(dn))‖B

N .

• Let ϕ(x1, . . . , xn) be atomic. Suppose that ϕ = P(t1, . . . , tk)(x1, . . . , xn). We first prove that, for every P-term 
t (x1, . . . , xn), and every d1, . . . , dn,

g(‖t (d1, . . . , dn)‖M) = ‖t (g(d1), . . . , g(dn))‖N . (1)

We proceed by induction over the complexity of the term. If t is a variable x, then g(‖x(d)‖M) = g(d) =
‖x(g(d))‖N. Assume that the inductive hypothesis holds for the terms t1, . . . , tk and let t = F(t1, . . . , tk), where 
F is a k-ary functional symbol and the variables of the terms ti are in {x1, . . . , xn}. We can write the following 
chain of equalities:

g(‖F(t1, . . . , tk)(d1, . . . , dn)‖M) =
g(FM(‖t1(d1, . . . , dn)‖M , . . . ,‖tk(d1, . . . , dn)‖M)) =

FN(g(‖t1(d1, . . . , dn)‖M), . . . , g(‖tk(d1, . . . , dn)‖M)) =
FN(‖t1(g(d1), . . . , g(dn))‖N , . . . ,‖tk(g(d1), . . . , g(dn))‖N) =

‖F(t1, . . . , tk)(g(d1), . . . , g(dn))‖N .

The second equality is due to the fact that f is a homomorphism of algebras and the third equality is justified by 
applying the inductive hypothesis.
Now given the atomic formula P(t1, . . . , tk)(x1, . . . , xn), we have:

f (‖P(t1, . . . , tk)(d1, . . . , dn)‖A
M) =

f (PM(‖t1(d1, . . . , dn)‖M , . . . ,‖tk(d1, . . . , dn)‖M)) =
PN(g(‖t1(d1, . . . , dn)‖M), . . . , g(‖tk(d1, . . . , dn)‖M)) =

PN(‖t1(g(d1), . . . , g(dn))‖N , . . . ,‖tk(g(d1), . . . , g(dn))‖N) =
‖P(t1, . . . , tk)(g(d1), . . . , g(dn))‖N .

The second equality is due to the fact that 〈f,g〉 is a strong homomorphism and the third equality is justified by 
applying (1).

• Now, let λ ∈L be a k-ary connective, and

ϕ(x1, . . . , xn) = λ(ψ1, . . . ,ψk)(x1, . . . , xn).

Assume inductively that the property holds for the formulas ψ1, . . . , ψk . We have:
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f (‖λ(ψ1, . . . ,ψk)(d1, . . . , dn)‖A
M) =

f (λA(‖ψ1(d1, . . . , dn)‖A
M , . . . ,‖ψk(d1, . . . , dn)‖A

M)) =
λB(f (‖ψ1(d1, . . . , dn)‖A

M), . . . , f (‖ψk(d1, . . . , dn)‖A
M)) =

λB(‖ψ1(g(d1), . . . , g(dn))‖B
N , . . . ,‖ψ1(g(d1), . . . , g(dn))‖B

N) =
‖λ(ψ1, . . . ,ψk)(g(d1), . . . , g(dn))‖B

N .

The second equality is due to the fact that f is an homomorphism of algebras and the third equality is justified by 
applying the inductive hypothesis.

• Let ϕ(x1, . . . , xn) = (∃y)ψ(x1, . . . , xn) and assume inductively that the property holds for the formula ψ . We 
have:

f (‖(∃y)ψ(d1, . . . , dn)‖A
M) =

f (sup{‖ψ(d, d1, . . . , dn)‖A
M | d ∈ M}) =

sup{f (‖ψ(d, d1, . . . , dn)‖A
M) | d ∈ M}) =

sup{‖ψ(g(d), g(d1), . . . , g(dn))‖B
N) | d ∈ M}) =

sup{‖ψ(e,g(d1), . . . , g(dn))‖B
N) | e ∈ N}) =

‖(∃y)ψ(g(d1), . . . , g(dn))‖B
N

The second equality is due to the fact that f is a σ -mapping, the third by the inductive hypothesis and the fourth 
because g is onto. The case of the universal quantifier is done analogously.

Moreover, if f is one-to-one, we can guarantee that for every a ∈ A, a ∈ FA if and only if f (a) ∈ FB . Indeed, 

if a ≥ 1
A

, then f (a) ≥ f (1
A
) = 1

B
(using that f is a homomorphism of UL-algebras); conversely if f (a) ≥ 1

B =
f (1

A
), then f (a) ∧ f (1

A
) = f (a ∧ 1

A
) = f (1

A
), so by injectivity, a ∧ 1

A = 1
A

. Consequently, since 〈f,g〉 is an 
elementary homomorphism, 〈A, M〉 ≡ 〈B, N〉. �

Similarly, observe that if there is an elementary homomorphism 〈IdA, g〉 from 〈A,M〉 to 〈A,N〉, then 〈A, M〉 ≡s

〈A, N〉. Therefore, in all the Löwenheim–Skolem theorems proved in [15] for structures over a fixed UL-chain one 
always obtains a (bigger or smaller) model which is strongly elementarily equivalent to the initial one.

The following example shows two models (for a logic with weakening) which are filter-strongly elementarily 
equivalent but not strongly elementarily equivalent.

Example 12. Consider a predicate language with only one monadic predicate P and take two models over the standard 
Gödel chain, 〈[0, 1]G, M〉 and 〈[0, 1]G, N〉. The domain in both cases is the set of all natural numbers N and the 
interpretation of the predicate is respectively defined as:

PM(n) =
{

3
4 − 1

n
, if n ≥ 2,

0, 0 ≤ n ≤ 1.

PN(n) =
{

1
2 − 1

n
, if n ≥ 2,

0, 0 ≤ n ≤ 1.

On the one hand, ‖(∃x)P (x)‖M = 3
4 but ‖(∃x)P (x)‖N = 1

2 , so the models are not strongly elementarily equivalent. 
On the other hand, we will see that elementary equivalence still holds. Take f as any non-decreasing bijection from 
[0, 1] to [0, 1] such that f ( 3

4 ) = 1
2 , f (1) = 1, f (0) = 0, and for every n ∈ N, f ( 3

4 − 1
n
) = 1

2 − 1
n

. It is clear that f is a 
G-homomorphism preserving suprema and infima. Then we can consider the σ -mapping 〈f, Id〉 and apply Lemma 11
to obtain that 〈[0, 1]G, M〉 ≡ 〈[0, 1]G, N〉.
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Now the following example shows two models which are elementarily equivalent but not filter-strongly elementar-
ily equivalent.

Example 13. Consider the same predicate language of Example 12 and take again two models 〈A, M〉 and 〈A, N〉
with both domains M and N equal to the set of all natural numbers N. We take both models over the same algebra, 
namely, the residuated lattice defined in the real unit interval by the uninorm:

x &A y =
{

min{x, y}, if y ≤ 1 − x,

max{x, y}, if y > 1 − x,

and its residuum:

x →A y =
{

max{1 − x, y}, if x ≤ y,

min{1 − x, y}, if y > x.

The interpretation of the unique predicate in both models is as follows:

PM(n) =
{

4
5 − 1

n4 , if n ≥ 2,

0, if 0 ≤ n ≤ 1.

PN(n) =
{

3
5 − 1

n4 , if n ≥ 2,

0, if 0 ≤ n ≤ 1.

The neutral element of the uninorm is 1
2 . The filter is FA = [ 1

2 , 1]. Now, observe that we have: ‖(∃x)P (x)‖M = 4
5

but ‖(∃x)P (x)‖N = 3
5 , so the models are not filter-strong elementarily equivalent because they assign different true 

values to the sentence (∃x)P (x). However, we can prove that they are elementarily equivalent. Indeed, consider the 
function f : [0, 1] −→ [0, 1] defined as f (x) = x for each x ∈ ( 4

5 , 1], f ( 4
5 ) = 3

5 , and by taking for each interval 
[ 4

5 − 1
n4 , 4

5 − 1
(n+1)4 ] the usual affine transformation into the interval [ 3

5 − 1
n4 , 35 − 1

(n+1)4 ], the usual affine transfor-

mation from [ 1
2 , 45 − 1

24 ] into [ 1
2 , 35 − 1

24 ], and finally defining f (x) = 1 − f (1 − x) for each [0, 12 ). It is clear that 
f preserves order, suprema and infima, it is injective and, for each x ∈ [0, 1], f (1 − x) = 1 − f (x); using this it is 
easy to check that f is an A-homomorphism. Therefore, we can apply Lemma 11 to the elementary homomorphism 
〈f, IdN〉 and obtain that 〈A, M〉 ≡ 〈A, N〉.

4. A sufficient condition for elementary equivalence

The goal of this section is to use the characterization of elementary equivalence for classical many-sorted structures 
to obtain a sufficient condition for elementary equivalence for fuzzy first-order models. We will obtain such condition 
in the next theorem and afterwards we will discuss through examples its applicability and limitations.

Theorem 14. Let P be a finite predicate language. Let 〈A, M〉, 〈B, N〉 be P-models. The following holds:

a) 〈A, M〉 ∼=f 〈B, N〉 ⇒ 〈A, M〉 ≡ 〈B, N〉.
b) Assume that there is 〈In | n ∈ N〉 : 〈A, M〉 ∼=f 〈A, N〉 such that for every n, and every 〈p, r〉 ∈ In, p � A ⊆ IdA. 

Then, 〈A, M〉 ≡s 〈A, N〉.

Proof. To prove a), assume that 〈A, M〉 ∼=f 〈B, N〉. By Fraïssé’s Theorem for classical logic (see e.g. [17, The-
orem 2.1]), when seen as classical two-sorted structures, 〈A, M〉 and 〈B, N〉 are elementarily equivalent. We 
should prove that for each sentence σ , ‖σ‖A

M ∈ FA iff ‖σ‖B
N ∈ FB . Assume, for instance, that ‖σ‖A

M ∈ FA, i.e. 

‖σ‖A
M ∧ 1

A = 1
A

. Using this and [15, Lemma 39], we obtain that 〈A, M〉 |= (∃1x)(Eσ (x) ∧ (x ∧ 1 ≈1 1)) and thus, 
since they are elementarily equivalent as classical two-sorted structures, 〈B, N〉 |= (∃1x)(Eσ (x) ∧ (x ∧1 ≈1 1)). Now, 
using the unicity of the truth-values [15, Corollary 40], we obtain ‖σ‖B

N ∈ FB . The reverse implication is completely 
symmetric.

As for b), without loss of generality, we assume that A is finite and we expand the language P adding a new truth 
constant symbol for every element of A and we expand the structures accordingly. Since 〈A, M〉 ∼=f 〈A, N〉, we have 
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also that 〈A, M, a〉a∈A
∼=f 〈A, N, a〉a∈A. As a consequence of part a) of this theorem, we have that 〈A, M, a〉a∈A ≡

〈A, N, a〉a∈A and thus 〈A, M〉 ≡s 〈A, N〉. �
The converse implication of the previous theorem is not true in general. Consider the following counterexample:

Example 15. Let P be a finite predicate language, M a classical one-sorted finite model and B2 the two-element 
Boolean algebra. Now take an infinite L-algebra A. Since B2 is a subalgebra of A, we can also see the classical 
model 〈B2, M〉 as a model over the algebra A, namely 〈A, M〉. Clearly then 〈B2, M〉 ≡ 〈A, M〉 but it is not true that 
〈B2, M〉 ∼=f 〈A, M〉. Otherwise the two models will be elementarily equivalent from the point of view of classical 
logic and also their algebras. This is impossible because, by the classical results, one algebra which is finite cannot be 
elementarily equivalent to an infinite algebra.

The following examples show how one can apply in particular cases (fuzzy models over the Łukasiewicz, Gödel 
and arbitrary standard UL-algebras) the condition of Theorem 14 to obtain elementary equivalence.

Example 16. Let P be a predicate language with a unique binary relational symbol E. Consider the P-models 
〈[0, 1]Ł, N1〉 and 〈[0, 1]Ł, N2〉, where the domains of N1 and N2 are [0, 1]Q and [0, 1], the rational and the real unit 
interval respectively. The relations EN1 and EN2 (similarity relations) are defined as follows:

EN1(x, y) = 1 − |x − y|, for every x, y ∈ [0,1]Q,

EN2(x, y) = 1 − |x − y|, for every x, y ∈ [0,1].
Now we show that 〈[0, 1]Ł, N1〉 ≡ 〈[0, 1]Ł, N2〉 by building a system of partial isomorphisms and using Theorem 14. 
Observe that a partial isomorphism between 〈[0, 1]Ł, N1〉 and 〈[0, 1]Ł, N2〉 is given by the set of pairs 〈Id[0,1], r〉, 
where r is a bijection, dom(r) ⊆ [0, 1]Q, and rg(r) ⊆ [0, 1] in such a way that, for every x, y ∈ dom(r), |x − y| =
|f (x) − f (y)|. Then, we define a system of partial isomorphisms where, for each n ∈ N, In is the set of all the finite 
partial isomorphisms with the identity for the algebraic part. Now we prove that conditions 1 − 6 in Definition 6 are 
satisfied. Condition 1: Observe that 〈Id[0,1], ∅〉 ∈ In; therefore, In �= ∅. Condition 2 is obvious. Condition 3: Suppose 
that 〈Id, r〉 ∈ In+1 and let d ∈ [0, 1]Q. Suppose also that dom = {d1, . . . , dk}. Take an element e ∈ [0, 1] such that 
|d1 − d| = |r(d1) − e| and take r ′ = r ∪ {〈d, e〉}. Condition 4 is analogously proved and conditions 5 and 6 are trivial.

Example 17. Let us consider the predicate language P in Example 16, and the P-models 〈[0, 1]G, M1〉 and 
〈[0, 1]Q

G, M2〉, where [0, 1]Q
G is the restriction of the algebra [0, 1]G to the rational numbers, and where the domains 

of M1 and M2 are [0, 1] and [0, 1]Q, respectively. The relations EM1 and EM2 are both defined in the same form as 
follows:

EMi (x, y) =
{

1, if x = y,

min{x, y}, otherwise.

When x = y, we have:

p(EM1(x, y)) = EM1(r(x), r(y)).

If x �= y, then we have: p(min{x, y}) = min{r(x), r(y)}.
We define a system of partial isomorphisms where, for each n ∈ N, In is the set of all the pairs 〈p, r〉 such that p

and r coincide over dom(p) ∪ dom(r) and they are finite partial isomorphisms preserving the order.

Example 18. Let P be a predicate language with a unique binary relational symbol E and let A be a standard
UL-chain. Consider a P-model 〈A, M〉 with the following properties:

1. EM is a similarity.
2. For each a ∈ [0, 1], there are d, e ∈ M such that EM(d, e) = a.
3. For every d ∈ M , the set [d] = {e ∈ M | EM(d, e) > 0} is infinite.
4. For every d ∈ M , the set M \ [d] is also infinite.
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5. For every d, e ∈ M , if e /∈ [d], [d] ∩ [e] = ∅.
6. For every d ∈ M there is a unique a ∈ A, 0 < a < 1 such that for every e ∈ [d], e �= d , EM(d, e) = a.

Notice that, if we define for each a ∈ (0, 1) the set Ma = {d ∈ M | there is e ∈ M with EM(d, e) = a}, then {Ma |
a ∈ (0, 1)} is a partition of the domain M .

Take another model 〈A, N〉 with analogous properties on a possibly different domain. Let 〈p, r〉 be a partial map-
ping from 〈A, M〉 to 〈A, N〉 such that:

• p is the identity on A,
• r is injective,
• for every d ∈ dom(r), if d ∈ Ma then r(d) ∈ Na .

Then 〈p, r〉 is a partial isomorphism. We can define a system of partial isomorphisms where, for each n ∈N, In is the 
set of all such finite partial isomorphisms. Notice that the sets Ma and Na may have different cardinalities.

5. Finitely isomorphic fuzzy first-order models

By using the notion of n-finitely isomorphic structures introduced in Definition 7, in this section we aim at refining 
the results of the previous one in such a way that back-and-forth systems only use as many layers as necessary to 
guarantee that two models are n-elementarily equivalent (that is to say, in order to be models of the same sentences up 
until a given complexity n). The complexity of the sentences is measured using a modification of the syntactic degree
of formulas introduced by Hájek in [22, Definition 5.6.7].

The results in this section are achieved in a purely non-classical approach. In this case, the translation to two-sorted 
structures and classical results is not useful because it would not be so finely grained. The reason is that, intuitively 
speaking, the translation does not preserve the rank of the formulas involved, making it, in some cases, actually much 
bigger.

Definition 19 (Nested rank of a formula). Let P be a predicate language. Given a P-formula ϕ we define by induction 
the nested rank of ϕ, denoted by NR(ϕ), as follows.

– If ϕ is atomic (given by a predicate or a 0-ary connective), NR(ϕ) = 0.
– For every n ≥ 1, every P-formulas ϕ1, . . . , ϕn and every n-ary connective λ ∈L,

NR(λ(ϕ1, . . . , ϕn) = NR(ϕ1) + . . . + NR(ϕn) + 1.

– For every P-formula ϕ, NR((∀x)ϕ) = NR((∃x)ϕ) = NR(ϕ) + 1.

Observe that, by the definition of nested rank, if both L and P are finite, and we fix a finite set of variables V0, 
then, for any n ≥ 0, the set {ϕ P-formula in variables in V0 | NR(ϕ) ≤ n} is finite.

Definition 20. Given P-models 〈A, M〉 and 〈B, N〉, we write

〈A,M〉 ≡n 〈B,N〉
whenever 〈A, M〉 and 〈B, N〉 are models of the same sentences of nested rank ≤ n.

Analogously, we can define strong n-equivalence from models over the same algebra:

Definition 21. Given two P-models 〈A, M〉 and 〈A, N〉, we write

〈A,M〉 ≡s
n 〈A,N〉

whenever ‖σ‖A
M = ‖σ‖A

N , for every P-sentence σ of nested rank ≤ n.
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We are ready to present the non-classical proof of Theorem 14 for the case of strong n-equivalence using, without 
loss of generality, only finite relational languages.

Theorem 22. Let P be a finite relational predicate language, 〈A, M〉 and 〈A, N〉 be P-models and n ∈ N. Assume 
that 〈A, M〉 ∼=n 〈A, N〉 via a system 〈Im | m ≤ n〉 such that for every m ≤ n, and every 〈p, r〉 ∈ Im, p � A ⊆ IdA. Then 
〈A, M〉 ≡s

n 〈A, N〉.

Proof. By induction on the complexity of formulas we show that

(∗) For every formula ϕ(x1, . . . , xk), 〈p, r〉 ∈ Im with NR(ϕ) ≤ m ≤ n, and d1, . . . , dk ∈ dom(r), ‖ϕ(d1, . . . , dk)‖A
M =

‖ϕ(r(d1), . . . , r(dk))‖A
N .

• Let R(x1, . . . , xk) be an atomic formula. Since 〈p, r〉 is a partial isomorphism, by condition 5 of Definition 2 we 
have:

RM(d1, . . . , dk) = RN(r(d1), . . . , r(dk)).

• Consider now the formula λ(α1, . . . , αl) in variables {x1, . . . , xk}, where λ is an l-ary connective with l ≥ 1. Let 
〈p, r〉 ∈ Im with NR(λ(α1, . . . , αl)) ≤ m ≤ n, and d1, . . . , dk ∈ dom(r). Assume inductively that the property (∗)

holds for α1, . . . , αl . By Definition 19 we have:

NR(λ(α1, . . . , αl)) = NR(α1) + . . . + NR(αl) + 1,

then NR(αi) ≤ m −1 for each i ∈ {1, . . . , l}. By Definition 6, we have that 〈p, r〉 ∈ Im−1. Then we apply the inductive 
hypothesis and we obtain for each i ∈ {1, . . . , l},

‖αi(d1, . . . , dk)‖A
M = ‖αi(r(d1), . . . , r(dk))‖A

N .

Therefore,

‖λ(α1, . . . , αl)[d1, . . . , dk]‖A
M = ‖λ(α1, . . . , αl)[r(d1), . . . , r(dk)]‖A

N .

• Let now (∃y)ϕ(y, x1, . . . , xk) be an existential formula, 〈p, r〉 ∈ Im with NR((∃y)ϕ) ≤ m ≤ n, and d1, . . . , dk ∈
dom(r). By Definition 19 we have that NR((∃y)ϕ) = NR(ϕ) + 1 and thus NR(ϕ) ≤ m − 1. For every d ∈ M , by 
the (Forth Property I) of Definition 6, there is 〈p, r ′〉 ∈ Im−1 such that r ⊆ r ′ and d ∈ dom(r ′). Then, by the inductive 
hypothesis,

‖ϕ(d, d1, . . . , dk)‖A
M = ∥∥ϕ(r ′(d), r ′(d1), . . . , r

′(dk))
∥∥A

N .

The same argument can be done for every e ∈ N using the (Back Property I) of Definition 6. Consequently, since 
r ⊆ r ′ and d1, . . . , dk ∈ dom(r),

{‖ϕ(d, d1, . . . , dk)‖A
M | d ∈ M} = {‖ϕ(e, r(d1), . . . , r(dk)‖A

N | e ∈ N}.
We can conclude that ‖(∃y)ϕ(d1, . . . , dk)‖A

M = ‖(∃y)ϕ(r(d1), . . . , r(dk))‖A
N . The case of the universal formulas is 

analogous. Finally, from (∗) if we consider only sentences ϕ, it follows that 〈A, M〉 ≡s
n 〈A, N〉. �

We now present a counterexample to show that the right-to-left implication does not always hold.

Example 23. Consider a predicate language with only one monadic predicate symbol P and take two models over 
any [0, 1]-valued chain A, 〈A, M〉 and 〈A, N〉. The domain of M is the set of all natural numbers N and the domain of
N is N ∪ {∞} (the natural numbers enriched with a new element). The interpretations of the predicate are respectively 
defined as:

PM(n) =
{

1 − 1
n
, if n ≥ 1,

0, if n = 0.
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PN(n) =
⎧⎨
⎩

1 − 1
n
, if n ∈ N, and n ≥ 1,

0, if n = 0,

1, if n = ∞.

Observe that the only sentences of nested rank 0 or 1 are 0-ary connectives or sentences of the form (∀x)P (x)

or (∃x)P (x), and thus clearly 〈A, M〉 ≡s
1 〈A, N〉. However, it is not the case that 〈A, M〉 ∼1 〈A, N〉, because in the 

domain of M no element could be related to ∞ in any partial isomorphism, due to condition 4 of Definition 2).

Finally, we obtain another non-classical proof of Theorem 14 for the case of elementary equivalence when the two 
models have different algebras. For the proof of the following theorem we will slightly modify the definition of rank 
of the existential and universal formulas as follows:

NR((∃y)ϕ) = NR((∀y)ϕ) = NR(ϕ) + 3.

Theorem 24. Let P be a finite relational predicate language and 〈A, M〉 and 〈B, N〉 be P-models. The following 
holds for every n ∈ N:

〈A,M〉 ∼=n 〈B,N〉 ⇒ 〈A,M〉 ≡n 〈B,N〉.

Proof. Assume that 〈A, M〉 ∼=n 〈B, N〉 via 〈Im | m ≤ n〉. By induction on the complexity of the formulas we show 
that

(∗∗) For every formula ϕ(x1, . . . , xk), 〈p, r〉 ∈ Im with NR(ϕ) ≤ m ≤ n, and d1, . . . , dk ∈ dom(r), there is a pair 
〈p′, r ′〉 ∈ Im−NR(ϕ) with p ⊆ p′, r ⊆ r ′, such that ‖ϕ(d1, . . . , dk)‖A

M ∈ dom(p′), and

p′(‖ϕ(d1, . . . , dk)‖A
M) = ∥∥ϕ(r ′(d1), . . . , r

′(dk))
∥∥B

N .

• Let R(x1, . . . , xk) be an atomic formula. Since 〈p, r〉 is a partial isomorphism, by condition 4 of Definition 2 we 
have:

p(RM(d1, . . . , dk)) = RN(r(d1), . . . , r(dk)).

• Consider now the formula λ(α1, . . . , αl) in the variables {x1, . . . , xk}, where λ is an l-ary connective with l ≥ 1. Let 
〈p, r〉 ∈ Im with NR(λ(α1, . . . , αl)) ≤ m ≤ n, and d1, . . . , dk ∈ dom(r). Assume inductively that the property (∗∗)

holds for α1, . . . , αl . By Definition 19 we have:

NR(λ(α1, . . . , αl)) = NR(α1) + . . . + NR(αl) + 1.

We define now two sequences of partial mappings:

p ⊆ p1 ⊆ p2 ⊆ . . . ⊆ pl,

and

r ⊆ r1 ⊆ r2 ⊆ . . . ⊆ rl,

such that

i)
∥∥αj (d1, . . . , dk)

∥∥A

M ∈ dom(pi), for j ≤ i ≤ l,
ii) 〈pi, ri〉 ∈ Im−(NR(α1)+...+NR(αi)),

iii) pi(
∥∥αj (d1, . . . , dk)

∥∥A

M) = ∥∥αj (ri(d1), . . . , ri(dk))
∥∥B

N , for j ≤ i ≤ l.

By inductive hypothesis, there is 〈p1, r1〉 ∈ Im−NR(α1) with p ⊆ p1, r ⊆ r1 such that ‖α1(d1, . . . , dk)‖A
M ∈ dom(p1), 

and

p1(‖α1(d1, . . . , dk)‖A
M) = ‖α1(r1(d1), . . . , r1(dk))‖B

N .

By iterating this same procedure we can obtain the desired sequences.
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Now, given 〈pl, rl〉 ∈ Im−(NR(α1)+...+NR(αl)), by the (Forth Property II) of Definition 6, there is 〈p′, r ′〉 ∈
Im−NR(λ(α1,...,αl )), with pl ⊆ p′, rl ⊆ r ′, and such that ‖λ(α1, . . . , αl)(d1, . . . , dk)‖A

M ∈ dom(p′). Finally, by Defi-
nition 2,

p′(‖λ(α1, . . . , αl)(d1, . . . , dk)‖A
M) = ∥∥λ(α1, . . . , αl)(r

′(d1), . . . , r
′(dk))

∥∥B

N .

• Let (∃y)ϕ(y, x1, . . . , xk) be an existential formula, 〈p, r〉 ∈ Im with NR((∃y)ϕ) ≤ m ≤ n, and d1, . . . , dk ∈
dom(r). By the modified definition of rank we have stated just before the statement of this theorem, we have 
NR((∃y)ϕ) = NR(ϕ) + 3. Now we show that there is 〈p′, r ′〉 ∈ Im−NR((∃y)ϕ) with p ⊆ p′, r ⊆ r ′ and such that 
‖(∃y)ϕ(d1, . . . , dk)‖A

M ∈ dom(p′) and

p′(‖(∃y)ϕ(d1, . . . , dk)‖A
M) = ∥∥(∃y)ϕ(r ′(d1), . . . , r

′(dk))
∥∥B

N .

By the (Forth Property II) of Definition 6, if a = ‖(∃y)ϕ(d1, . . . , dk)‖A
M, then there is a pair 〈p′, r〉 ∈ Im−1 with 

a ∈ dom(p′) and p ⊆ p′.
Let b = ‖(∃y)ϕ(r(d1), . . . , r(dk))‖B

N , we show that p′(a) = b. By (Back Property II) of Definition 6, there is a pair 
〈p′′, r〉 ∈ Im−2 with b ∈ rg(p′′), and p′ ⊆ p′′. Let b0 ∈ A be such that p′′(b0) = b.

We show that p′(a) ≥ b and b0 ≥ a. As a consequence p′(a) = b and the partial isomorphism 〈p′, r〉 will have the 
desired properties, with 〈p′, r〉 ∈ Im−NR((∃y)ϕ), p ⊆ p′, ‖(∃y)ϕ(d1, . . . , dk)‖A

M ∈ dom(p′), and

p′(‖(∃y)ϕ(d1, . . . , dk)‖A
M) = ‖(∃y)ϕ(r(d1), . . . , r(dk))‖B

N .

We prove that p′(a) ≥ b, the proof that b0 ≥ a is analogous. For every e ∈ N , we show that p′(a) ≥ ‖ϕ(e, r(d1), . . . ,
r(dk))‖B

N , and since b is the supremum of all these values, we will obtain that p′(a) ≥ b. Let e ∈ N , by the (Back 
Property I) of Definition 6, there is a partial mapping re such that e ∈ rg(re), r ⊆ re , and 〈p′′, re〉 ∈ Im−3. Let d ∈ M

be such that re(d) = e. By the inductive hypothesis, there is a pair 〈p0, r0〉 ∈ Im−3−NR(ϕ) with p′′ ⊆ p0, re ⊆ r0, such 
that ‖ϕ(d, d1, . . . , dk)‖A

M ∈ dom(p0), and

p0(‖ϕ(d, d1, . . . , dk)‖A
M) = ‖ϕ(e, r0(d1), . . . , r0(dk))‖B

N .

Since a = ‖(∃y)ϕ(d1, . . . , dk)‖A
M, we have:

p′(a) = p0(a) ≥ p0(‖ϕ(d, d1, . . . , dk)‖A
M) = ‖ϕ(e, r0(d1), . . . , r0(dk))‖B

N ,

and thus p′(a) ≥ b. The case of the universal formulas is analogous. Finally, by Remark 3, and (∗∗), it follows that 
〈A, M〉 ≡n 〈B, N〉. �

Example 15 shows that the converse implication of Theorem 24 is not true in general.

6. Generalization and conclusions

The previous sections have been presented as an investigation of conditions for elementary equivalence of fuzzy 
first-order models, understood as the semantics of first-order fuzzy logics built over propositional logics extending the 
uninorm logic UL. Such formulation is convenient because it already covers (the models of) the majority of first-order 
fuzzy logics studied in the literature and already allows to find a wealth of examples and counterexamples to illustrate 
the merits and limitations of our results.

However, a careful inspection of the proofs of the theorems that we have obtained reveals that, actually, we have not 
used many properties of the underlying logical and algebraic framework. Observe that from all the connectives present 
in UL and its extensions only three have been really used: the constant 1 that determines the filter that allows to define 
logical consequence, and the implication → and conjunction ∧ that determine the order relation in the algebras that is 
essential to define the filter and the semantics of quantified formulas. Other connectives, commutativity, residuation, 
and prelinearity have actually played no role.

Therefore, the whole paper could be rewritten, while keeping the same proofs, for the much wider framework of 
non-classical first-order algebraizable logics proposed in [9] based on algebraizable propositional logics (in the sense 
of [3]) which includes the majority of non-classical systems deeply studied in the literature. In fact, we have used this 
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general framework in our previous investigation, closely related to the present one, of Löwenheim–Skolem theorems 
for non-classical logics [15].

In any case, either in the fuzzy formulation that we have chosen or in the possible general framework just men-
tioned, this paper has presented some advances in the central topic of elementary equivalence, that is, the classification 
of fuzzy structures according to their first-order theory. We have shown how the classical definition of elementary 
equivalence splits into three non-equivalent notions for non-classical logics. Using first a translation to classical two-
sorted structures and later directly using non-classical structures, we have found back-and-forth conditions that turn 
out to be sufficient, but not necessary, for the defined notions of elementary equivalence. We have illustrated their use 
with natural examples of fuzzy structures.

At this point there are several directions that should be pursued in further investigations. For instance, it would be 
desirable to find other usable criteria actually equivalent to elementary equivalence; a possibility to be explored would 
be back-and-forth conditions based on some generalized notion of Ehrenfeucht–Fraïssé games. A good understanding 
of elementary equivalence and back-and-forth systems will lead to study other important issues such as categoricity, 
definability, saturation, and quantifier elimination.
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