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Abstract
The paper is devoted to the development of a comprehensive calculus for directional limiting
normal cones, subdifferentials and coderivatives in finite dimensions. This calculus encom-
passes the whole range of the standard generalized differential calculus for (non-directional)
limiting notions and relies on very weak (non-restrictive) qualification conditions having
also a directional character. The derived rules facilitate the application of tools exploit-
ing the directional limiting notions to difficult problems of variational analysis including,
for instance, various stability and sensitivity issues. This is illustrated by some selected
applications in the last part of the paper.

Keywords Generalized differential calculus · Directional limiting normal cone ·
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Mathematics Subject Classification (2010) 49J53 · 49J52 · 90C31

1 Introduction

Since the early works of Mordukhovich, the limiting normal cone and the corresponding
subdifferential belong to the central notions of variational analysis. They admit a rich cal-
culus both in finite as well as in infinite dimensions and have been successfully utilized in
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a large variety of optimization and equilibrium problems, see [20, 22] and the references
therein. In particular, these notions play an important role in stability and sensitivity issues,
above all in analysis of various Lipschitzian stability notions related to multifunctions. Hav-
ing been motivated by some of the above listed applications, in [14] the authors refined the
original definitions by restricting the limiting process only to a subset of sequences used in
the original definitions. This lead eventually to the notions of directional limiting normal
cone and directional limiting subdifferential which have been further developed and utilized
above all in the works authored or coauthored by Gfrerer [6–13]. It turned out that these
directional notions (together with the directional limiting coderivative) enable us indeed a
substantially finer analysis of situations in which the estimates, provided by the standard
calculus, are too rough and so the corresponding assertions are not very useful. This is, e.g.,
the case of verification of metric subregularity of feasibility mappings (calmness of pertur-
bation mappings) related to constraint systems, which lead to new first- and second-order
sufficient conditions for metric subregularity [6, 7]. They are now widely used as weak (non-
restrictive) but yet verifiable qualification conditions [10, 13, 24]. In [11] the authors used
the directional limiting coderivative to establish new weak conditions ensuring the calmness
and the Aubin property of rather general implicitly defined multifunctions and in [12] this
technique has then been worked out for a class of parameterized variational systems.

Further, directional limiting coderivative appears in sharp first-order optimality condi-
tions [6], entitled extended M-stationarity in [8], which provide a dual characterization of
B-stationarity for disjunctive programs.

One can definitely imagine also numerous other problems of variational analysis in
which the directional notions could be successfully employed. In all of them, however, one
needs a set of rules enabling us to compute efficiently the directional normal cones and sub-
differentials of concrete sets and functions in a similar way like in the standard generalized
differential calculus of Mordukhovich. Some parts of such a calculus have already been con-
ducted in connection with various results mentioned above. In particular, in [7] one finds,
apart from some elementary rules, formulas for directional limiting normal cones to unions
of convex polyhedral sets and in [11, 12] second-order chain rules have been derived which
enable us to compute directional limiting coderivatives to normal-cone mappings associated
with various types of sets. Further, [19] contains several rules of the directional calculus
even in Banach spaces, in [23] the authors proved a special coderivative sum rule and in
[24] the situation has been examined when one has to do with the Cartesian products of sets
and mappings.

The aim of this paper is to fill in this gap by building a systematic decent calculus of
directional limiting normal cones and subdifferentials following essentially the lines of [20,
Chapter 3] and [16]. The structure is as follows.

In Section 2 we collect the needed definitions and present some auxiliary results used
throughout the paper. Section 3 is devoted to the calculus of directional limiting normal
cones. As the most important results we consider formulas for the directional limiting nor-
mal cone of the pre-image and of the image of a set in a Lipschitz continuous mapping.
These results have numerous important consequences. Section 4 concerns the calculus of
directional limiting subdifferentials. Apart from the chain and sum rules we consider the
case of value functions, distance functions, pointwise minima and maxima and examine
also the partial directional limiting subdifferentials. Section 5 provides formulas for direc-
tional limiting coderivatives of compositions and sums of multifunctions together with
some important special cases. In Section 6 we present some problems of variational anal-
ysis, where the usage of the directional limiting calculus leads to weaker (less restrictive)
sufficient conditions or sharper (more precise) estimates.
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Similarly as in [16], we have attempted to impose the “weakest” qualification conditions
expressed mostly in terms of directional metric subregularity of associated feasibility map-
pings. Admittedly, these conditions are not always verifiable, but they can in many cases be
replaced by stronger (more restrictive) conditions expressed in terms of problem data.

In the directional calculus one also meets a new specific difficulty associated with
the computation of the images or the pre-images of the given direction in the considered
mappings. This obstacle leads in some cases to more complicated rules or to additional
qualification conditions.

It turns out, that the essential role in the calculus is played by Theorems 3.1 and 3.2, con-
cerning the pre-image and the image of a set in a continuous/Lipschitz mapping. The basic
ideas arising in these two statements appear in fact in almost all calculus rules throughout
the whole paper.

Apart from the directional notions investigated in this paper there are several other
constructions, where directions play an important role. Herewith we mean above all the qua-
sidifferentials and exhausters of Demyanov [4], directed subdifferentials of Baier [1, 2] and
lexicographic derivatives of Nesterov [21]. In all of them, however, the directions are used
as a vehicle to describe the local behavior of the considered sets or mappings and they do
not pretend to capture the “directional” behavior.

The following notation is employed. The closed unit ball and the unit sphere in R
n are

denoted by B and S, respectively, while Br (x̄) := {x ∈ R
n | ‖x − x̄‖ ≤ r}. The identity

mapping is denoted by Id. Given a set � ⊂ R
n, bd � stands for the boundary of �, i.e.,

the set of points whose every neighborhood contains a point of � as well as a point not
belonging to �. Moreover, given also a point x̄, d�(x̄) denotes the distance from x̄ to set �

and P�(x̄) denotes the projection of x̄ onto �. For a sequence xk , xk
�→ x̄ stands for xk → x̄

with xk ∈ �, while xk

f→ x̄ with f : Rn → R̄ being an extended real-valued function stands
for xk → x̄ with f (xk) → f (x̄). Given a directionally differentiable function ϕ : Rn → R

m

at x̄ ∈ dom ϕ, ϕ′(x̄; h) denotes the directional derivative of ϕ at x̄ in direction h. Finally,
following traditional patterns, we denote by o(t) for t ≥ 0 a term with the property that
o(t)/t → 0 when t ↓ 0.

2 Preliminaries

We start by recalling several definitions and results from variational analysis. Let � ⊂ R
n

be an arbitrary closed set and x̄ ∈ �. The contingent (also called Bouligand or tangent)
cone to � at x̄, denoted by T�(x̄), is given by

T�(x̄) := {u ∈ R
n | ∃(uk) → u, (tk) ↓ 0 : x̄ + tkuk ∈ � ∀k}.

We denote by

N̂�(x̄) := {ξ ∈ R
n | lim sup

x′ �→ x̄

ξ T (x′ − x̄)

‖x′ − x̄‖ ≤ 0} (1)

the Fréchet (regular) normal cone to � at x̄. Finally, the limiting (Mordukhovich) normal
cone to � at x̄ is defined by

N�(x̄) := {ξ ∈ R
n | ∃(xk)

�→ x̄, (ξk) → ξ : ξk ∈ N̂�(xk) ∀k}.
If x̄ /∈ �, we put T�(x̄) = ∅, N̂�(x̄) = ∅ and N�(x̄) = ∅.
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The Mordukhovich normal cone is generally nonconvex whereas the Fréchet normal
cone is always convex. In the case of a convex set �, both the Fréchet normal cone and the
Mordukhovich normal cone coincide with the standard normal cone from convex analysis
and, moreover, the contingent cone is equal to the tangent cone in the sense of convex
analysis.

Note that ξ ∈ N̂�(x̄) ⇔ ξT u ≤ 0 ∀u ∈ T�(x̄), i.e., N̂�(x̄) = N̂T�(x̄)(0) = T�(x̄)◦ is the
polar cone of T�(x̄).

Consider an extended real-valued function f : R
n → R̄ and a point x̄ ∈ dom f :=

{x ∈ R
n | f (x) ∈ R}, where dom f denotes the domain of f . The Fréchet (regular)

subdifferential of f at x̄ is a set ∂̂f (x̄) consisting of all ξ ∈ R
n such that

f (x) ≥ f (x̄) + 〈ξ, x − x̄〉 + o(‖x − x̄‖),
the limiting (Mordukhovich) subdifferential of f at x̄, denoted by ∂f (x̄), is given by

∂f (x̄) := {ξ ∈ R
n | ∃(xk)

f→ x̄, (ξk) → ξ : ξk ∈ ∂̂f (xk) ∀k}
and the singular subdifferential of f at x̄ is defined by

∂∞f (x̄) := {ξ ∈ R
n | ∃(λk) ↓ 0, (xk)

f→ x̄, ξk ∈ ∂̂f (xk) ∀k : (λkξk) → ξ}.
Denoting by epi f := {(x, α) ∈ Rn+1 | a ≥ f (x)} the epigraph of f , there is a well-

known equivalent description of the subdifferentials, namely

∂̂f (x̄) = {ξ ∈ R
n | (ξ,−1) ∈ N̂epi f (x̄, f (x̄))},

∂f (x̄) = {ξ ∈ R
n | (ξ,−1) ∈ Nepi f (x̄, f (x̄))},

∂∞f (x̄) = {ξ ∈ R
n | (ξ, 0) ∈ Nepi f (x̄, f (x̄))},

where the last relation holds if epi f is locally closed around (x̄, f (x̄)) or, equivalently, f

is lower semicontinuous (lsc) around x̄, see e.g. [22, Theorem 8.9].
Given a multifunction M : Rn ⇒ R

m and a point (x̄, ȳ) ∈ gph M := {(x, y) ∈ R
n ×

R
m | y ∈ M(x)}, where gph M denotes the graph of M , the graphical derivative of M at

(x̄, ȳ) is a multifunction DM(x̄, ȳ) : Rn ⇒ R
m given by

DM(x̄, ȳ)(u) := {v ∈ R
m | (u, v) ∈ Tgph M(x̄, ȳ)}.

The regular coderivative of M at (x̄, ȳ) is a multifunction D̂∗M(x̄, ȳ) : Rm ⇒ R
n with the

values
D̂∗M(x̄, ȳ)(η) := {ξ ∈ R

n | (ξ,−η) ∈ N̂gph M(x̄, ȳ)}
and the limiting (Mordukhovich) coderivative of M at (x̄, ȳ) is a multifunction D∗M(x̄, ȳ) :
R

m ⇒ R
n defined by

D∗M(x̄, ȳ)(η) := {ξ ∈ R
n | (ξ,−η) ∈ Ngph M(x̄, ȳ)},

i.e., D∗M(x̄, ȳ)(η) is the collection of all ξ ∈ R
n for which there are sequences (xk, yk) →

(x̄, ȳ) and (ξk, ηk) → (ξ, η) with (ξk,−ηk) ∈ N̂gph M(xk, yk), or, equivalently, ξk ∈
D̂∗M(xk, yk)(ηk). The notation DM(x̄, ȳ), D̂∗M(x̄, ȳ) and D∗M(x̄, ȳ) is simplified to
DM(x̄), D̂∗M(x̄) and D∗M(x̄) when M is single-valued at x̄ with M(x̄) = {ȳ}.

Just as in case of subdiferentials and epigraphs, it is often important to have closed graphs
of multifunctions. We say that M is outer semicontinuous (osc) at x̄ if the existence of
sequences xk → x̄ and yk → y with yk ∈ M(xk) implies y ∈ M(x̄) and we say that
M is osc if it is osc at every point, which is equivalent to the closedness of gph M , see
[22, Theorem 5.7].

For more details we refer to the monographs [20, 22].
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Directional versions of these limiting constructions were introduced in [14] and [6] for
general Banach spaces and later on equivalently reformulated for finite dimensional spaces
in [8] in the following way. Given a direction u ∈ R

n, the limiting normal cone to a subset
� ⊂ R

n at x̄ ∈ � in direction u is defined by

N�(x̄; u) := {ξ ∈ R
n | ∃(tk) ↓ 0, (uk) → u, (ξk) → ξ : ξk ∈ N̂�(x̄ + tkuk) ∀k}.

Note that by the definition we have N�(x̄; 0) = N�(x̄). Further N�(x̄; u) ⊂ N�(x̄) for
all u, N�(x̄; u) = ∅ if u /∈ T�(x̄) and N�(x̄; u) = {0} if u ∈ T�(x̄) \ Tbd �(x̄).

The following simple lemma provides a hint about possible applications of directional
limiting normal cones.

Lemma 2.1 Let � ⊂ R
n be closed and x̄ ∈ �. Then

N�(x̄) = N̂�(x̄) ∪
⋃

u∈T�(x̄)∩S
N�(x̄, u).

Proof Inclusion ⊃ follows directly from definition.
Now let ξ ∈ N�(x̄) and consider xk → x̄, ξk → ξ with xk ∈ � and ξk ∈ N̂�(xk). If

xk = x̄ for infinitely many k we have ξ ∈ N̂�(x̄) due to closedness of N̂�(x̄). On the other
hand if xk �= x̄ for infinitely many k, we set tk := ‖xk − x̄‖ and uk := (xk − x̄)/‖xk − x̄‖ and
by passing to a subsequence we assume (tk) ↓ 0 and uk → u ∈ S. Since xk = x̄ + tkuk ∈ �

we conclude ξ ∈ N�(x̄, u) as well as u ∈ T�(x̄), completing the proof.

Proposition 2.1 [24, Proposition 3.3] Let Rn be written as Rn = R
n1 × . . . × R

nl and for
x ∈ R

n write x = (x1, . . . , xl) with xi ∈ R
ni . Let Ci ⊂ R

ni be closed for i = 1, . . . , l,
set C = C1 × . . . × Cl and consider a point x̄ = (x̄1, . . . , x̄l) ∈ C and a direction h =
(h1, . . . , hl) ∈ R

n. Then

NC(x̄; h) ⊂ NC1(x̄1; h1) × . . . × NCl
(x̄l; hl).

For a multifunction M : R
n ⇒ R

m and a direction (u, v) ∈ R
n × R

m, the limiting
coderivative of M in direction (u, v) at (x̄, ȳ) ∈ gph M is defined as the multifunction
D∗M((x̄, ȳ); (u, v)) : Rm ⇒ R

n given by

D∗M((x̄, ȳ); (u, v))(η) := {ξ ∈ R
n | (ξ,−η) ∈ Ngph M((x̄, ȳ); (u, v))}.

Clearly, one has D∗M((x̄, ȳ); (0, 0)) = D∗M(x̄, ȳ). In case of a continuously differen-
tiable single-valued mapping, the following relations hold.

Remark 2.1 Let F : R
n → R

m be continuously differentiable and let ∇F(x̄) denote its
Jocobian. One has DF(x̄)(u) = ∇F(x̄)u and thus D∗F(x̄; (u, v))(η) �= ∅ if and only if
v = ∇F(x̄)u, in which case

D∗F(x̄; (u, v))(η) = D∗F(x̄)(η) = D̂∗F(x̄)(η) = (∇F(x̄))T η.

Our approach to directional limiting subdiferentials differs from the one established in [6,
14, 19], where it is either defined or equivalently described as a limit of regular subdiferen-
tials. In the finite dimensional setting these definitions read as follows. Given f : Rn → R̄,
x̄ ∈ dom f and a direction u ∈ R

n, consider the set

∂af (x̄, u) := {ξ ∈ R
n | ∃(tk) ↓ 0, (uk) → u, (ξk) → ξ : f (x̄ + tkuk) → f (x̄), ξk ∈ ∂̂f (x̄ + tkuk) ∀k},
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which we will call the analytic limiting subdiferential of f at x̄ in direction u, following the
notation from [20, Definition 1.83].1

In this paper, inspired by directional coderivatives, we consider a direction (u, μ) ∈ R
n+1

and define the limiting subdiferential of f at x̄ in direction (u, μ) via

∂f (x̄; (u, μ)) := {ξ ∈ R
n | (ξ,−1) ∈ Nepi f ((x̄, f (x̄)); (u, μ))}. (2)

The advantages of this definition are twofold: First, it leads to a finer analysis and second,
there is a close relationship between subdiferentials and normal cones which allows us to
easily carry over the results obtained for normal cones to subdiferentials. More detailed
discussion about the two versions of directional subdiferentials is presented at the beginning
of Section 4.

Finally, we present some well-known properties of multifunctions as well as their direc-
tional counterparts. In order to do so, following [6], we define a directional neighborhood
of (a direction) u ∈ R

n.
Given a direction u ∈ R

n and positive numbers ρ, δ > 0, consider the set Vρ,δ(u) given
by

Vρ,δ(u) := {z ∈ ρB | ∥∥‖u‖z − ‖z‖u∥∥ ≤ δ‖z‖ ‖u‖}. (3)
We say that a set V is a directional neighborhood of u if there exist ρ, δ > 0 such that
Vρ,δ(u) ⊂ V . Moreover, we say that a sequence xk ∈ R

n converges to some x̄ from direction
u ∈ R

n if for every directional neighborhood V of u we have xk ∈ x̄ + V for sufficiently
large k, or, equivalently, if there exist (tk) ↓ 0 and uk → u with xk = x̄ + tkuk .

Definition 2.1 Let M : R
n ⇒ R

m and (x̄, ȳ) ∈ gph M . We say that M is metrically
subregular at (x̄, ȳ) provided there exist κ > 0 and a neighborhood U of x̄ such that

dM−1(ȳ)(x) ≤ κdM(x)(ȳ) ∀x ∈ U .

Given u ∈ R
n, we say M is metrically subregular in direction u at (x̄, ȳ) if there exists a

directional neighborhood U of u such that the above estimate holds for all x ∈ x̄ + U .

We say that S : Rm ⇒ R
n is calm at (ȳ, x̄) ∈ gph S provided there exist κ > 0 and

neighborhoods U of x̄ and V of ȳ such that

S(y) ∩ U ⊂ S(ȳ) + κ‖y − ȳ‖B ∀y ∈ V . (4)

It is known that neighborhood U can be reduced (if necessary) in such a way that
neighborhood V can be replaced by the whole space R

m, cf. [5, Exercise 3H.4].
For our purposes it is, however, suitable to employ estimate (4) without this simplifica-

tion and to introduce the directional calmness by replacing V by ȳ + V , where V is the
appropriate directional neighborhood.

While it is well-known that metric subregularity of M at (x̄, ȳ) is equivalent to calmness
of M−1 at (ȳ, x̄), this does no longer hold for the directional versions. This is due to the fact
that at directional metric subregularity the considered direction enters via neighborhood U

(Definition 2.1), whereas at directional calmness the directional neighborhood amounts to
V , see (4).

Calmness, similarly as some other Lipschitzian stability properties enables us to estimate
the images of S around (ȳ, x̄) via S(ȳ) and the respective calmness modulus κ . However,

1It was pointed out in [19] that in [6] the condition f (x̄ + tkuk) → f (x̄) was omitted from the definition and
the same holds true for the definition from [14]. Such definition leads e.g. to violation of ∂af (x̄, 0) = ∂f (x̄),
which is clearly undesirable and the omission of f (x̄ + tkuk) → f (x̄) was most likely unintentional.
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what we actually need for our directional calculus is the opposite, i.e., we need to be able to
provide an estimate of x̄ in terms of S(y) for y close to ȳ. This our need is reflected in the
following inner version of calmness.

Definition 2.2 A set-valued mapping S : Rm ⇒ R
n is called inner calm at (ȳ, x̄) ∈ gph S

with respect to (w.r.t.) � ⊂ R
m if there exist κ > 0 and a neighborhood V of ȳ such that

x̄ ∈ S(y) + κ‖y − ȳ‖B ∀ y ∈ V ∩ �.

If in the above definition V = ȳ + V , where V is a directional neighborhood of a direction
v ∈ R

m, we say that S possesses the inner calmness property at (ȳ, x̄) w.r.t. � in direction v.

Note that inner calmness of S at (ȳ, x̄) ∈ gph S w.r.t. dom S in direction v exactly corre-
sponds to the directional inner semicompactness of S at (ȳ, x̄) ∈ gph S in direction v from
[19, Definition 4.4]. In literature one can find also several other names for this property,
such as, e.g., Lipschitz lower semicontinuity [17] or recession with linear rate [15].

Apart from the notions of directional metric subregularity, calmness and inner calmness
we will make use also of inner semicompactness and semicontinuity.

Recall that S is inner semicompact at ȳ w.r.t. � ⊂ R
m if for every sequence yk

�→ ȳ there
exists a subsequence K of N and a convergent sequence (xk)k∈K with xk ∈ S(yk) for k ∈ K .
Given x̄ ∈ S(ȳ), we say that S is inner semicontinuous at (ȳ, x̄) w.r.t. � ⊂ R

m if for every

sequence yk
�→ ȳ there exists a subsequence K of N and a sequence (xk)k∈K with xk → x̄

and xk ∈ S(yk) for k ∈ K . If � = R
m, we speak only about inner semicompactness at ȳ

and inner semicontinuity at (ȳ, x̄). For more details we refer to [20].
The directional versions of inner semicompactness and semicontinuity are obtained by

restricting our attention to yk converging to ȳ from some direction v. We point out here that
in [19, Definition 4.4] the authors defined the directional versions of inner semicompactness
and semicontinuity in such a way that it allows them to find a suitable direction h, i.e., they
control the rate of convergence xk → x̄ by requiring the difference quotients (xk − x̄)/tk
either to be bounded or to converge to some prescribed h. We believe, however, that it
is not very suitable to call such properties semicompactness and semicontinuity, as those
requirements are clearly much stronger and they are not implied by their non-directional
counterparts, as also the authors admit.

Clearly, inner calmness implies both inner semicontinuity and semicompactness.
Interestingly, in [11, Theorem 8] Gfrerer and Outrata also investigated the estimate from

definition of inner calmness and established some sufficient conditions to ensure both,
calmness and inner calmness, of a class of solution maps.

Note that in case of a single-valued mapping ϕ : Rm → R
n, calmness and inner calmness

coincide and they read as

‖ϕ(y) − ϕ(ȳ)‖ ≤ κ‖y − ȳ‖ ∀ y ∈ V . (5)

Further, ϕ is called Lipschitz continuous near ȳ in direction v if the inequality

‖ϕ(y) − ϕ(y′)‖ ≤ κ‖y − y′‖ ∀ y, y′ ∈ ȳ + V
is fulfilled with V being a directional neighborhood of v. Note that Lipschitz continuity of ϕ

near ȳ in direction v actually implies Lipschitz continuity of ϕ near every point y ∈ ȳ + V ,
y �= ȳ.

In construction of the directional limiting calculus one is confronted with the following
issue. Given a mapping S : Rm ⇒ R

n, a point ȳ ∈ R
m, a direction v ∈ R

m and a sequence
yk → ȳ from v (i.e. yk = ȳ + tkvk for some (tk) ↓ 0, vk → v), we would like to identify
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not only a point x̄ ∈ S(ȳ) with xk → x̄ for some xk ∈ S(yk), but also a direction h ∈ R
n

such that xk = x̄ + tkhk for some hk → h.
The task of finding an appropriate direction h is related to the following sets. Given

sequences (ak) ∈ R
n and (tk) ↓ 0, we set

�(ak, tk) := {ω ∈ R
n | ∃ a subsequenceK of N : ak/tk → ω when k ∈ K}, (6)

�∞(ak, tk) := {ω ∈ S | tk/‖ak‖ → 0, ∃ a subsequence K of N : ak/‖ak‖ → ω when k ∈ K}. (7)

Note that exactly one of these sets is not empty, since �(ak, tk) = ∅ is equivalent to
tk/‖ak‖ → 0. In the situation considered above sequences ak appear in form ak ∈
S(ȳ + tkvk) − S(ȳ). Thus, if �(ak, tk) �= ∅, one can clearly take a suitable direction
h ∈ �(ak, tk), while in the other case one can still proceed with h ∈ �∞(ak, tk) to obtain
different (but rather rough) estimates. Notation (6), (7) will be extensively used throughout
the whole sequel.

Moreover, it is easy to see that inner calmness can be characterized in the following way.

Lemma 2.2 A set-valued mapping S : Rm ⇒ R
n is inner calm at (ȳ, x̄) ∈ gph S w.r.t. �

in direction v if and only if for every (tk) ↓ 0, vk → v with ȳ + tkvk ∈ � there exist a
subsequence K of N and a sequence (xk)k∈K with xk ∈ S(ȳ + tkvk) for k ∈ K such that
�(xk − x̄, tk) �= ∅.

We conclude this preparatory section with a mention concerning qualification conditions
used in the calculus being developed. Analogously to [16], our main qualification condition
will be the directional metric subregularity of the so-called feasibility mapping associated
with the considered calculus rule. This mapping has typically the form F(x) = � − ϕ(x),
where � is a closed subset of Rm and ϕ : Rn → R

m is a continuous mapping. A tool for
verifying directional metric subregularity of such mappings for continuously differentiable
ϕ was recently established by Gfrerer and Klatte [10, Corollary 1] and we slightly extend
this result here by allowing functions ϕ to be just calm in the prescribed direction.

Proposition 2.2 Let multifunction F : Rn ⇒ R
m be given by F(x) = � − ϕ(x), where

ϕ : R
n → R

m is continuous and � ⊂ R
m is a closed set. Further let (x̄, 0) ∈ gphF

and u ∈ R
n be given and assume that ϕ is calm at x̄ in direction u. Then F is metrically

subregular at (x̄, 0) in direction u provided for all w ∈ Dϕ(x̄)(u) ∩ T�(ϕ(x̄)) one has the
implication

0 ∈ D∗ϕ(x̄; (u,w))(λ), λ ∈ N�(ϕ(x̄); w) =⇒ λ = 0.

The proof is based on the sum rule for coderivatives of multifunctions and will be
presented among other applications in Section 6.

3 Calculus for Directional Limiting Normal Cones

Let C ⊂ R
n be a closed set and x̄ ∈ C. If x̄ ∈ C \ bd C then NC(x̄; h) = {0} for every

h ∈ R
n. Since NC(x̄; h) = ∅ for h /∈ TC(x̄) and NC(x̄;h) = {0} for h ∈ TC(x̄) \ Tbd C(x̄),

it follows that for every set of directions A ⊂ R
n it holds that

⋃

h∈A

NC(x̄; h) =
⋃

h∈A∩TC(x̄)

NC(x̄; h) =
⋃

h∈A∩Tbd C(x̄)

NC(x̄; h). (8)
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This observation allows us to consider only the indispensable directions in our estimates, as
one can see in Theorems 3.1 and 3.2.

Theorem 3.1 (Pre-image sets) Let Q ⊂ R
m be closed, consider a continuous function

ϕ : R
n → R

m and set C := ϕ−1(Q). Assume further that the set-valued mapping F :
R

n ⇒ R
m given by F(x) = Q − ϕ(x) is metrically subregular at (x̄, 0) in some direction

h ∈ R
n. Then

NC(x̄; h) ⊂
( ⋃

v∈Dϕ(x̄)(h)
∩TQ(ϕ(x̄))

D∗ϕ(x̄; (h, v))NQ(ϕ(x̄); v)
)

∪
( ⋃

v∈Dϕ(x̄)(0)∩S
∩TQ(ϕ(x̄))

D∗ϕ(x̄; (0, v))NQ(ϕ(x̄); v)
)

.

Moreover, if ϕ is calm at x̄ in direction h we obtain a better estimate

NC(x̄;h) ⊂
⋃

v∈Dϕ(x̄)(h)
∩TQ(ϕ(x̄))

D∗ϕ(x̄; (h, v))NQ(ϕ(x̄); v).

Proof Let x∗ ∈ NC(x̄; h) and consider (tk) ↓ 0, hk → h, x∗
k → x∗ with xk := x̄ +

tkhk ∈ C and x∗
k ∈ N̂C(xk). Since x∗

k ∈ N̂C(xk), for a fixed k and for every ε > 0
there exists a real rε > 0 such that 〈x∗

k , x − xk〉 ≤ ε‖x − xk‖ for all x ∈ C ∩ Brε (xk).
Subregularity assumption yields existence of directional neighborhood U of h and κ > 0
such that dC(x) ≤ κdQ(ϕ(x)) holds for all x ∈ x̄ +U and for given sufficiently large k and
given ε we choose rε such that Brε/2(xk) ⊂ x̄ + U .

Next we claim that for all x ∈ Brε/2(xk) it holds that

ε‖x − xk‖ − 〈x∗
k , x − xk〉 + (‖x∗

k ‖ + ε)κdQ(ϕ(x)) ≥ 0.

Indeed, for x ∈ Brε/2(xk) we have ‖x − xk‖ ≤ rε/2 and hence there exists x̃ ∈ C ∩Brε (xk)

with ‖x − x̃‖ = dC(x). Thus,

〈x∗
k , x−xk〉−ε‖x−xk‖ ≤ (‖x∗

k ‖+ε)dC(x)+〈x∗
k , x̃−xk〉−ε‖x̃−xk‖ ≤ (‖x∗

k ‖+ε)κdQ(ϕ(x)),

showing the claimed inequality.
Now we consider εk ↓ 0 and conclude that (xk, ϕ(xk), ϕ(xk)) is a local solution of the

problem

min f (x, y, q) := εk‖x−xk‖−〈x∗
k , x−xk〉+(‖x∗

k ‖+εk)κ‖y−q‖ s.t. (x, y, q) ∈ gph ϕ×Q.
(9)

The fuzzy optimality conditions for problem (9), cf. [3, Theorem 2.7], [20, Lemma 2.32],
state that to every ηk > 0 there exist triples (xi,k, yi,k, qi,k) ∈ (xk, ϕ(xk), ϕ(xk))+ηkB, i =
1, 2,with |f (x1,k, y1,k, q1,k)−f (xk, ϕ(xk), ϕ(xk))| ≤ ηk and (x2,k, y2,k, q2,k) ∈ gph ϕ×Q

such that
[

x∗
k − εkξk

−(‖x∗
k ‖ + εk)κνk

]
∈ N̂gph ϕ(x2,k, y2,k) + ηkB, (10)

(‖x∗
k ‖ + εk)κνk ∈ N̂Q(q2,k) + ηkB (11)

for some ξk, νk ∈ B. We take ηk := t2
k ↓ 0 and consider the limiting process for k → ∞.

Since (‖x∗
k ‖ + εk)κνk is a bounded sequence, by passing to a subsequence we can assume

that (‖x∗
k ‖ + εk)κνk converges to some z̄.
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Denoting ak := ϕ(x̄ + tkhk) − ϕ(x̄), we define direction v to be an element of either
�(ak, tk) or �∞(ak, tk), see (6)-(7). Let us first consider the case v ∈ �(ak, tk) and assume
ak/tk → v. We show that z̄ ∈ NQ(ϕ(x̄); v) and x∗ ∈ D∗ϕ(x̄; (h, v))(z̄). By virtue of (11)
there is a sequence of vectors zk ∈ N̂Q(q2,k) such that

(‖x∗
k ‖ + εk)κνk ∈ zk + ηkB.

Since ηk → 0, we obtain zk → z̄. Taking into account that, by virtue of the fuzzy optimality
conditions,

‖q2,k − ϕ(xk)‖ ≤ ηk = t2
k ,

we obtain

‖(q2,k −ϕ(x̄))/tk −v‖ ≤ ‖(q2,k −ϕ(xk))/tk‖+‖(ϕ(x̄ + tkhk)−ϕ(x̄))/tk −v‖ → 0. (12)

Since ϕ(x̄)+ tk(q2,k −ϕ(x̄))/tk = q2,k ∈ Q, the claimed relation z̄ ∈ NQ(ϕ(x̄); v) follows.
In order to show the second claim, we observe that x∗

k − εkξk → x∗ and exploit in the

same way as above relation (10) to show the existence of (wk, −uk) ∈ N̂gph ϕ(x2,k, y2,k)

with (wk, −uk) → (x∗,−z̄). Again, one has that

‖y2,k − ϕ(xk)‖ ≤ ηk = t2
k

and hence relation (12) holds with q2,k replaced by y2,k . It follows that (y2,k−ϕ(x̄))/tk → v

and similarly we conclude also (x2,k − x̄)/tk → h. Thus, again, since ((x̄, ϕ(x̄)) +
tk(x2,k − x̄)/tk, (y2,k − ϕ(x̄))/tk) = (x2,k, y2,k) ∈ gph ϕ, we obtain (x∗, −z̄) ∈
Ngph ϕ(x̄, ϕ(x̄); (h, v)) and hence x∗ ∈ D∗ϕ(x̄; (h, v))(z̄) with z̄ ∈ NQ(ϕ(x̄); v).

Finally, we consider the case v ∈ �∞(ak, tk), assume ak/‖ak‖ → v and show that
z̄ ∈ NQ(ϕ(x̄); v) and x∗ ∈ D∗ϕ(x̄; (0, v))(z̄). Note that in this case we have v ∈ S and
tk/‖ak‖ → 0 implying tk < ‖ak‖ for sufficiently large k. Hence, we proceed as in the
previous case with tk replaced by ‖ak‖ and obtain the same result, the only difference being
(x2,k − x̄)/‖ak‖ → 0, showing the claimed relations. Observation (8) now completes the
proof of the first statement.

The calmness assumption yields boundedness of (ϕ(x̄ + tkhk) − ϕ(x̄))/tk and hence we
always have v ∈ �(ak, tk) �= ∅ and thus we only need to consider the first case. The proof
is complete.

Let us illustrate Theorem 3.1 via the following simple example.

Example 3.1 Consider set Q := R+ and function ϕ : R2 → R given by

ϕ(x) :=
{√

x1 + x2 for x1 ≥ 0
x2 otherwise.

Note that C := ϕ−1(Q) = (R− ×R+)∪{(x1, x2) | x1 ≥ 0, x2 ≥ −√
x1} and let x̄ := (0, 0).

An easy computation yields that

NC(x̄) = NC(x̄; (−1, 0)) ∪ NC(x̄; (0,−1)) = ({0} × R−) ∪ (R− × {0}).
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Let us take a look what estimates we obtain using Theorem 3.1. Directly from the
definition we conclude that Q − ϕ(x) is metrically subregular at (x̄, 0). Note that

Tgph ϕ(x̄, ϕ(x̄)) = {(a, b, b) | a < 0} ∪ {(0, b, c) | b ≤ c}
and TQ(ϕ(x̄)) = Q = R+. For the computation of the directional limiting normal cone to
gph ϕ, consider arbitrary a < 0, b ∈ R and c > b. We have to distinguish three cases:

Ngph ϕ((x̄, ϕ(x̄)); (a, b, b)) = R(0, 1, −1), Ngph ϕ((x̄, ϕ(x̄)); (0, b, c)) = R(1, 0, 0)

and Ngph ϕ((x̄, ϕ(x̄)); (0, b, b)) = Ngph ϕ(x̄, ϕ(x̄)) = R(0, 1, −1) ∪ R(1, 0, 0) ∪ (R+ × R+(1, −1)).

Consider now particular direction h̃ := (0,−1). We have Dϕ(x̄)(h̃) ∩ TQ(ϕ(x̄)) = R+,
NQ(ϕ(x̄); μ) = {0} and D∗ϕ(x̄; (h̃, μ))(0) = R(1, 0) for μ > 0 while NQ(ϕ(x̄); 0) = R−
and D∗ϕ(x̄; (h̃, 0))R− = R(1, 0). Moreover, ϕ is not calm at x̄ in direction h̃ and we thus
proceed with the computation of Dϕ(x̄)(0, 0)∩S = R+ ∩S = {1}, NQ(ϕ(x̄); 1) = {0} and
D∗ϕ(x̄; (0, 0, 1))(0) = R(1, 0). Consequently, we obtain

R− × {0} = NC(x̄; h̃)

⊂
⋃

μ∈R+
D∗ϕ(x̄; (h̃, μ))NQ(ϕ(x̄); μ) ∪ D∗ϕ(x̄; (0, 0, 1))NQ(ϕ(x̄); 1) = R(1, 0).

Note that this shows that the both terms in Theorem 3.1 may be simultaneously nonempty.
Using similar arguments, it is not difficult to prove that, in fact, for every direction 0 �=

h̃ = (h̃1, h̃2) ∈ R+ × R, ϕ fails to be calm at x̄ in h̃ and Theorem 3.1 yields the estimate
NC(x̄; h̃) ⊂ R(1, 0). In particular, if h̃1 = 0, the both terms of the estimate are nonempty
and coincide, whereas if h̃1 > 0, the first union in Theorem 3.1 is taken over the empty set,
demonstrating the need of the second term, since NC(x̄; h̃) = {(0, 0)} �= ∅.

On the other hand, for directions ĥ = (ĥ1, ĥ2) ∈ (−∞, 0) × R, Theorem 3.1 actually
provides exact estimates, namely NC(x̄; ĥ) is subset of either ∅ if ĥ2 < 0, or {0} × R− if
ĥ2 = 0, or {(0, 0)} for ĥ2 > 0.

Finally, for h = (0, 0) we obtain NC(x̄; (0, 0)) = NC(x̄) ⊂ ({0} × R−) ∪ R(1, 0). �

Corollary 3.1 Let Ci ⊂ R
n, i = 1, . . . , l, be closed and set C = ∩l

i=1Ci . Assume further

that the set-valued mapping F : Rn ⇒ R
nl given by F(x) = ∏l

i=1(Ci − x) is metrically
subregular at (x̄, (0, . . . , 0)) in some direction h ∈ R

n. Then

NC(x̄; h) ⊂
l∑

i=1

NCi
(x̄; h).

Proof Note that C = ϕ−1(Q) for ϕ : Rn → R
nl given by ϕ(x) := (x, . . . , x)(l copies)

and Q := ∏l
i=1 Ci . Hence, the statement follows from Proposition 2.1, Theorem 3.1 and

Remark 2.1.

Taking into account Proposition 2.2, as well as Remark 2.1 and Proposition 2.1, the
assumption of metric subregularity of F is implied by the condition

∑l
i=1λi = 0, λi ∈ NCi

(x̄; h) =⇒ λi = 0. (13)

Corollary 3.2 (Sets with constraint structure) Let P ⊂ R
n andQ ⊂ R

m be closed, consider
a continuous function ϕ : Rn → R

m and set C := {x ∈ P | ϕ(x) ∈ Q}. Assume further
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that the set-valued mapping F : Rn ⇒ R
n × R

m given by F(x) = P × Q − (x, ϕ(x)) is
metrically subregular at (x̄, 0, 0) in some direction h ∈ R

n. Then

NC(x̄; h) ⊂
( ⋃

v∈Dϕ(x̄)(h)
∩TQ(ϕ(x̄))

D∗ϕ(x̄; (h, v))NQ(ϕ(x̄); v) + NP (x̄;h)
)

∪
( ⋃

v∈Dϕ(x̄)(0)∩S
∩TQ(ϕ(x̄))

D∗ϕ(x̄; (0, v))NQ(ϕ(x̄); v) + NP (x̄; 0)
)

.

Moreover, if ϕ is calm at x̄ in direction h we obtain

NC(x̄; h) ⊂
⋃

v∈Dϕ(x̄)(h)
∩TQ(ϕ(x̄))

D∗ϕ(x̄; (h, v))NQ(ϕ(x̄); v) + NP (x̄; h).

Proof It is sufficient to apply Theorem 3.1 to the set C̃ = �−1(Q̃) at x̄ with �(x) :=
(x, ϕ(x)) and Q̃ = P × Q and observe that T

Q̃
(x̄, ϕ(x̄)) ⊂ TP (x̄) × TQ(ϕ(x̄)) ([22,

Proposition 6.41]).

Assuming the calmness of ϕ at x̄ in direction h, Proposition 2.2 yields that the condition

λ1 ∈ −D∗ϕ(x̄; (h, v))(λ2) ∩ NP (x̄; h), λ2 ∈ NQ(ϕ(x̄); v) =⇒ λ1, λ2 = 0,

fulfilled for all v ∈ Dϕ(x̄)(h) ∩ TQ(ϕ(x̄)), implies the required metric subregularity of F .

Theorem 3.2 (Image sets) Consider a closed set C ⊂ R
n and a continuous mapping ϕ :

R
n → R

l , set Q = ϕ(C) and consider ȳ ∈ Q and a direction v ∈ R
l . Let � : Rl ⇒ R

n

be given by �(y) := ϕ−1(y) ∩ C. Assume that ϕ : Rn → R
l is Lipschitz continuous near

every x̄ ∈ �(ȳ) in all directions h ∈ D�(ȳ, x̄)(v) and h ∈ D�(ȳ, x̄)(0) ∩ S. If � is inner
semicompact at ȳ w.r.t. Q in direction v, then

NQ(ȳ; v) ⊂
⋃

x̄∈�(ȳ)

(( ⋃

h∈{ξ | v∈Dϕ(x̄)(ξ)}
∩TC(x̄)

{y∗ | D∗ϕ(x̄; (h, v))(y∗) ∩ NC(x̄;h) �= ∅}
)

(14)

∪
( ⋃

h∈{ξ∈S | 0∈Dϕ(x̄)(ξ)}
∩TC (x̄)

{y∗ | D∗ϕ(x̄; (h, 0))(y∗) ∩ NC(x̄; h) �= ∅}
))

.

Moreover, if there exists x̄ ∈ �(ȳ) such that � is inner semicontinuous at (ȳ, x̄) w.r.t. Q in
direction v, then estimate (14) holds with this x̄, i.e., the union over x̄ ∈ �(ȳ) is superfluous.
Finally, if there exists x̄ ∈ �(ȳ) such that � is inner calm at (ȳ, x̄) w.r.t. Q in direction v,
then (14) reduces to

NQ(ȳ; v) ⊂
⋃

h∈{ξ | v∈Dϕ(x̄)(ξ)}
∩TC (x̄)

{y∗ | D∗ϕ(x̄; (h, v))(y∗) ∩ NC(x̄; h) �= ∅}.

Proof Let y∗ ∈ NQ(ȳ; v) and consider (tk) ↓ 0, vk → v, y∗
k → y∗ with xk ∈ �(ȳ + tkvk)

and y∗
k ∈ N̂Q(ϕ(xk)). Under the inner semicompactness of � we can take xk ∈ �(ȳ + tkvk)

converging to some x̄ ∈ �(ȳ), taking also into account continuity of ϕ and closedness
of C. On the other hand, if we assume the existence of x̄ ∈ �(ȳ) such that � is inner
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semicontinuous at (ȳ, x̄) w.r.t. Q in direction v, we can directly take xk ∈ �(ȳ + tkvk) with
xk → x̄.

Now y∗
k ∈ N̂Q(ϕ(xk)) yields 〈y∗

k , y − ϕ(xk)〉 ≤ o(‖y − ϕ(xk)‖) for all y ∈ Q. Thus,
taking into account 〈0, x − xk〉 = 0 for all x and ‖y − ϕ(xk)‖ ≤ ‖(y, x) − (ϕ(xk), xk)‖, we
obtain

〈(y∗
k , 0), (y, x) − (ϕ(xk), xk)〉 ≤ o(‖(y, x) − (ϕ(xk), xk)‖)

for all (y, x) ∈ gph �, showing (y∗
k , 0) ∈ N̂gph �(ϕ(xk), xk).

Denoting ak := xk − x̄, we define direction h to be an element of either �(ak, tk) or
�∞(ak, tk), see (6)-(7), and hence, taking also into account observation (8), we obtain

(y∗, 0) ∈
( ⋃

h∈D�(ȳ,x̄)(v)

Ngph �((ȳ, x̄); (v, h))
)

∪
( ⋃

h∈D�(ȳ,x̄)(0)∩S
Ngph �((ȳ, x̄); (0, h))

)
.

(15)
Note also that if � is inner calm at (ȳ, x̄) w.r.t. Q in direction v, it is also inner semicontin-
uous at (ȳ, x̄) w.r.t. Q in direction v and there exists xk ∈ �(ȳ + tkvk) such that (xk − x̄)/tk
is bounded. Hence we always have h ∈ �(ak, tk) and the second term in estimate (15) is
superfluous.

Finally, gph � = gph ϕ−1 ∩(Rl ×C) and we can use Corollary 3.1. We consider only the
case (y∗, 0) ∈ ⋃h∈D�(ȳ,x̄)(v) Ngph �((ȳ, x̄); (v, h)), because the other case is analogous.
Note that condition (13) is fulfilled, because if −(λ1, λ2) ∈ NRl×C((ȳ, x̄); (v, h)) we have
λ1 = 0 and (0, λ2) ∈ Ngph ϕ−1((ȳ, x̄); (v, h)) means λ2 ∈ D∗ϕ(x̄; (h, v))(0), which implies
λ2 = 0 due to assumed Lipschitz continuity of ϕ near x̄ in direction v. Hence, taking
into account Proposition 2.1, we obtain the existence of h ∈ D�(ȳ, x̄)(v), (w∗, z∗) ∈
Ngph ϕ((x̄, ȳ); (h, v)) and x∗ ∈ NC(x̄;h) such that (y∗, 0) = (z∗, w∗) + (0, x∗), i.e., x∗ ∈
D∗ϕ(x̄; (h, v))(y∗) ∩ NC(x̄; h). This, together with (8), completes the proof.

Remark 3.1 Note that the directional Lipschitz continuity of ϕ is only needed to justify the
usage of Corollary 3.1. Thus, it can be weakened by assuming that for every x̄ ∈ �(ȳ) and
all directions h ∈ D�(ȳ, x̄)(v) and h ∈ D�(ȳ, x̄)(0) ∩ S, the mapping

(y, x) ⇒ (gph ϕ−1 − (y, x)) × (Rl × C − (y, x))

is metrically subregular at ((ȳ, x̄), (0, 0, 0, 0)) in directions (v, h) and (0, h).
Moreover, the inner semicompactness of � at ȳ w.r.t. Q in direction v is clearly implied

by the assumption that �((ȳ + V) ∩ Q) = ϕ−1((ȳ + V) ∩ Q) ∩ C is bounded for some
directional neighborhood V of v. An analogous assumption was used in the standard version
of this result in [22, Theorem 6.43].

Proposition 3.1 Let Ci ⊂ R
n, i = 1, . . . , l, be closed and set C = ∪l

i=1Ci . For x̄ ∈ C and
h ∈ R

n denote I (x̄) := {i = 1, . . . , l | x̄ ∈ Ci} and I (x̄, h) := {i ∈ I (x̄) | h ∈ TCi
(x̄)}.

Then

NC(x̄; h) ⊂
⋃

i∈I (x̄,h)

NCi
(x̄; h). (16)

Proof Let x∗ ∈ NC(x̄;h) and consider (tk) ↓ 0, hk → h, x∗
k → x∗ with x̄ + tkhk ∈ C

and x∗
k ∈ N̂C(x̄ + tkhk). Then there exists i such that x̄ + tkhk ∈ Ci for infinitely many

k, showing i ∈ I (x̄, h). Since Ci ⊂ C, by passing to subsequence if necessary, we obtain
x∗
k ∈ N̂Ci

(x̄ + tkhk), showing x∗ ∈ NCi
(x̄; h).
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4 Calculus for Directional Limiting Subdifferentials

In this section we carry over the results for normal cones from the previous section to
directional limiting subdifferentials defined via normals to the epigraph by (2). However,
we start by a brief discussion about the relations between the analytic directional limiting
subdifferential and the one given by (2).

Consider the following simple example.

Example 4.1 Let x̄ = 0, h = 1 and f : R → R be given by

f (x) =
⎧
⎨

⎩

0 if x ≤ 0,

1/
√

k if x ∈ (1/(k + 1), 1/k] for k ∈ N,

1 if x > 1.

Then clearly f (x) ≥ √
x for x ∈ [0, 1] implying Df (x̄)(h) = ∅ and thus ∂f (x̄; (h, ν)) = ∅

for all ν. On the other hand, 0 ∈ ∂̂f (1/k) for all k ∈ N and thus 0 ∈ ∂af (x̄; h). �

In order to better understand the difference between the two concepts of directional sub-
differentials, given an lsc function f : Rn → R̄, x̄ ∈ dom f and a direction h ∈ R

n, we
consider the following sets

Nepi f ((x̄, f (x̄)); (h,±∞)) :={(x∗, β) | ∃(tk)↓0, (hk, νk)→(h, ±∞), (x∗
k , βk)→(x∗, β) :

tkνk → 0, (x∗
k , βk) ∈ N̂epi f ((x̄, f (x̄)) + tk(hk, νk))}.

Proposition 4.1 Let f : Rn → R̄ be finite at x̄ and lsc and consider h ∈ R
n. One has

∂af (x̄; h)=
{
x∗ | (x∗, −1) ∈

⋃

ν∈Df (x̄)(h)

Nepi f ((x̄, f (x̄)); (h, ν))∪Nepi f ((x̄, f (x̄)); (h, ±∞))
}

.

Proof Let x∗ ∈ ∂af (x̄; h) and consider (tk) ↓ 0, hk → h, x∗
k → x∗ with f (x̄ + tkhk) →

f (x̄) and x∗
k ∈ ∂̂f (x̄ + tkhk), or, equivalently

(x∗
k ,−1) ∈ N̂epi f (x̄ + tkhk, f (x̄ + tkhk)) = N̂epi f ((x̄, f (x̄)) + tk(hk, νk))

for νk := (f (x̄ + tkhk) − f (x̄))/tk). Now if νk → ±∞, we immediately conclude
(x∗, −1) ∈ Nepi f ((x̄, f (x̄)); (h,±∞)). On the other hand, if νk � ±∞, there exists ν

such that, after passing to a subsequence if necessary, we have νk → ν. Thus, we con-
clude (x∗,−1) ∈ Nepi f ((x̄, f (x̄)); (h, ν)) and, taking into account (x̄, f (x̄))+ tk(hk, νk) ∈
gph f , we obtain ν ∈ Df (x̄)(h).

Now take x∗ fulfilling (x∗, −1) ∈ Nepi f ((x̄, f (x̄)); (h, ν)) for some ν ∈ Df (x̄)(h) or
ν = ±∞ and consider (tk) ↓ 0, (hk, νk) → (h, ν), (x∗

k , βk) → (x∗,−1) with (x̄, f (x̄)) +
tk(hk, νk) ∈ epi f and (x∗

k , βk) ∈ N̂epi f ((x̄, f (x̄)) + tk(hk, νk)). Since f (x̄) + tkνk >

f (x̄ + tkhk) implies βk = 0, we assume that f (x̄) + tkνk = f (x̄ + tkhk) and thus obtain
−x∗

k /βk ∈ ∂̂f (x̄+ tkhk) and consequently x∗ ∈ ∂af (x̄; h). Moreover, f (x̄+ tkhk) → f (x̄)

follows directly from definition for ν = ±∞ and for ν ∈ Df (x̄)(h) it holds due to lsc of f

and (x̄, f (x̄)) + tk(hk, νk) ∈ epi f . This completes the proof.

Note that one always has

Nepi f ((x̄, f (x̄)); (h,±∞)) ⊂ Nepi f ((x̄, f (x̄)); (0,±1)) (17)
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and this is due to the fact that for f (xk) − f (x̄) and tk from definition of
Nepi f ((x̄, f (x̄)); (h,±∞)) we have �∞(f (xk) − f (x̄), tk) = ±1. Moreover, if f

is calm at x̄ in direction h, the sequence (f (xk) − f (x̄))/tk is bounded and thus
Nepi f ((x̄, f (x̄)); (h,±∞)) = ∅.

Note also that the calmness of an extended real-valued function is always understood
with respect to its domain and hence does not exclude e.g. the indicator function of a set.
Moreover, for our purposes, we in fact only need the existence of ε, κ > 0 and a directional
neighborhood U of h such that

|f (x) − f (x̄)| ≤ κ‖x − x̄‖ ∀x ∈ x̄ + U with |f (x) − f (x̄)| ≤ ε, (18)

suggesting that discontinuities of f also do not cause any harm. However, in order to keep
the presentation as simple as possible, in the sequel we will only consider the calmness.

Corollary 4.1 Let f : Rn → R̄ be finite at x̄ and consider h ∈ R
n. Assume further that f

is calm at x̄ in direction h. Then one has

∂af (x̄; h)=
⋃

ν∈Df (x̄)(h)

∂f (x̄; (h, ν))=
{
x∗ | (x∗,−1) ∈

⋃

ν∈Df (x̄)(h)

Nepi f ((x̄, f (x̄));(h, ν))
}

.

If f is also directionally differentiable at x̄ in h, then Df (x̄)(h) = f ′(x̄; h) and
∂af (x̄; h) = ∂f (x̄; (h, f ′(x̄; h))).

This corollary shows that the results for directional limiting subdifferentials obtained
later in this section can be easily carried over to analytic directional limiting subdifferentials
whenever the considered function f is directionally calm. In the case when f fails to be
calm, one can get the results for analytic directional subdifferentials using the estimate

∂af (x̄; h) ⊂
⋃

ν∈Df (x̄)(h)

∂f (x̄; (h, ν)) ∪ ∂f (x̄; (0,−1)) ∪ ∂f (x̄; (0, 1)),

which follows from (17).
Another possible approach to calculus for directional limiting normal cones and subdif-

ferentials would be to start with subdifferentials, build first the calculus for subdifferentials
from the scratch and then carry it over to normal cones. The role of the bridge between the
two concepts could be played by equivalent characterization of directional normal cones via
directional subdifferentials of the indicator function or the distance function. For the sake
of completeness, we present these results now.

Given a closed set C, we consider a point x̄ ∈ C and a direction h ∈ TC(x̄). Clearly, δC(·)
and dC(·) are calm and directionally differentiable at x̄ in h with δ′

C(x̄; h) = d′
C(x̄; h) =

0. Thus, taking into account Corollary 4.1, we can restrict our attention to the analytic
subdifferentials.

While the relation NC(x̄, h) = ∂aδC(x̄; h) follows directly from definitions, in order to
deal with the distance function we need to consider the following lemma.

Lemma 4.1 For C, x̄ and h as above it holds that

∂adC(x̄; h) = {x∗ | ∃(tk) ↓ 0, hk → h, x∗
k → x∗ : x̄ + tkhk ∈ C, x∗

k ∈ ∂̂dC(x̄ + tkhk)}.
(19)

Proof Inclusion ⊃ follows directly from definition. Now take x∗ ∈ ∂adC(x̄; h) and consider
(tk) ↓ 0, h̃k → h, x∗

k → x∗ with x∗
k ∈ ∂̂dC(x̄ + tkh̃k). From [22, Example 8.53] we obtain
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∂̂dC(x̄ + tkh̃k) ⊂ N̂C(xk) ∩ B = ∂̂dC(xk) for every xk ∈ PC(x̄ + tkh̃k). Taking some
xk ∈ PC(x̄ + tkh̃k) and setting hk := (xk − x̄)/tk we obtain x̄ + tkhk = xk ∈ C. Moreover,
since h ∈ TC(x̄) we conclude

tk‖hk − h̃k‖ = dC(x̄ + tkh̃k) ≤ dC(x̄ + tkh) + tk‖h̃k − h‖ = o(tk),

showing hk → h and finishing the proof.

Corollary 4.2 Let C ⊂ R
n be a closed set, x̄ ∈ C and h ∈ TC(x̄). Then

NC(x̄; h) =
⋃

α>0

α∂adC(x̄; h).

Proof Taking into account (19), the claim follows from [20, Corollary 1.96].

In [16], Ioffe and Outrata used subdifferentials of the distance function as the start-
ing point for deriving the qualification conditions required for calculus rules. The previous
lemma allows us to state a directional counterpart to their basic tool, [16, Proposition 3.1].

Corollary 4.3 Given C, x̄ and h as in the previous corollary, if f : R
n → R̄ is an lsc

function fulfilling f (x) = 0, ∀x ∈ C and f (x) ≥ dC(x),∀x ∈ R
n, then ∂adC(x̄; h) ⊂

∂af (x̄; h).

Proof The assumptions on f imply ∂̂dC(x) ⊂ ∂̂f (x) for every x ∈ C. Hence in (19) we
obtain that x∗

k ∈ ∂̂f (x̄ + tkhk) and the claim follows.

Finally, given f and x̄ as before and a direction (h, ν) ∈ R
n+1, we introduce the singular

subdifferential of f at x̄ in direction (h, ν) as

∂∞f (x̄; (h, ν)) := {x∗ ∈ R
n | (x∗, 0) ∈ Nepi f ((x̄, f (x̄)); (h, ν))}.

This notion will be used in qualification conditions which mimic their counterparts from
the “standard” generalized differential calculus. As it will be shown in Corollary 5.4 below,
∂∞f (x̄; (h, ν)) ⊂ {0} if f is Lipschitz continuous near x̄ in direction h.

4.1 Chain rule and its corollaries

We start this subsection by an auxiliary result concerning separable functions, which plays
a role in deriving the sum rule from the chain rule. Note that, unlike the classical case [22,
Proposition 10.5], we need to impose some mild assumptions in order to obtain a reasonable
estimate.

Proposition 4.2 (Separable functions) Let Rn be decomposed as Rn = R
n1 × . . . × R

nl

and let x = (x1, . . . , xl) with xi ∈ R
ni . Let fi : Rni → R̄ be lsc for i = 1, . . . , l and let all

but one of fi be calm at x̄i in direction hi . Set f (x) = f1(x1) + . . . + fl(xl) and consider
x̄ = (x̄1, . . . , x̄l) ∈ dom f and some direction (h, ν) = (h1, . . . , hl, ν) ∈ R

n+1. Then

∂f (x̄; (h, ν)) ⊂
⋃

νi∈Dfi (x̄i )(hi )
ν1+...+νl=ν

(∂f1(x̄1; (h1, ν1)) × . . . × ∂fl(x̄l; (hl, νl))), (20)

∂∞f (x̄; (h, ν)) ⊂
⋃

νi∈Dfi (x̄i )(hi )
ν1+...+νl=ν

(∂∞f1(x̄1; (h1, ν1)) × . . . × ∂∞fl(x̄l; (hl, νl))). (21)
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The proof follows from Theorem 3.2, since with ϕ : R
n+l → R

n+1 given by
ϕ(x1, α1, . . . , xl, αl) := (x1, . . . , xl,

∑l
i=1 αi) we obtain epi f = ϕ(

∏l
i=1 epi fi). More-

over, it can be shown that

�(x1, . . . , xl, α) :=
{
(x1, α1, . . . , xl, αl) ∈∏l

i=1epi fi

∣∣∑l
i=1αi = α

}
(22)

is inner calm at ((x̄, f (x̄)), (x̄1, f1(x̄1), . . . , x̄l , fl(x̄l))) w.r.t. epi f in direction (h, ν), due
to the calmness of all but one of fi , even when the calmness is considered in the sense of
(18). For the sake of brevity, the technical details are skipped.

Remark 4.1 Clearly, the calmness of all but one fi is just a sufficient condition that can be
replaced by requiring the inner calmness of mapping (22). Moreover, one can also apply
Theorem 3.2 without these assumptions to obtain more complicated estimates.

We have also stated the result concerning singular subdifferentials (21), because we will
need it for deriving qualification conditions for the sum rule. Later on we will not write
down the results for singular subdifferentials although usually the proofs will be applicable
to this case as well.

Theorem 4.1 (Directional subdifferentials chain rule) Let ϕ : Rn → R
m be continuous,

g : Rm → R̄ be finite at ϕ(x̄) and lsc and set f = g ◦ ϕ. Given a direction (h, ν) ∈ R
n+1,

assume further that the set-valued mapping F : Rn+1 ⇒ R
m+1 given by F(x, α) = epi g −

(ϕ(x), α) is metrically subregular at ((x̄, f (x̄)), (0, 0)) in direction (h, ν). Then

∂f (x̄; (h, ν)) ⊂
( ⋃

v∈{w∈Dϕ(x̄)(h) |
ν∈Dg(ϕ(x̄))(w)}

D∗ϕ(x̄; (h, v))∂g(ϕ(x̄); (v, ν))
)

∪
( ⋃

v∈{w∈Dϕ(x̄)(0)∩S |
0∈Dg(ϕ(x̄))(w)}

D∗ϕ(x̄; (0, v))∂g(ϕ(x̄); (v, 0))
)

.

Moreover, if ϕ is calm at x̄ in direction h, then

∂f (x̄; (h, ν)) ⊂
⋃

v∈{w∈Dϕ(x̄)(h) |
ν∈Dg(ϕ(x̄))(w)}

D∗ϕ(x̄; (h, v))∂g(ϕ(x̄); (v, ν)).

Proof Take (x∗,−1) ∈ Nepi f ((x̄, f (x̄)); (h, ν)) and note that epi f = �−1(epi g)

for �(x, α) := (ϕ(x), α). Theorem 3.1 yields the existence of either (v, μ) ∈
D�(x̄, f (x̄))(h, ν), such that

(x∗,−1) ∈ D∗�((x̄, f (x̄)); ((h, ν), (v, μ)))Nepi g(�(x̄, f (x̄)); (v, μ))

or (ṽ, μ̃) ∈ D�(x̄, f (x̄))(0, 0) ∩ S with

(x∗,−1) ∈ D∗�((x̄, f (x̄)); ((0, 0), (ṽ, μ̃)))Nepi g(�(x̄, f (x̄)); (ṽ, μ̃)).

In the first case, there exists (y∗, β) ∈ Nepi g(�(x̄, f (x̄)); (v, μ)) with

(x∗, −1,−y∗,−β) ∈ Ngph �((x̄, f (x̄), ϕ(x̄), f (x̄)); (h, ν, v, μ)).

Since gph � = H(gph ϕ × gph Id) for bijective function H(x, y, a, b) = (x, a, y, b),
applying Theorem 3.2 and Proposition 2.1 we obtain (x∗,−y∗) ∈ Ngph ϕ((x̄, ϕ(x̄)); (h, v))

and (−1,−β) ∈ Ngph Id((f (x̄), f (x̄)); (ν, μ)). Note that the former relation also implies
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v ∈ Dϕ(x̄)(h) and the latter yields β = −1 and μ = ν. Consequently y∗ ∈ ∂g(ϕ(x̄); (v, ν))

and ν ∈ Dg(ϕ(x̄))(v).
On the other hand, in the case (ṽ, μ̃) ∈ D�(x̄, f (x̄))(0, 0) ∩ S we can proceed anal-

ogously with replacing (h, ν) by (0, 0) to obtain x∗ ∈ D∗ϕ(x̄; (0, ṽ))∂g(ϕ(x̄); (ṽ, 0)),
ṽ ∈ Dϕ(x̄)(0), 0 ∈ Dg(ϕ(x̄))(ṽ) and μ̃ = 0, showing also ṽ ∈ S.

Since the calmness of ϕ at x̄ in h is equivalent to the calmness of � at (x̄, f (x̄)) in direc-
tion (h, ν), we obtain only the first possibility and hence the appropriate simpler estimate.
This finishes the proof.

Taking into account Proposition 2.2 and the arguments from the proof and assuming the
calmness of ϕ at x̄ in direction h, the condition

0 ∈ D∗ϕ(x̄; (h, v))(λ), v ∈ Dϕ(x̄)(h), λ ∈ ∂∞g(ϕ(x̄); (v, ν)) =⇒ λ = 0

implies the required directional metric subregularity of F .
Next consider f : Rn × R

l → R̄, a point (x̄, ȳ) ∈ dom f and denote fx := f (·, ȳ).
Then, the partial subdifferential of f with respect to x at x̄ for ȳ in direction (h, ν) is given
as ∂xf ((x̄, ȳ); (h, ν)) := ∂fx(x̄; (h, ν)).

Corollary 4.4 Let f : Rn × R
l → R̄ be finite at (x̄, ȳ) and lsc. Given a direction (h, ν) ∈

R
n+1, assume further that the set-valued mapping F : Rn+1 ⇒ R

n+l+1 given by F(x, α) =
epi f − (x, ȳ, α) is metrically subregular at ((x̄, f (x̄, ȳ)), (0, 0, 0)) in (h, ν). Then

∂xf ((x̄, ȳ); (h, ν)) ⊂ {x∗ | ∃y∗ with(x∗, y∗) ∈ ∂f ((x̄, ȳ); (h, 0, ν))}.

Proof Since f (·, ȳ) = f ◦ ϕ with differentiable ϕ(x) = (x, ȳ), Theorem 4.1 yields the
statement.

From Proposition 2.2 we infer that the above imposed metric subregularity of F is
implied by the condition

(0, λ) ∈ ∂∞f ((x̄, ȳ); (h, 0, ν)) =⇒ λ = 0.

Corollary 4.5 (Directional subdifferential sum rule) Suppose f = f1 + . . .+fl , where fi :
R

n → R̄ are finite at x̄, lsc and all but one are calm at x̄ in direction h ∈ R
n. Assume further

that the set-valued mapping F : Rn+1 ⇒ R
nl+1 given by F(x, α) = epi g − (x, . . . , x, α)

with g : Rnl → R̄ defined via g(x1, . . . , xl) = f1(x1)+. . .+fl(xl), is metrically subregular
at ((x̄, f (x̄)), (0, . . . , 0, 0)) in direction (h, ν). Then

∂f (x̄; (h, ν)) ⊂ ∂f1(x̄; (h, ν)) + . . . + ∂fl(x̄; (h, ν)).

Proof Note that f = g ◦ ϕ for ϕ : Rn → R
nl given by ϕ(x) := (x, . . . , x). Now the proof

follows from Theorem 4.1, Proposition 4.2 and Remark 2.1.

Again, taking into account Propositions 2.2 and 4.2, the metric subregularity of F from
Corollary 4.5 is implied by the condition

∑l
i=1λi = 0, λi ∈ ∂∞fi(x̄, (h, ν)) =⇒ λi = 0. (23)

Inclusion (23) holds true in particular if all but one of fi are Lipschitz continuous near x̄ in
direction h.

Naturally, Remark 4.1 applies here as well.
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4.2 Directional limiting subdifferentials of special functions

We conclude this section with estimates for directional limiting subdifferentials of the point-
wise maximum and minimum of a finite family of functions, the distance function and the
value function.

Proposition 4.3 Suppose f = max{f1, . . . , fl} for functions fi : Rn → R̄ that are con-
tinuous at x̄. Given a direction (h, ν) ∈ R

n+1, assume further that the set-valued mapping
F : Rn+1 ⇒ R

l(n+1) given by F(x, α) =∏l
i=1(epi fi − (x, α)) is metrically subregular at

((x̄, f (x̄)), ((0, 0), . . . , (0, 0)) in (h, ν). Then one has

∂f (x̄; (h, ν))⊂
⋃

J⊂I0(x̄,(h,ν))

(
conv {∂fi(x̄; (h, ν)) | i ∈J }+∑i∈I (x̄,(h,ν))\J ∂∞fi(x̄; (h, ν))

)
,

where

I (x̄, (h, ν)) := {i | f (x̄) = fi(x̄) and ν ∈ Dfi(x̄)h},
I0(x̄, (h, ν)) := {i ∈ I (x̄, (h, ν)) | ∂fi(x̄; (h, ν)) �= ∅}. (24)

Proof Since epi f = ⋂l
i=1 epi fi , Corollary 3.1 yields that for (x∗,−1) ∈

Nepi f ((x̄, f (x̄)), (h, ν)) there exists (x∗
i ,−βi) ∈ Nepi fi

((x̄, f (x̄)), (h, ν)) such that

(x∗, −1) = ∑l
i=1(x

∗
i , −βi). If fi(x̄) < f (x̄) for some i, we have (x∗

i ,−βi) = (0, 0)

due to continuity of fi and the same holds true if ν /∈ Dfi(x̄)h. Hence we consider only
i ∈ I (x̄, (h, ν)).

Given a function g and a point x ∈ dom g, one always has that (y∗,−β) ∈
N̂epi g(x, g(x)) implies β ≥ 0 and hence we obtain βi ≥ 0 for all i ∈ I (x̄, (h, ν)).
Setting J := {i ∈ I (x̄, (h, ν)) | βi > 0}, for i ∈ J we obtain βi(x

∗
i /βi,−1) ∈

Nepi fi
((x̄, fi(x̄)), (h, ν)) and thus x∗

i ∈ βi∂fi(x̄; (h, ν)), showing also J ⊂ I0(x̄, (h, ν)).
On the other hand, for i /∈ J we have βi = 0 and hence x∗

i ∈ ∂∞fi(x̄; (h, ν)). This
completes the proof.

Taking into account (13) and the mentioned fact that (y∗,−β) ∈ N̂epi g(x, g(x)) implies
β ≥ 0, the required metric subregularity of F from Proposition 4.3 is again implied by
condition (23).

Proposition 4.4 Suppose f = min{f1, . . . , fl} for lsc functions fi : Rn → R̄ and x̄ ∈
dom f . Given a direction (h, ν) ∈ R

n+1, consider index set I0(x̄, (h, ν)) given by (24). Then
one has

∂f (x̄; (h, ν)) ⊂
⋃

i∈I0(x̄,(h,ν))

∂fi(x̄; (h, ν)).

Proof Since epi f = ⋃l
i=1 epi fi , Proposition 3.1 yields that for (x∗,−1) ∈

Nepi f ((x̄, f (x̄)), (h, ν)) there exists i such that (x∗,−1) ∈ Nepi fi
((x̄, f (x̄)), (h, ν)).

Moreover, (x̄, f (x̄)) ∈ epi fi implies fi(x̄) ≤ f (x̄) while fi(x̄) ≥ f (x̄) follows from defi-
nition of f and consequently x∗ ∈ ∂fi(x̄;h). This verifies that i ∈ I0(x̄, h) and completes
the proof.

Theorem 4.2 (Directional subdifferentials of value function) Consider an lsc function f :
R

n×R
l → R̄, set ϑ(y) = infx∈Rn f (x, y) and assume that ϑ is finite at ȳ. Let S : Rl ⇒ R

n
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be the solution mapping given by S(y) = argmin f (·, y) and consider a direction (v, μ) ∈
R

l+1. If S is inner semicompact at ȳ in direction v, then

y∗ ∈ ∂ϑ(ȳ; (v, μ)) =⇒ (0, y∗) ∈
⋃

x̄∈S(ȳ)

(( ⋃

h∈{ξ |μ∈Df (x̄,ȳ)(ξ,v)}
∂f ((x̄, ȳ); (h, v, μ))

)

∪
( ⋃

h∈{ξ∈S | 0∈Df (x̄,ȳ)(ξ,0)}
∂f ((x̄, ȳ); (h, 0, 0))

))
.

Moreover, if there exists x̄ ∈ S(ȳ) such that S is inner semicontinuous at (ȳ, x̄) in direction
v, then the previous estimate holds with this x̄, i.e., the union over x̄ ∈ S(ȳ) is superfluous.
Finally, if there exists x̄ ∈ S(ȳ) such that S is inner calm at (ȳ, x̄) in direction v, then the
estimate reduces to

y∗ ∈ ∂ϑ(ȳ; (v, μ)) =⇒ (0, y∗) ∈
⋃

h∈{ξ |μ∈Df (x̄,ȳ)(ξ,v)}
∂f ((x̄, ȳ); (h, v, μ)).

Proof Let (y∗, −1) ∈ Nepi ϑ(ȳ, ϑ(ȳ); (v, μ)). The assumptions imposed on S imply that
S(y) is locally not empty-valued (around ȳ). Hence, we may proceed as in [22, Theorem
10.12] to obtain epi ϑ = ϕ(epi f ) with ϕ : Rn+l+1 → R

l+1 given by ϕ(x, y, α) = (y, α).
In order to apply Theorem 3.2 we yet have to show that the assumptions on S imply
the corresponding assumptions on �(y, α) := {(x, y, α) | (x, y, α) ∈ epi f } w.r.t. epi ϑ .
Note that if (y, α) ∈ epi ϑ and x ∈ S(y) we have α ≥ ϑ(y) = f (x, y) and hence
{(x, y, α) | (y, α) ∈ epi ϑ, x ∈ S(y)} ⊂ �(y, α).

Consider (yk, αk)
epi ϑ→ (ȳ, ϑ(ȳ)) from direction (v, μ) and thus yk → ȳ from direction v.

The inner semicompactness of S yields the existence of x̄ and a sequence xk → x̄ such that,
by passing to a subsequence, we have xk ∈ S(yk) and hence (xk, yk, αk) ∈ �(yk, αk) with
(xk, yk, αk) → (x̄, ȳ, ϑ(ȳ)), showing the inner semicompactness of � at (ȳ, ϑ(ȳ)) w.r.t.
epi ϑ in direction (v, μ).

Now fix x̄ ∈ S(ȳ). If S is inner semicontinuous at (ȳ, x̄) in v, the inner semicontinuity
of � at ((ȳ, ϑ(ȳ)), (x̄, ȳ, ϑ(ȳ))) w.r.t. epi ϑ in (v, μ) follows from analogous arguments.
Assuming the inner calmness of S, let V denote the directional neighborhood of v such that
x̄ ∈ S(y) + L‖y − ȳ‖ for all y ∈ ȳ + V and consider a directional neighborhood W of
(v, μ) such that for (y, α) ∈ ((ȳ, ϑ(ȳ)) + W) ∩ epi ϑ we have y ∈ ȳ + V . We obtain that
there exists x ∈ S(y), i.e., (x, y, α) ∈ �(y, α) such that

‖(x̄, ȳ, ϑ(ȳ)) − (x, y, α)‖ ≤ ‖x̄ − x‖ + ‖(ȳ, ϑ(ȳ)) − (y, α)‖
≤ L‖y − ȳ‖ + ‖(ȳ, ϑ(ȳ)) − (y, α)‖
≤ (L + 1)‖(ȳ, ϑ(ȳ)) − (y, α)‖,

showing the inner calmness of � at ((ȳ, ϑ(ȳ)), (x̄, ȳ, ϑ(ȳ))) w.r.t. epi ϑ in (v, μ).
Taking into account the differentiability of ϕ, Theorem 3.2 now yields all statements of

the theorem.

5 Calculus for Directional Coderivatives

In the first part of this section we present two basic calculus rules, namely the chain rule
and the sum rule for directional limiting coderivatives. In fact, having proved one of them,
the other one can be derived relatively easily on the basis of the first one, similarly like
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in the case of standard limiting coderivatives. Here we follow essentially the pattern from
[22]. Thereafter we present a “scalarization” formula which may facilitate the computation
of coderivatives of single-valued Lipschitz continuous mappings.

Consider first the mappings S1 : Rn ⇒ R
m, S2 : Rm ⇒ R

s and associate with them the
“intermediate” multifunction � : Rn × R

s ⇒ R
m defined by

�(x, u) = {w ∈ S1(x)|u ∈ S2(w)}.

Theorem 5.1 (Directional coderivative chain rule) Suppose S = S2 ◦ S1 for osc mappings
S1, S2. Let x̄ ∈ dom S, ū ∈ S(x̄) and (h, l) ∈ R

n ×R
s be two given directions. Assume that

(a) there is a directional neighborhood U of (h, l) such that �((x̄, ū) + U) is bounded;
(b) the mapping

F(x,w, u) :=
[
gph S1 − (x,w)

gph S2 − (w, u)

]
(25)

is metrically subregular at (x̄, w, ū, 0, 0) for all w ∈ �(x̄, ū) in directions (h, k, l) with
k such that (h, k) ∈ Tgph S1(x̄, w), (k, l) ∈ Tgph S2(w, ū), and in directions (0, k, 0) with
k ∈ S such that (0, k) ∈ Tgph S1(x̄, w), (k, 0) ∈ Tgph S2(w, ū);

Then one has

D∗S((x̄, ū); (h, l)) ⊂ ⋃
w̃∈�(x̄,ū)

( ⋃
k∈{ξ∈DS1(x̄,w̃)(h)|

l∈DS2(w̃,ū)(ξ)}

D∗S1((x̄, w̃); (h, k)) ◦ D∗S2((w̃, ū); (k, l))

∪ ⋃
k∈{ξ∈S|ξ∈DS1(x̄,w̃)(0),

0∈DS2(w̃,ū)(ξ)}

D∗S1((x̄, w̃); (0, k)) ◦ D∗S2((w̃, ū); (k, 0))
)

.

(26)

Proof Following the proof idea of [22, Thm.10.37] one has that gph S = G(C) with G :
(x,w, u) �→ (x, u) and C = H−1(D), where H : (x,w, u) �→ (x,w,w, u) and D =
gph S1 × gph S2.

To compute an estimate of Ngph S((x̄, ū); (h, l)), we invoke first Theorem 3.2, which is
possible thanks to condition (a), see also Remark 3.1. We obtain that

Ngph S((x̄, ū); (h, l)) ⊂ ⋃
w̃∈�(x̄,ū)

( ⋃
k∈{ξ |(h,ξ,l)∈TC(x̄,w̃,ū)}

{(y∗
1 , y∗

2 )|(y∗
1 , 0, y∗

2 ) ∈ NC((x̄, w̃, ū); (h, k, l))}

∪ ⋃
k∈{ξ∈S|(0,ξ,0)∈TC(x̄,w̃,ū)}

{(y∗
1 , y∗

2 )|(y∗
1 , 0, y∗

2 ) ∈ NC((x̄, w̃, ū); (0, k, 0))}
)

.

(27)

Next we compute NC((x̄, w̃, ū); (h, k, l)) via Theorem 3.1. Thanks to condition (b) and
the calmness of H one has

NC((x̄, w̃, ū); (h, k, l)) ⊂
{(a, b + c, d)|(a, b) ∈ Ngph S1((x̄, w̃); (h, k)), (c, d) ∈ Ngph S2((w̃, ū); (k, l))} (28)

and, likewise,

NC((x̄, w̃, ū); (0, k, 0)) ⊂
{(a, b + c, d)|(a, b) ∈ Ngph S1((x̄, w̃); (0, k)), (c, d) ∈ Ngph S2((w̃, ū); (k, 0))}. (29)

Further we observe that

TC(x̄, w̃, ū) ⊂ {(h, k, l)|(h, k) ∈ Tgph S1(x̄, w̃), (k, l) ∈ Tgph S2(w̃, ū)},
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so that the first union in (27) with respect to k can be taken over the set

k ∈ {ξ |(h, ξ) ∈ Tgph S1(x̄, w̃), (ξ, l) ∈ Tgph S2(w̃, ū)} =: Th:l , (30)

and the second union in (27) with respect to k can be taken over the set

k ∈ {ξ ∈ S|(0, ξ) ∈ Tgph S1(x̄, w̃), (ξ, 0) ∈ Tgph S2(w̃, ū)} =: T S

0:0. (31)

Using consecutively representations (30), (31) and inclusions (28), (29) we obtain that

Ngph S((x̄, ū); (h, l))

⊂
⋃

w̃∈�(x̄,ū)

{
(y∗

1 , y∗
2 )|(y∗

1 , 0, y∗
2 ) ∈

⋃

k∈Th:l
NC((x̄, w̃, ū); (h, k, l)) ∪

⋃

k∈T S

0:0

NC((x̄, w̃, ū); (0, k, 0))
}

⊂
⋃

w̃∈�(x̄,ū)

( ⋃

k∈Th:l
{(y∗

1 , y∗
2 )|∃c : (y∗

1 , −c) ∈ Ngph S1 ((x̄, w̃); (h, k)), (c, y∗
2 ) ∈ Ngph S2 ((w̃, ū); (k, l))}

∪
⋃

k∈T S

0:0

{(y∗
1 , y∗

2 )|∃c : (y∗
1 , −c) ∈ Ngph S1 ((x̄, w̃); (0, k)), (c, y∗

2 ) ∈ Ngph S2 ((w̃, ū); (k, 0))}
)

.

It follows that for u∗ := −y∗
2 one has

D∗S((x̄, ū); (h, l))(u∗) ⊂ ⋃
w̃∈�(x̄,ū)

( ⋃
k∈Th:l

D∗S1((x̄, w̃); (h, k)) ◦ D∗S2((w̃, ū); (k, l))(u∗)

∪ ⋃
k∈T S

0:0
D∗S1((x̄, w̃); (0, k)) ◦ D∗S2((w̃, ū); (k, 0))(u∗)

)
,

and the proof is complete.

Let us comment on assumption (b) which is, admittedly, not easy to verify in general. Fol-
lowing Proposition 2.1, it may be ensured by the next two conditions (which are, however,
more restrictive).

(i) For all w̃ ∈ �(x̄, ū) and all directions k such that k ∈ DS1(x̄, w̃)(h), l ∈
DS2(w̃, ū)(k) one has

0 ∈ D∗S1((x̄, w̃); (h, k))(−λ), λ ∈ D∗S2((w̃, ū); (k, l))(0) =⇒ λ = 0; (32)

(ii) for all w̃ ∈ �(x̄, ū) and all directions k ∈ S such that k ∈ DS1(x̄, w̃)(0), 0 ∈
DS2(w̃, ū)(k) one has

0 ∈ D∗S1((x̄, w̃); (0, k))(−λ), λ ∈ D∗S2((w̃, ū); (k, 0))(0) =⇒ λ = 0. (33)

We observe that both conditions (32), (33) are automatically fulfilled provided either S1 is
metrically regular around (x̄, w̃) for w̃ ∈ �(x̄, ū), or S2 has the Aubin property around
(w̃, ū) for w̃ ∈ �(x̄, ū). This complies with the corresponding conditions in [22, Theo-
rem 10.37]. More precisely, one can employ the characterizations of the directional metric
regularity and the Aubin property from [10, Theorem 1].

Further, on the basis of Theorem 3.2, note that the statement of Theorem 5.1 remains
true if we weaken assumption (a) by asking only that the intermediate mapping � is inner
semicompact at (x̄, ū) (w.r.t. gph S) in direction (h, l). On the other hand, if we strengthen
assumption (a) by asking that there exists some w̃ ∈ �(x̄, ū) such that � is inner semi-
continuous at (x̄, ū, w̃) (w.r.t. gph S) in direction (h, l), then the inclusion (26) holds with
this particular w̃ making the union over �(x̄, ū) superfluous. On top of that, the union over
k ∈ {ξ ∈ S|ξ ∈ DS1(x̄, w̃)(0), 0 ∈ DS2(w̃, ū)(ξ)} vanishes provided we assume that � is
even inner calm at (x̄, ū, w̃) (w.r.t. gph S) in direction (h, l).
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On the basis of the above considerations we obtain immediately the following corollaries
of Theorem 5.1.

Corollary 5.1 In the framework of Theorem 5.1 let S1 be single-valued and Lipschitz
continuous near x̄. Further suppose that multifunction (25) is metrically subregular
at (x̄, S1(x̄), ū, 0, 0) in directions (h, k, l) with k ∈ DS1(x̄)(h) such that (k, l) ∈
Tgph S2(S1(x̄), ū). Then inclusion (26) attains the form

D∗S((x̄, ū); (h, l)) ⊂
⋃

k∈{ξ∈DS1(x̄)(h)|
l∈DS2(S1(x̄),ū)(ξ)}

D∗S1(x̄; (h, k)) ◦ D∗S2((S1(x̄), ū); (k, l)). (34)

If, moreover, S1 is directionally differentiable at x̄, then

D∗S((x̄, ū); (h, l)) ⊂ D∗S1(x̄; (h, k)) ◦ D∗S2((S1(x̄), ū); (k, l)), (35)

where k = S′
1(x̄; h).

Note that the single-valuedness and the Lipschitz continuity of S1 are carried over to the
intermediate mapping �, yielding the fulfillment of assumption (a) as well as the reduction
in the estimate. It is not difficult to verify that the properties of S1 enable us to simplify the
multifunction (25) by replacing its first row by S1(x) − w. We make use of this fact in the
formulation of Theorem 5.2.

Let us illustrate the above results via a simple example.

Example 5.1 Consider the composition

S(x) := (NR
s− ◦ ϕ)(x),

where ϕ : Rn → R
s is Lipschitz continuous near x̄ and directionally differentiable at x̄. Let

ū ∈ S(x̄) and directions (h, l) ∈ R
n × R

s be given and assume that the multifunction

F(x,w, u) :=
[

ϕ(x) − w

gph NR
s− − (w, u)

]
(36)

is metrically subregular at (x̄, ϕ(x̄), ū, 0, 0) in direction (h, ϕ′(x̄; h), l). Then, by virtue of
Corollary 5.1 one has

D∗S((x̄, ū); (h, l)) ⊂ {D∗ϕ(x̄; (h, ϕ′(x̄; h)))(y∗) | y∗ ∈ D∗NR
s−((ϕ(x̄), ū); (ϕ′(x̄; h), l))}.

As an illustration of this formula put n = s = 1,

ϕ(x) =
{−0.5x forx ≤ 0

−x otherwise,

x̄ = ū = 0, h = 1, l = 0. Clearly, ϕ′(x̄;h) = −1 and the qualification condition is fulfilled
because of the polyhedrality of the respective mapping (36). After an easy computation we
now obtain that for any b ∈ R

D∗NR
s−((0, 0); (−1, 0))(b) ⊂ {0} andD∗ϕ(0; (1,−1))(0) = {0}.

Hence, D∗S((0, 0); (1, 0))(b) ⊂ {0} and we are done. �

Corollary 5.2 In the framework of Theorem 5.1 let S2 be single-valued and Lipschitz con-
tinuous near every w ∈ S1(x̄). Further, let assumption (a) be fulfilled. Then inclusion (26)
with evident simplifications holds true.
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The assumptions imposed on S2 justify assumption (b), since for a single-valued mapping
Lipschitz continuity and the Aubin property coincide.

Corollaries 5.1 and 5.2 represent our main tool in the proof of the next statement. We
consider there mappings Si : R

n ⇒ R
m, i = 1, 2, . . . , p, and associate with them the

multifunction � : Rn × R
m ⇒ (Rm)p defined by

�(x, u) = {w = (w1, w2, . . . , wp) ∈ (Rm)p|wi ∈ Si(x),
∑p

i=1wi = u}.

Theorem 5.2 (Directional coderivative sum rule) Suppose S = S1 + S2 + . . . + Sp for osc
mappings Si : Rn ⇒ R

m. Let x̄ ∈ dom S, ū ∈ S(x̄) and (h, l) ∈ R
n × R

m be a given pair
of directions. Further assume that

(a) there is a directional neighborhood U of (h, l) such that �((x̄, ū) + U) is bounded;
(b) the mapping

F(x, v, w) =

⎡

⎢⎢⎢⎣

(x, . . . , x) − (v1, . . . , vp)

gph S1 − (v1, w1)
...
gph Sp − (vp,wp)

⎤

⎥⎥⎥⎦

is metrically subregular at (x̄, (x̄, . . . , x̄), w̃, 0, 0, . . . , 0) for all vectors w̃ ∈ �(x̄, ū)

in all directions (h, (h, . . . , h), k1, . . . , kp) such that

ki ∈ DSi(x̄)(h), i = 1, . . . , p, k1 + . . . + kp = l,

and in all directions (0, (0, . . . , 0), k1, . . . , kp) such that

ki ∈ DSi(x̄)(0), i = 1, . . . , p, k1 + . . . + kp = 0 and k := (k1, . . . , kp) ∈ S.

Then one has

D∗S((x̄, ū); (h, l)) ⊂ ⋃
w̃∈�(x̄,ū)

( ⋃
ki∈DSi (x̄,w̃i )(h),∑

ki=l

D∗S1((x̄, w̃1); (h, k1)) + . . . + D∗Sp((x̄, w̃p); (h, kp))

∪ ⋃
ki∈DSi (x̄,w̃i )(0),∑

ki=0,k∈S

D∗S1((x̄, w̃1); (0, k1))+. . .+D∗Sp((x̄, w̃p); (0, kp))
)

.

(37)

Proof Following [22, Theorem 10.41], we observe that S = F2 ◦ So ◦ F1 for So :
(x1, x2, . . . , xp) �→ S1(x1) × . . . × Sp(xp), F1 : x �→ (x, . . . , x)(p copies) and F2 :
(u1, . . . , up) �→ u1 + . . .+up. So, it suffices to apply first Corollary 5.2 to the composition
F2 ◦G for G = So ◦F1 (which is possible under condition (a)) and, thereafter, Corollary 5.1
to compute the directional limiting coderivative of G. This can be done under assumption
(b) and leads directly to formula (37).

Similarly as in Theorem 5.1, the union over {k ∈ S | k1 + . . . + kp = 0, ki ∈
DSi(x̄, w̃i)(0)} vanishes provided we strengthen assumption (a) by asking that the interme-
diate mapping � is inner calm at (x̄, ū, w̃) (w.r.t. gph S) in direction (h, l).

Condition (b) can be ensured by the assumptions (i),(ii) below, which follow from
implications (32), (33) applied to the composition So ◦ F1. They attain the form:
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(i) For all w̃ ∈ �(x̄, ū) and all directions k1, . . . , kp such that ki ∈ DSi(x̄, w̃i)(h), i =
1, . . . , p, k1 + . . . + kp = l, one has

v∗
i ∈ D∗Si((x̄, w̃i); (h, ki))(0),

∑p

i=1v
∗
i = 0 =⇒ v∗

i = 0 fori = 1, . . . , p.

(ii) For all w̃ ∈ �(x̄, ū) and all directions k1, . . . , kp such that ki ∈ DSi(x̄, w̃i)(0), i =
1, . . . , p, k1 + . . . + kp = 0, k ∈ S, one has

v∗
i ∈ D∗Si((x̄, w̃i); (0, ki))(0),

∑p

i=1v
∗
i = 0 =⇒ v∗

i = 0 fori = 1, . . . , p.

These conditions represent a directional version of [22, Theorem 10.41, condition (b)].

Corollary 5.3 In the setting of Theorem 5.2 assume that p = 2 and S1 is single-valued and
Lipschitz continuous near x̄ and directionally differentiable at x̄. Then all assumptions of
Theorem 5.2 are fulfilled and

D∗S((x̄, ū); (h, l)) ⊂ D∗S1(x̄; (h, k)) + D∗S2((x̄, ū − S1(x̄)); (h, l − k)), (38)

where k = S1(x̄; h).

Proof First we observe that �(x̄, ū) = {(S1(x̄), ū−S1(x̄))} and all assumptions of Theorem
5.2 are fulfilled thanks to the assumed properties of S1. Formula (38) follows directly from
inclusion (37).

Note that inclusion (38) becomes equality provided S1 is continuously differentiable near
x̄, cf. [11, formula(2.4)].

The next statement is a directional version of the useful scalarization formula for single-
valued Lipschitz continuous mappings, cf. [22, Proposition 9.24] and [20, Theorem 3.28].

Proposition 5.1 Consider a single-valued continuous mapping ϕ : Rn → R
m which is also

Lipschitz continuous near x̄ in direction u. Then for any y∗, v ∈ R
m one has

D∗ϕ(x̄; (u, v))(y∗) = ∂〈y∗, ϕ〉(x̄; (u, 〈y∗, v〉)).

Proof Let x∗ ∈ D∗ϕ(x̄; (u, v))(y∗), i.e., (x∗,−y∗) ∈ Ngph ϕ((x̄, ϕ(x̄)); (u, v)) and con-
sider sequences (tk) ↓ 0, (uk, vk) → (u, v), (x∗

k ,−y∗
k ) → (x∗,−y∗) with (x∗

k , −y∗
k ) ∈

N̂gph ϕ((x̄, ϕ(x̄))+ tk(uk, vk)). Thus, we have vk = (ϕ(x̄+ tkuk)−ϕ(x̄))/tk and, taking into
account that ϕ is Lipschitz continuous near x̄ + tkuk and applying [22, Proposition 9.24(b)],
we obtain

x∗
k ∈ D̂∗ϕ(x̄ + tkuk)(y

∗
k ) = ∂̂〈y∗

k , ϕ〉(x̄ + tkuk) = ∂̂[〈y∗, ϕ〉 + 〈y∗
k − y∗, ϕ〉](x̄ + tkuk).

The fuzzy sum rule [20, Theorem 2.33] yields the existence of x1, x2 with ‖xi − (x̄ +
tkuk)‖ ≤ t2

k for i = 1, 2 such that

x∗
k ∈ ∂̂〈y∗, ϕ〉(x1) + ∂̂〈y∗

k − y∗, ϕ〉(x2) ⊂ ∂̂〈y∗, ϕ〉(x1) + (‖y∗
k − y∗‖κ + t2

k )B,

where κ denotes the Lipschitz constant. Consequently, there exists ξ∗
k ∈ ∂̂〈y∗, ϕ〉(x1) with

ξ∗
k → x∗ and similarly as in the proof of Theorem 3.1 one can easily show that ũk :=

(x1 − x̄)/tk → u and Lipschitz continuity of ϕ then implies also (ϕ(x1) − ϕ(x̄))/tk → v.
Thus, we conclude

(ξ∗
k ,−1) ∈ N̂epi 〈y∗,ϕ〉(x̄ + tkũk, 〈y∗, ϕ〉(x̄) + tk〈y∗, (ϕ(x̄ + tkũk) − ϕ(x̄))/tk〉),

showing x∗ ∈ ∂〈y∗, ϕ〉(x̄; (u, 〈y∗, v〉)).
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The reverse inclusion follows easily from Theorem 4.1 since 〈y∗, ϕ〉 = g ◦ ϕ for linear
function g = 〈y∗, ·〉. Note that ∂∞g(ϕ(x̄)) = {0} implies metric subregularity of F(x, α) =
epi g − (ϕ(x), α).

An equivalent formulation of the following useful result was also proven in [19, Corol-
lary 5.9].

Corollary 5.4 For an lsc function f : Rn → R̄ that is also Lipschitz continuous near x̄ in
direction h one has ∂∞f (x̄; (h, ν)) ⊂ {0} for all ν ∈ R.

Proof Indeed, ∂∞f (x̄; (h, ν)) ⊂ D∗f (x̄; (h, ν))(0) = ∂〈0, f 〉(x̄; (h, 〈0, ν〉)) = {0}.

6 Applications

In this section we apply some of the above presented calculus rules to several problems of
variational analysis, where directional notions can be advantageously utilized.

6.1 First-order sufficient conditions for directional metric regularity
and subregularity of feasibility mappings

Consider a mapping of the form F(x) = � − ϕ(x) which arises in qualification condi-
tions throughout the whole paper. The next result (announced already in Section 2) extends
the results from [10, Theorem 1, Corollary 1], where ϕ is assumed to be continuously
differentiable.

Theorem 6.1 Let the multifunction F : Rn ⇒ R
m be given by F(x) = � − ϕ(x), where

ϕ : R
n → R

m is continuous and � ⊂ R
m is a closed set. Further let (x̄, 0) ∈ gphF ,

(u, v) ∈ R
n × R

m be given and assume that ϕ is calm at x̄ in direction u. Then

1. F is metrically subregular at (x̄, 0) in direction u provided for all w ∈ Dϕ(x̄)(u) ∩
T�(ϕ(x̄)) one has the implication

0 ∈ D∗ϕ(x̄; (u,w))(λ), λ ∈ N�(ϕ(x̄); w) =⇒ λ = 0.

2. F is metrically regular at (x̄, 0) in direction (u, v) (cf. [6, Definition 1]) provided for
all w ∈ Dϕ(x̄)(u) with w + v ∈ T�(ϕ(x̄)) one has the implication

0 ∈ D∗ϕ(x̄; (u,w))(λ), λ ∈ N�(ϕ(x̄); v + w) =⇒ λ = 0.

The proof of the second statement is based on [6, Theorem 5] which provides equiv-
alent characterizations of directional metric regularity and in finite dimensional spaces
one of them states that F is metrically regular at (x̄, 0) in direction (u, v) if and only if
0 ∈ D∗F((x̄, 0); (u, v))(λ) implies λ = 0. The first statement then follows from the fact
that metric regularity of F at (x̄, 0) in direction (u, 0) implies metric subregularity of F at
(x̄, 0) in direction u. Thus, it suffices to show the following lemma.

Lemma 6.1 Under the settings and assumptions of the previous theorem we have

D∗F((x̄, 0); (u, v))(−λ) ⊂
⋃

w∈{ω∈Dϕ(x̄)(u) |
λ∈N�(ϕ(x̄);v+ω)}

D∗ϕ(x̄; (u,w))(λ).
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Proof The assumed calmness of ϕ implies that the intermediate mapping �(x, y) = {y +
ϕ(x),−ϕ(x)} is inner calm at (x̄, 0, ϕ(x̄),−ϕ(x̄)) in direction (u, v). On the other hand,
denoting by G the mapping that to each x assigns set �, it is clear that G has the Aubin
property and we may apply the sum rule for coderivatives, Theorem 5.2. The statement of
the lemma thus follows from the fact that for some w we obtain

D∗G((x̄, ϕ(x̄)); (u, v + w))(−λ) = {ξ | (ξ, λ) ∈ NRn×�((x̄, ϕ(x̄)); (u, v + w))}
=
{

0 if λ ∈ N�(ϕ(x̄); v + w),

∅ otherwise.

6.2 Subtransversality of set systems

Consider the collection of closed sets C1, C2, . . . , Cl from R
n and a point x̄ ∈ C :=

l⋂
i=1

Ci .

By the definition (cf., e.g., [18, Definition 1(ii)]), these sets are subtransversal at x̄ provided
there exist a neighborhood U of x̄ and a constant L > 0 such that the metric inequality

dC(x) ≤ L

l∑

i=1

dCi
(x)

holds for all x ∈ U . This is, on the other hand, equivalent with the calmness of the
perturbation mapping

S(p1, . . . , pl) = {x|pi + x ∈ Ci, i = 1, 2, . . . , l}
at (0, . . . , 0, x̄), cf. [16, Section 3]. A straightforward application of [11, Theorem 3.8]
yields the following result.

Theorem 6.2 Assume that there do not exist nonzero vectors u ∈ R
n and v∗ =

(v∗
1 , . . . , v∗

l ) ∈ R
ln, such that

u ∈⋂l
i=1TCi

(x̄), 0 =∑l
i=1v

∗
i , v∗

i ∈ NCi
(x̄, u), i = 1, 2, . . . , l.

Then collection {C1, C2, . . . , Cl} is subtransversal at x̄.

Very often the sets Ci correspond to various constraint systems and can be described as

Ci = ϕ−1
i (Qi) (39)

with Qi ⊂ R
mi being closed and ϕi : Rn → R

m being Lipschitz continuous near x̄. As a
simple consequence of Theorem 6.2 we obtain a condition ensuring the subtransversality of
a collection of pre-images.

Corollary 6.1 In the setting of Theorem 6.2 assume that the sets Ci are given via (39)
where, in addition to the posed assumptions, functions ϕi are directionally differentiable at
x̄. Further assume that the mappings

Fi(x) = Qi − ϕi(x), i = 1, 2, . . . , l,
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are metrically subregular at x̄. Finally suppose that there do not exist nonzero vectors u ∈
R

n and v∗ = (v∗
1 , . . . , v∗

l ) ∈ R
ln, such that

u ∈ {h ∈ R
n|ϕ′

i (x̄; h) ∈ TQi
(ϕ(x̄)), i = 1, 2, . . . , l}, (40)

0 =∑l
i=1v

∗
i , (41)

v∗
i ∈ D∗ϕi(x̄; (u, ϕ′

i (x̄; u)))NQi
(ϕi(x̄); ϕ′

i (x̄; u)), i = 1, 2, . . . , l. (42)

Then collection {C1, C2, . . . , Cl} is subtransversal at x̄.

The proof follows easily from Theorem 6.2, Theorem 3.1 and the fact that the set on the

right-hand side of (40) amounts exactly to
l⋂

i=1
TCi

(x̄).

Example 6.1 Let n = 2, l = 2,

C1 = {x × R
2| − x1 − x2

1 + x2 ≤ 0,−x1 − x2
1 − x2 ≤ 0},

C2 =
{
x × R

2

∣∣∣∣

(
x2

−x1

)
∈ gph NR+

}
,

(43)

and x̄ = (0, 0). It is easy to verify that all assumptions of Corollary 6.1 are fulfilled and the
only direction u satisfying (40) is the direction R+(1, 0). Clearly, with ϕ1 and Q1 given in
(43) one has

∇ϕ1(x̄)T NQ1(ϕ1(x̄); ∇ϕ1(x̄)u) =
[−1 −1

1 −1

]
N
R

2−((0, 0); (−1,−1)) = {(0, 0)}.

Consequently, there does not exist any nonzero pair v∗
1 , v∗

2 satisfying conditions (41), (42)
and so collection {C1, C2} is subtransversal at x̄.

Note that we are not able to detect this property via the (stronger) Aubin property of S

because, with p̄ = 0,

D∗S(p̄, x̄)(0)=
{
(a∗, b∗)∈R

2×R
2

∣∣∣∣a
∗ ∈
[−1 −1

1 −1

]
R

2+, b∗ ∈
[

0 −1
1 0

]
Ngph NR+ ((0, 0)),

a∗ + b∗ = 0}.
Thus, since the vectors a∗ = (−1, 0) and b∗ = (1, 0) belong to D∗S(p̄, x̄)(0), we conclude
from the Mordukhovich criterion that S does not possess the Aubin property around (p̄, x̄).
�

6.3 Aubin property of implicitly givenmappings

By combination of [11, Theorem 4.4] with Proposition 5.1 one obtains a sufficient condition
for the Aubin property for a class of implicitly defined multifunctions. Let the function
M : Rl × R

n → R
m be Lipschitz continuous near the reference point (p̄, x̄) ∈ R

l × R
n

satisfying M(p̄, x̄) = 0 and consider the solution mapping

S(p) := {x ∈ R
n|M(p, x) = 0}.

Theorem 6.3 Assume that M is directionally differentiable at (p̄, x̄) and

(i) {u ∈ R
n|M ′((p̄, x̄); (v, u)) = 0} �= ∅ for allv ∈ R

l;
(ii) M is metrically subregular at (p̄, x̄, 0);
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(iii) For every nonzero (v, u) ∈ R
l × R

n such that M ′((p̄, x̄); (v, u)) = 0 one has the
implication [

q∗
0

]
∈ ∂〈y∗,M〉((p̄, x̄); (v, u, 0)) ⇒ q∗ = 0.

Then S has the Aubin property around (p̄, x̄).
This statement remains valid if conditions (ii), (iii) are replaced by the (stronger) implication

[
q∗
0

]
∈ ∂〈y∗, M〉((p̄, x̄); (v, u, 0)) ⇒ y∗ = 0. (44)

This result can be applied to parameterized nonlinear complementarity problems (NCPs)
governed by the equation

0 = M(p, x) := min{G(p, x),H(p, x)}, (45)

where functions G,H : Rl × R
n → R

n are Lipschitz continuous near (p̄, x̄), direction-
ally differentiable at (p̄, x̄) and the “minimum” is taken componentwise. As always in the
treatment of finite-dimensional NCPs we introduce for (p, x) ∈ gph S the index sets

IG(p, x) := {i ∈ {1, 2, . . . , n}|Gi(p, x) = 0, Hi(p, x) > 0}
IH (p, x) := {i ∈ {1, 2, . . . , n}|Gi(p, x) > 0, Hi(p, x) = 0}
I0(p, x) := {i ∈ {1, 2, . . . , n}|Gi(p, x) = Hi(p, x) = 0},

which create a partition of {1, 2, . . . , n}. To be able to apply Theorem 6.3 to M given by
(45) we observe that M ′((p̄, x̄); (v, u)) (for general directions (v, u)) amounts to the vector
b such that

bi =
〈

G′
i ((p̄, x̄); (v, u)) fori ∈ IG(p̄, x̄) ∪ I0G(p̄, x̄)

H ′
i ((p̄, x̄); (v, u)) fori ∈ IH (p̄, x̄) ∪ I0H (p̄, x̄)

G′
i ((p̄, x̄); (v, u)) = H ′

i ((p̄, x̄); (v, u)) otherwise,

where I0G(p̄, x̄) := {j ∈ I0(p̄, x̄)|G′
j ((p̄, x̄); (v, u)) < H ′

j ((p̄, x̄); (v, u))} and
I0H (p̄, x̄) := {j ∈ I0(p̄, x̄)|H ′

j ((p̄, x̄); (v, u)) < G′
j ((p̄, x̄); (v, u))}.

Furthermore, by virtue of Propositions 4.3, 4.4 and the definition of the directional
limiting subdifferential, we obtain

∂〈y∗, M〉((p̄, x̄); (v, u, 0)) ⊂∑
i∈IG(p̄,x̄)∪I0G(p̄,x̄)

�i(y
∗
i ) + ∑

i∈IH (p̄,x̄)∪I0H (p̄,x̄)

�i(y
∗
i ) + ∑

i∈I0(p̄,x̄)\(I0G(p̄,x̄)∪I0H (p̄,x̄))

�i(y
∗
i ),

where the multifunctions �i, �i,�i, i = 1, 2, . . . , n, mapR to (subsets of) R
n and, for

a ∈ R, are defined by

�i(a) =
〈

a∂Gi((p̄, x̄); (v, u, 0)) ifa > 0
|a|∂(−Gi)((p̄, x̄); (v, u, 0)) ifa < 0
0 otherwise,

�i(a) =
〈

a∂Hi((p̄, x̄); (v, u, 0)) ifa > 0
|a|∂(−Hi)((p̄, x̄); (v, u, 0)) ifa < 0
0 otherwise,

�i(a) =
〈

a[∂Gi((p̄, x̄); (v, u, 0)) ∪ ∂Hi((p̄, x̄); (v, u, 0))] ifa > 0
|a| conv[∂(−Gi)((p̄, x̄); (v, u, 0)), ∂(−Hi)((p̄, x̄); (v, u, 0))] ifa < 0
0 otherwise.

The usage of the above formulas is illustrated by the following nonsmooth NCP.
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Example 6.2 Consider the NCP governed by equations (45) with l = n = 1,G(p, x) =
x − x2, H(p, x) = |p| − x − x2 and put (p̄, x̄) = (0, 0). One has

M ′((p̄, x̄); (v, u)) = min{u, |v| − u}
and so assumption (i) of Theorem 6.3 is fulfilled. Implication (44) has to be verified for
directions (v, u) satisfying either v �= 0, u = 0 or v �= 0, u = |v|. In the first case one has
{1} ∈ I0G(p̄, x̄) and so implication (44) attains the form

[
q∗
0

]
= y∗
[

0
1

]
⇒ y∗ = 0.

In the second case one has {1} ∈ I0H (p̄, x̄) and so we have to verify the conditions

�y∗ > 0 :
[

q∗
0

]
∈ y∗
[ [−1, 1]

−1

]

�y∗ < 0 :
[

q∗
0

]
∈ |y∗|

[ {−1} ∪ {1}
−1

]
.

Since both these conditions are fulfilled, the corresponding mapping S has the Aubin
property around (p̄, x̄).

Note that the standard condition ensuring the Aubin property of S on the basis of the
Mordukhovich criterion is violated. Indeed, by the calculus from [20, Chapter 3] one has

D∗M(p̄, x̄)(y∗) = ∂〈y∗,M〉(p̄, x̄) ⊂
〈

y∗
({[

0
1

]}
∪
{[ [−1, 1]

−1

]})
ify∗ > 0

|y∗|conv

([
0

−1

]
,

[ {−1} ∪ {1}
1

])
ify∗ < 0.

(46)
One can easily verify that, for instance, the nonzero pair (q∗, y∗) = (0.5,−1) belongs to
the set on the right-hand side of (46). Since we do not dispose with a better estimate of
D∗M(p̄, x̄)(y∗), the Aubin property of S around (p̄, x̄) cannot be detected in this way. �

6.4 Improving the standard calculus

It can easily be seen that all rules presented in Sections 3–5 reduce to their counterparts from
the classical generalized differential calculus provided we set the considered directions to be
zero. In some cases, however, the classical rules may even be improved when one employs
the appropriate results from this paper. This concerns both the restrictiveness of the imposed
assumptions as well as the sharpness of the resulting estimates.

As to the former case, Proposition 6.1 below improves a statement from [22, Theorem
6.43] by a substantial relaxation of the assumptions.

Proposition 6.1 Consider a closed set C ⊂ R
n and a continuous mapping ϕ : Rn → R

l ,
set Q = ϕ(C) and consider ȳ ∈ Q. Let � : Rl ⇒ R

n be given by �(y) := ϕ−1(y) ∩ C

and let it be inner semicontinuous at (ȳ, x̄) w.r.t. Q for some x̄ ∈ �(ȳ). Assume further
that the set-valued mapping F : Rl+n ⇒ R

2(l+n) given by F(y, x) = (gphϕ−1 − (y, x)
)×(

(Rl × C) − (y, x)
)
is metrically subregular at ((ȳ, x̄), (0, . . . , 0)). Then

NQ(ȳ) ⊂ {y∗ | D∗ϕ(x̄)(y∗) ∩ NC(x̄) �= ∅}.

The statement follows from Theorem 3.2 for direction v = 0, taking also into account
Remark 3.1. Note that the second term in (14) is covered by the first one and no inner
calmness assumption is thus needed.
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Next we show a possible improvement of two estimates for the limiting normal cones.

Proposition 6.2 Given a closed set Q ⊂ R
m and a continuously differentiable function

ϕ : Rn → R
m, consider the set C := ϕ−1(Q). Assume that the set-valued mapping F :

R
n ⇒ R

m given by F(x) = Q − ϕ(x) is metrically subregular at (x̄, 0) in every direction
h ∈ TC(x̄) ∩ S. Then

NC(x̄) ⊂ N̂C(x̄) ∪
⋃

h∈TC(x̄)∩S
∇ϕ(x̄)T NQ(ϕ(x̄); ∇ϕ(x̄)h).

The proof follows easily from Lemma 2.1 and Theorem 3.1. The increased sharpness
of this estimate with respect to [22, Theorem 6.14] has been used in sufficient conditions
for the Aubin property of a class of solution mappings in [11, 12]. It stays also behind the
application discussed in Subsection 6.3.

A sharper estimate can be obtained in this way also in the case of normal cones to unions.
Consider a family of closed sets Ci ⊂ R

n, i = 1, 2, . . . , l, and a point x̄ ∈ C = ∪l
i=1Ci .

The standard estimate attains the form

NC(x̄) ⊂
⋃

i∈I (x̄)

NCi
(x̄), (47)

where I (x̄) := {i = 1, . . . , l | x̄ ∈ Ci}. This follows, e.g., from Proposition 3.1 with h = 0.
On the basis of Lemma 2.1, however, we obtain the estimate

NC(x̄) ⊂
⋂

i∈I (x̄)

N̂Ci
(x̄) ∪

⋃

h∈TC(x̄)∩S

⋃

i∈I (x̄,h)

NCi
(x̄; h),

where I (x̄, h) := {i ∈ I (x̄) | h ∈ TCi
(x̄)}. This estimate is tighter than (47), which is

demonstrated in the next example.

Example 6.3 (MPCC generating set) Let C1 = R+ × {0}, C2 = {0} × R+ and x̄ = (0, 0).
We have

NC1∪C2(x̄) = (R− × R−) ∪ ({0} × R+) ∪ (R+ × {0}) ,

NC1(x̄) = (R− × R) and NC2(x̄) = (R × R−). This shows that in this case the standard
calculus does not provide a tight estimate of the limiting normal cone.

On the other hand, we obtain
⋂

i∈I (x̄) N̂Ci
(x̄) = R− ×R−, TC(x̄)∩S = (C1 ∪C2)∩S =

{(1, 0), (0, 1)} and

I (x̄, (1, 0)) = {1}, NC1(x̄; (1, 0)) = {0} × R,

I (x̄, (0, 1)) = {2}, NC2(x̄; (0, 1)) = R × {0},
which yields that the estimate based on the directional calculus is in fact exact. �

7 Conclusion

The paper contains directional variants of almost all important rules arising in generalized
differential calculus of limiting normal cones, subdifferentials and coderivatives. Naturally,
these new rules exhibit a number of similarities with their classical counterparts concerning
both the structure of resulting formulas as well as the associated qualification conditions.
On the other hand, the directional calculus has also some specific hurdles related to the
computation of images or pre-images of the given directions in the considered mappings. As
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mentioned in the Introduction, they lead either to additional terms in the respective formulas
or to additional qualification conditions. Expectantly, most qualification conditions have
a directional character, which follows from the fact that in this development one needs a
“regular” behavior of feasibility mappings only in the relevant directions. In the rules relying
(partially) on Theorem 3.2 we make use of a special “inner calmness” property which arose
(under a different name) also in completely different contexts. In Section 6 we collected
some representative (classes of) problems, where directional limiting objects are helpful and
the results of this paper enable the user to compute them.
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